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STRONGLY OPTIMAL POLICIES IN SEQUENTIAL SEARCH
WITH RANDOM OVERLOOK PROBABILITIES

By GAINEFORD J. HALL, JR.

The University of Texas at Austin

Assume a searcher is hunting for an object which has been hidden in
one of N regions or cells, with initial prior probability p;! that it is in cell
i. Suppose that to each i there corresponds a sequence {a;;};=1 of random

“variables, where a;; describes the chances that the searcher will fail to find
the object on the jth search of /, given that the object is in i. The joint
distribution of {a;;: 1 <i < N,j = 1} is known to the searcher. Under a
certain monotonicity condition on the a;;’s, it is shown that to maximize
the probability of finding the object in at most n stages of search, the one-
stage look ahead rule is optimal. In an earlier paper concerning a related
problem, Hall assumed {a1;}j>1, - - +, {anj}j=1 were independent processes,
whereas we allow them to be dependent. Our result is new for independent
processes as well.

1. Introduction and summary. In Hall [6] the following search problem was
considered: An object is hidden in one of N boxes, labeled 1,2, ..., N. The
initial prior probability that it is hidden in box i is p,! = 0, where ¥, p! = 1.
There is a searcher who once a day selects a box to be searched for that day.
The searcher knows that the object remains in the box in which it is hidden
until it is found, and he also is informed of the initial location vector p* = (p;},
Pis s pa)-

To each box i corresponds a sequence {«,;}7_, of random variables with values
in the interval [0, 1]and with known joint distribution. The random variable a;
is the random overlook probability or overlook random variable for the jth search of
box i, 1 < i < N. Thisrandom variable describes the chances that the searcher
will not find the object during the jth search of box i, given that the object is
in box i.

One problem treated in Hall [6] is that in which each search of box i costs
the searcher an amount ¢, > 0. Assume that the searcher has already searched
unsuccessfully for the object for n — 1 days and that the present location vector
is p. Suppose that the searcher has searched m(/) times in box /, so that 0 <
m(ly<n—1forl <I<Nand ¥, m({l) =n— 1. The searcher knows the
values of a;;, - -+, a; ,,,, for each box I/, 1 <1 < N. If the searcher selects box
i to be searched next, he pays cost ¢; > 0 and learns a value ¢ of a, ,,,,, during
his search of box i.

If the searcher finds the object by this search of box i, search is terminated
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and no more cost is incurred. Otherwise the searcher uses the value 1 = a; ;)4
observed to revise his opinion of the object’s location (via Bayes’ rule) and the
search continues. The value ¢ is the probability that the searcher will not find
the object on this search of box i, given that it is in box i. The searcher’s prob-
lem is to find an optimal policy to minimize the total expected search cost for
finding the object.

The following definition was introduced in Hall [6]:

DeriniTION. The sequence {X;}7_, of [0, 1]-valued random variables satisfies
the strong monotonicity condition (S.M.C.) if (T][7! X;)E(l — X, | X1, -+, X))
is monotone nonincreasing in m > 1, a.s.

It was proven in Hall [6] that if {«;;}5.,, - - -, {@y;}72, are N independent sto-
chastic processes and if the sequence {a,;}5., satisfies the S.M.C. for each i,
1 < i < N, there is an optimal policy f = {f,}:_, (minimizing the total expected
search cost) such that f is an analog of optimal search procedures found by
Blackwell [4], Black [3] and Kadane [8] (in these earlier papers {a,;}7., was a
sequence of constants, 1 < i < N). It was also shown that if the S.M.C. was
not satisfied, f may fail to be optimal. Roughly speaking, fis the policy which
at each stage of search selects the box with highest present probability of success,
per unit cost of search.

In this paper we treat the related problem in which the searcher’s objective is
to maximize the probability of finding the object in at most n, searches, for fixed
n, = 1. This type of search problem was first treated by Chew [5], under the as-
sumption that a;; = «, is a constant, for each i. Chew defined a search policy
m to be strongly optimal if for each n = 1, P.[M > n|p'] = inf, P,[M > n|p'],
where P[M > n|p'] is the probability (under policy o) that the random time
M at which the object is found is greater than n. As Chew points out, if 7 is
strongly optimal and if ¢, = ¢, | < i < N, then = minimizes the total expected
search cost for finding the object, since E,[<”|p'] = ¢ 3,7, P,[M = n|p'], where
& is the random cost of search.

We extend Chew’s results to the problem in which the overlook probabilities
are random. An example providing motivation for this is given by Example (a)
of Hall [6]. In this problem one gold coin is hidden among brass coins in one
of several boxes (box i having n, > 0 cdins). The searcher is allowed to select
boxes sequentially to reach in and take out a batch of coins, in search of the
gold coin. The distribution of each batch size (and hence the mean batch size)
for each draw is determined by the index i and the number m, of coins remaining
(the searcher observes the batch size w, after each draw). The value of the over-
look rvis 1 — w,/m;. We now wish to search optimally to find the gold coin in
at most n, searches. In this problem and in all the problems treated in Hall [6],
the N processes of overlook random variables are independent.

In this paper we shall allow dependence of the overlook rv’s among the boxes.
Our results are that if {a,;: 1 < i< N, j= 1} satisfy a condition called the
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generalized strong monotonicity condition (or G.S.M.C.) then there is a strongly
optimal policy g. The G.S.M.C. (defined in Section 2) is a generalization of the
S.M.C., so that if {a;;}7.,, 1 < i < N are independent processes and satisfy the
S.M.C., the policy f of Hall is strongly optimal. We also give an example for
N = 2 wherein {a,;}5_,, {a,;}7., are dependent processes such that the G.S.M.C.
is satisfied. We compare this example to a problem given by Bellman [2] (page
90) and compare the optimal policy of our example to the solution of Bellman’s
problem. This gives an interesting comparison between the independence and
dependence problems. Lastly, we give an example of an N-box search problem
wherein {a;;; 1 <i < N, j = 1} are dependent and the G.S.M.C. is satisfied,
using mixtures of Dirichlet processes (Antoniak [1]).

We remark that the results of this paper cannot be obtained from those of
Hall [6], and that the results of this paper apply to the search problem with
cost only when the cost of search is the same for all boxes. As in Chew, we
assumec; =1, 1 <i < N

2. The dynamic programming model. In Hall [6] the search problem with
cost was formulated as a discrete time negative dynamic programming model.
The problem treated in this paper is a positive dynamic programming problem
with finite time horizon n,. To describe the model we must give the action space
4, state space S, transition probability ¢ and reward function r.

The action space is 4 = {1, 2, - .., N} where to take act i at stage m means to
search the ith box then. Now let AY = {p = (p,, - - 5P 0):p=20,1<i<N,
and 3V, p, = 1} and s* = (0,0, - .., 0, 1). Thus A¥ is the set of initial possible
states for the search problem. Moreover, s* is the state into which the system is
transformed once the object is found, meaning that when it is found it is situated
at box N + I, where no search can take place. Foriec A4 and e [0, 1], define
the transition operator T(i, r): AY U {s*} — A¥ U {s*} as follows: If peA”,
TG, f)p = p" where p/ =1p/(1 — (1 —1)p,) and p/ = p/(1 — (1 — 1)p,) for
[ #i. This definition is valid except when p = e’ and r = 0 (e* is the vertex
of A¥ with 1 in the ith coordinate and O elsewhere). In this case we define
T(i, 0)e’ = s*, and for completeness define T(i, t)s* = s* for all i, t. If p is the
prior location vector at some stage, action i is taken, the value ¢ is observed and
the search of box i is unsuccessful, ther T(i, t)p is the posterior location vector
for the object, computed by Bayes’ rule.

Now define S, = A and for n > 2, let S, = {s, = (P, iy, P* iy, -+ +» in_y, P*):
Vm,l<m<n—1,p"elA¥anddu,c[0, 1]3pm+ = T(,, u,)p™}. Then the
state space S = [J,;_; S, U {s*}, the disjoint union. To define the transition prob-
ability g: § x 4 — S, let p,, denote the (marginal) distribution of a, and for
each m = 1 let g, ,,,, be a transition probability of [0, 1] into [0, 1] which is
a conditional distribution of «,,,, given a, -+, a,,, 1 <i< N. Let se S
andied. If s =s,¢S, for some n, t,, -, t; my denote the observed values
of @, -+, @ sy occurring in s,, where m(i) = m(i; s,) is the number of times
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i is searched in s5,. For convenience of notation write p; (¢

s,) =
:ui,m(i)+1(' Bis o0 vy ti,m(i))' Then define q(S* | Sus i) = pi”[l - E(ai.m(i)+1 | Sn)] where
E(@; miiye1]5) = $0 8 msy1(dt] s,). For Ba Borel subset of AY, define ¢({(s,, i)} X
Bls, i) = o[l — (I = 0p Tty man(dt]s,) where C = {1 € [0, 1]: T(i, )p" € B}.
Hence ¢(S,,,|s,, i) = 1 — q(s*|s,, {). Lastly, define g(s*|s*, i) = 1, for all i.
Thus for s, ¢ S,, g(s*|s,, i) is the probability that the object is found during
the (m(i) 4 1)st search of box i and ¢({(s,, /)} X B]|s,, i) is the probability that
the object is not found and the posterior location vector lies in B.

For the reward function r: § x 4 x S — R, if 5, 5’ € S, define r(s, i, s*) = 1
for se U, S, and r(s, i, s) = 0 otherwise. Thus the searcher receives a reward
of one unit when and only when he finds the object by time n,.

Now the sequential search problems for which solutions have been obtainable
seem to share the following characteristic: At any stage of search, if a box i
has the maximum current probability of a successful search and some box k = i
is searched, and if the search of box k is unsuccessful, then box i will have the
maximum posterior probability of a successful search. As Furman Smith [12]
puts it, the box which at some stage is “most inviting” will remain “most invit-
ing” if some other box is searched unsuccessfully. Search problems which do
not have this general property seem to be rather difficult to solve.

It is this consideration which prompts us to make the following definition:
Letn, = 1 bean integer, | < i < N, and define & (n, — 1, n, — 1, .-+, n, — 1)
as the Borel g-algebra generated by {a;m: 1 Si=N, 1 <m<n —1}. Now
define the random variables

F, = E(l — .,

JF (= Lng—1, ..o ny — 1)), I1<i<N,
and
Fik:E(l-—'a' |.7(n1_1,n2_l,u-,n,,,---,nN—l)),

1<i,k<N,

T+

where d,, is Kronecker’s delta symbol. Note that if each box i has been searched
n, — 1 times and p is the present location vector, then p, F; is the current prob-
ability of a successful search in box i.

For any event B, let P,(4) = P(A|B) if P(B) > 0, where P is the probability
measure on the probability space of {a,;: 1 < i< N, j = 1}.

DEerFINITION 1. The sequence {a,;: 1 < i < N, j = 1} of [0, 1]-valued random
variables satisfies the generalized strong monotonicity condition (or G.S.M.C.)
if for all integers n, > 1, 1 < i < N, the following conditions are met:

(1.1) (I35 a;5)F; > 0 implies ([[7:7' a;)F* >0, for 1 <i#k < N.
(1.2) Let B; = {([[?4! ay;)F, > 0}. If P(B,) > 0 then

(IG5 @)k, 5 (A5 a”)f’k , a.s.—P, ,
(5t agFe — (150" @) F '
forall i, I, k, (I # i # k) with strict equality if k = 1.
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If the sequence {a,;: 1 < i < N, j = 1} satisfies the G.S.M.C., then a box i
which at some stage is “most inviting” remains “most inviting” if a box k = i is
searched at that stage. The reasoning is as follows: Suppose that at stagem > 1
box /' has been searched n,— 1 times, so that 0 < n,—1 <mand ¥, (n,—1) = m.
Values of the random variables «;, - - -, @, ,,-, Were observed for box /. By abuse
of notation, we may write p = (p,, - - -, py) Where the /th coordinate of this lo-
cation vector is

, o= prIS ) (20 pr (TG ) -
A box 7 is “most inviting” if
(1.3) pF, = pF,

for all I i, where we assume p, F, > 0, for some /. But (1.3) is equivalent to

(1.4) PAILY @s)F, = pA(IL3s a)Fy,  forall [,

In order that box i remain “most inviting” after a search of box k = i, it is re-
quired that for 1 </ < N we have

(1.5) (T(k, @, )P)F* = (T(k, o, )P) Fit -

By the definition of the transformation operator 7(., ) and that of F,, F.*,
we see that (1.5) is equivalent to

(1.6) P @) FE = p ([Tt a)Fr

But if the G.S.M.C. is satisfied then (1.4) implies (1.6) because of (1.1) and (1.2).
Thus a “most inviting” box remains “most inviting” if some other box is unsuc-
cessfully searched first.

REMARK. If we define ] ; = @ a4y for 1 < i< Nandj> 1, and let {a/,:
I i< N,j= 1} have the conditional distribution given {@m: 1IN,
1 <m; < n,— 1} then {a];: 1 <i < N, j = 1)} satisfies the G.S.M.C. on the
event {[[%7'a;; > 0,1 <i < N}

We are now prepared to prove that under the assumption of the G.S.M.C.,
there isa strongly optimal search policy which, loosely speaking, always searches
the “most inviting” box at each stage. In fact, the search rule we are interested
in is the following:

DerINITION 2. The generalized Blackwell-Black-Kadane-Chew analog (or
G.B.B.K.C. policy) is the following search rule g = {g,}: At initial state p!,
g, chooses any action ie 4 such that p'E(1 — a,;) = max, .., p'E(1 — a}).
Suppose that n > 2, and let state s, = (p*, i}, p* iy - - -, i, 1, p*) € S,. Assume
that box / has been searched m, = m(l; s,) times in state s,, for 1 < [ < N. Then
g, selects any box i achieving the equality

PLI(H;'EI aii)E(l - ai,mi-kll"g%—(ml’ Mgy« vy mN))

= maX,g, oy P17 @) E(L — @) i | &7 (M, My, - -+, my))
1
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where (by abuse of notation) «y,, - - -, @, ,, are the (observed) overlook random
variables for box / in the state s,.

We shall now prove that if {a,;: 1 <i < N, j = 1} satisfies the G.S.M.C.,
the G.B.B.K.C. policy g is strongly optimal. The first result in this direction
(known to this author) was obtained by Y. C. Kan [10] under the assumption
that for each i, {a;;}7, are independent and identically distributed. Our result
is thus an extension of Kan’s result to the situation in which the G.S.M.C. is
satisfied. The proof, which is by induction, is a generalization of Kan’s proof.

THEOREM 1. Suppose that the sequence {a,;: 1 < i< N, j= 1} of overlook
random variables satisfies the G.S.M.C. Then the G.B.B.K.C. policy g is strongly
optimal, i.e., for each fixed n > 1,

P[M < n|p'] = sup, P,[M < n|p]
where M is the random time at which the object is found.

Proor. By induction on n = n,.

For n = 1, the conclusion is clearly true, from the definition of g,.

Assume that for some n, > 2 the conclusion is true for all n < n,, Now let
n = n,.

From Hinderer ([7], page 115, Theorem 17.10) we know that there is an opti-
mal policy ¢* = {o,*},., which maximizes

P[M = n|p'] = X P[M = jIp'],
where ¢,%: S; — A4, j > 1. Let g,(p') = i,, so that
PR E(l — @, 1) = max,g, .y pE(l — ),

and suppose g,*(p') = k, # i,. We will show that g does at least as well as o*.

Suppose box k, is searched at state p'. Then if this search is unsuccessful, the
new state is p* = T(k,, a, ,)p* where p* = p'/(1 — (1 — e, ,)p; ) for [ # k, and
Py = Piy@pa/(1 — (1 — a, 1)pi). The new state p* is the initial state for the
remaining n — 1 stage search problem. Because of the G.S.M.C.,

PLE(l — a1 | F a1}
= max (max,,, prE(l — an| FH{ay 1)), piy E(1 — aygo| S {ay})

where 7 {a, .} is the Borel s-algebra generated by Q1

Let aj; = a,; for I # ko, j = 1 and let a] ; = «a, ;,, for j =1 and let {a];:
1 < i < N, j = 1} have the conditional posterior distribution given ay, .- From
the earlier remark, {a;;: 1 < i < N, j = 1} satisfies the G.S.M.C., and this is
the sequence of overlook random variables for the remaining n — 1 stage search
problem.

Thus by the induction hypothesis, g is optimal in the n — 1 stage problem,
regardless of the value of «; , observed. Also notice

P?OE(I — @] 1) = max,g, .y plE(l — ay) .
We may thus take i, = g,(p?).
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Let 7 = (k,, iy, g) be the policy which first searches box k,, then i, then fol-
lows policy g (i.e., # = {r,};,, where =, = k, 7, = i, and n; = g,_, for j = 3).
Since by induction hypothesis g is also optimal for the n — 2 stage search prob-
lem, = is optimal at state p', i.e.,

P[M < n|p]=P[M<n|p].

Let 0 = (iy, ko, g) be the policy which first searches box i, then k,, then utilizes
policy g. .

For any policy ¢ and any p € A”, ¢,%(p) = P,[M < j|p] denotes the probability
of finding the object in j searches when p is the initial location vector and policy
o is used. Note that ¢, (s*) = 0. Since both g and ¢ search box i, at state p',
and since the conditional posterior distribution of the overlook random variables
(given a, ,) satisfies the G.S.M.C., g is optimal for the remaining n — 1 stage
search problem. Thus

(1.7) ¢,"(P") = ¢5"(P") -
Moreover, since = and ¢* both search box k, at state p' and since (i, g) is
optimal at the new state (again by induction hypothesis) we have

(1.8) " (P") = ¢5(p) -
We will show that
(1.9) ?."(P) = ¢:"(p) -

By (1.7) and (1.8), this will imply that g is optimal for the n-stage search prob-
lem. Now
0" (P)) = Pl E(1 — ay0) + E[(1 — (1 — a; )Pl )¢t (T @i, )P")]

(1.10) = PLE(1 —a, ) + phE(l — &, 1) + E[(1 — (1 — a, )ph

— (1 - ako,l)pllco)gogn_z(T(ko’ alco,l) o T(iy, aio,l)pl)] .
Similarly
(L1 o (pY) = pi, E(1 — @y 1) + pi E(1 — ) + E[(1 — (1 — )Pk,

— (I = @, )pi)e," (Tl @s,0) © T(kos @y, 1)PY)] -

Since T'(iy, a; ) o T(ko, @, ;)P* = P’ is the location vector where p,/ = p,/(1 —
(I = )pey — (1 — a, )pl) for I+ ky, 114, and p, = o, ,p} /(1 — (1 —
Ao )Py — (1 — @i )pi) and pi = a,, pi /(1 — (1 — & )piy — (1 — @, )pi)s it
is clear that T(i, a;,) o T(ky, a, ,)P* and T'(k,, 1) © T(iy, @; ,)P* have the same
distribution. Hence in fact ¢ "(p') = ¢,"(p"), and the theorem is proved. []

We remark that in the above proof, in equation (1.10), it will not happen that
T(i, 01@0,1)91 = s*, unless p' = e%, in which case it is clear that always searching
box i, is optimal. A similar remark applies to equation (1.11). Ross[11]contains
a very nice proof that there is an optimal policy ¢* in finite horizon problems.

3. Illustrations and examples. In this section we examine the special case
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where {a,;};5, - - -, {@y;};2: are N independent stochastic processes and give an
example for N = 2 where {a,;},;.,, {a;;}7-, are dependent processes. We also give
an example of N dependent processes for N > 2 arbitrary.

(@) An illustration wherein the N stochastic processes are independent. Suppose
that {a;;};.,, 1 <i < N are N independent processes. Then F, = F;*, for 1 <
i # k < N. Suppose that {«,;},,, satisfies the S.M.C. for each i. Then condition
(1.1) of the G.S.M.C. is certainly satisfied. And condition (1.2) is true, by in-
dependence of the N processes and by the S.M.C. Thus, by Theorem 1 of Sec-
tion 2, the Blackwell-Black-Kadane rule of Hall [6] is strongly optimal, and
all of the examples found there provide examples for Theorem 1.

(b) An example for N = 2 where {a,;};5,, {ay;};5, are dependent. Let us denote

a; = X;,j =z land a,; = Y, j = 1. Assume that {X,},., are i.i.d. Bernoullirv’s
given an unknown parameter 1, i.e., given 4, each X; has probability function
flx]|A) = 2#5(1 — )=, x=20,1.

Similarly, let {Y}},,, be i.i.d. Bernoulli rv’s given an unknown parameter {, so
that Y; has the probability function

gy 10 = &1 = §)-v, y=0,1.

Let the vector (4, {) have a Dirichlet prior distribution, i.e., (1, {) has density

— F(a + b) a—-17b—1
h(2, §) = F(a)ﬁle S TR

where a > 0, b > 0 are known constants. Thus A has a beta distribution
FHe(a, b),and { =1 — A,

Hence the joint distribution of X, ..., X,., Y;, ---, Y,, 2and { is given by

f(xl’ crty Xy y19 °c ',yn, 29 C)
_ F(a + b) 2&+Z;("=lzj+'n—2;"=lyi—l(1 _ 2)b+z?=lyi+m_z;ﬂ=lxj_1 .
INCING)
Thus the joint distribution of X}, ---, X,,, Y}, ..., Y, is given by

f(xv ey Xy Yoo v ’yn)
_T@+bo)T@a+n+ 37, x; — JE p)T(b +m— (X5 X, — 211 ) .
L'(@)'(d) '@+ b+ m+ n)
Moreover, it is easy to see that the posterior distribution of 2 given X; = x;,
I1<jsm Y, =y,1<1<nis

Fe(a+n+ Frax; — Niayub+m— (L7 X — Bl y)) -

We will show that {X;, Y, j = 1,1 = 1} satisfy the G.S.M.C. We show con-
dition (1.1) holds while we are demonstrating that condition (1.2) holds. By
symmetry, it suffices to show condition (1.2) for (i, k) = (1, 2). Thus we must
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only show that

(21) LH?Qf Yl)E(l - YnIXv ) Xm—v Yn R Yn—l)r
(M7 X)E(L — X[ Xy - o5 Xy Yy -, Vi)
= (H;:ll Yl)YnE(l _ Yn+1|X1’ s X Yy, - Yo_i Yn) s, a.s.,
- (H;’r;_ll Xy)E(l - XMIXI’ T Xm—l’ Y, - Y. s Yn)

conditional on the event where the two denominators are positive. Now from
the above, we have

VE(I — Y, | Xy s X, Yoy o, YD)

(2.2) = E[E(l — Y, |2)|X,, -+, Xy, Yoy -+, YD)
=E[2| X, -, Xy, Yo, o+, Y]
_a+n—14 320X, — 3Y,

a+b+n4+m—2

and
(2'3) E(l - Yn+1|Xv t T Xm—v Yv tT T Yn—l’ Yn)
_atn+ 3iEX, — Y
a+b+n+m—1
Similarly,
(24) E(l - Xlev R ) Xm—l’ Yn R Yn_l)
_bhm— 1 — (T, - YY)
a+b+n4+m-—2
and

(2'5) E(l - Xlev ] Xm—u Yv T Yn—v Yn)
— b+m—1— (Z}n:_llXj — Z?:l Yl) .
a+b+n4+m—1
It follows from (2.2) and (2.4) that (1.1) of the G.S.M.C. holds.
Lety=a+n—14+ 373X, — i Y,ando=b+m — 1 — (' X; —

oY), so that expression (2.2) is y/(y + 0), (2.3)is(y + 1 = Y,)/(y + 0 + 1),
(2.4) is 9/(y + d)and (2.5)is (0 + Y,)/(+ + 0 + 1). Thus it suffices to show that

T Y<LiL:I@
(2.6) A i e L SUAPY
3 <5+);>
r+0 r+0+1
L 2 Yn(r + 1 - Yn) s a.s.
5= o4V,

If Y, = 0, there is nothing to show. If Y, = 1, then y/0 = y/(6 + 1). Thus
the G.S.M.C. is satisfied.

Suppose now that p'E(1 — X,) = p,'E(1 — Y)), so that box 1 is searched at
stage 1. If the value of X, observed is 0, then either the object is found (because
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it actually was hidden in box 1) or the searcher is sure it is not in box 1, and
proceeds to search box 2. If X, = 1, then the searcher searches box 1 if

Pt 1.E(1 — X, | X, =1) >p21E(1 — Yi|X, = 1)
and searches box 2 otherwise. Notice that
E(l — Xlel =1...,X,,=1Y =) " Y., :yn—l)

_b+tm—_1—-(m—1—-7373y)
at+b+n+m-—2
b — 25y
a+b4+nt+m—2

is decreasing in m as m increases, and that

E(l - Yanl =1, ""Xm—lz 1’ Yl =) m s Yn—l =}’n_1)

=a+n—1+m—1_2;‘;11y,
at+b+nt+m-—2

is increasing in m.

Thus if the searcher, following the optimal rule g, starts by searching in box 1,
and if he observes a sequence of 1’s as values of the overlook random variables
for box 1, it may be optimal to switch to box 2 to search before he ever observes
the value 0 for an overlook random variable of box 1.

Contrast that situation to the following search problem, resembling one found
in Bellman [2] (page 90) and solved by Kadane [9]. Suppose both 2 and { are
known constants, 2 + { not necessarily equal to 1, and that X, X,, ... are i.i.d.
Bernoulli random variables with parameter 2 and Y,, Y,, - - . are i.i.d. Bernoulli
random variables with parameter {. Suppose again that p'E(1 — X)) > p,'E(1 —
Y)). Then the searcher starts again by searching box 1. But in this problem,
the optimal procedure tells the searcher to continue searching box 1 until the
first time that the value O is observed for the overlook random variable (or until
n, searches have been performed). Thus the searcher should not switch to box
2 until the value 0 is observed for box 1.

We now give an example of a nonparametric adaptive search problem such
that {a,;},.,, 1 < i < N are dependent processes.

(c) An example for N = 2 using mixtures of Dirichlet processes. Assume that
there are N boxes labeled 1,2, --., N. Let 4, 4, - - -, 4, be N (different) finite
nonnull positive -additive measures on [0, 1] such that v, = § x4,(dx) and w, =
2([0, 1]) are independent of i/, | < i < N. Let II denote the set of N! permuta-
tions of the symbols 1,2, ..., N, and let =, 7y, ---, 7, - - -, m,, be a list of the
members of II. Let = be one of these permutations, 7 unknown, and assume box
i is assigned measure 4,;,, where (i) denotes the image of i under z. The initial
prior probability that 7 is «, is A(x)), 1 < [ < N!

As before, {a;,};., is the sequence of overlook random variables for box i.
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Given 7, the N stochastic processes {«,;};5,, « - -, {@y;};2, are assumed to be mutu-
ally independent, and, given =, {a,;};,, are i.i.d. according to a Dirichlet process
prior P, € Z(4,4)- Since in general r is not known but the prior {A())},c,<x
is known, {a,;};5,, - - -, {&y;};»; are not mutually independent. The marginal
distribution of {a,;};,, is determined by a random probability measure P, which
is a mixture of Dirichlet processes, i.e., P; € ¥, cn A(7,)Z(,,) (see Antoniak
[1] for results concerning mixtures of Dirichlet processes).

We seek conditions under which (1.1) and (1.2) of the G.S.M.C. will be
satisfied. - Assume box i has been searched n, — 1 times, and let @, n;-1 denote
the vector of observed values (a;,, - - -, a; ,,,) for box i. Now the condltional
distribution of {a, ;0 ji=zn, 1 Si <N} given 7 and @, ,, _j, -, @y, IS
determined by the Dirichlet processes whose parametersare 4., + 31171 0,5+ +»

Aewy + 2TV 04, (since, givenwand @, , s, -+, @y s {00} izap 0 {@i)izny
are N mutually 1ndependent processes, and {a;;};.,, is distributed according to
a measure Q, € (A, + ¥t 5aij))' From Lemma 1, Part 4, in the paper of
Antoniak, the posterior distribution of « given @y g5 vy By oy IS given by
Py | @y as * o s By ) = t,/zm t,., where =, ¢ Il and

(27) t - h(ﬂm) H ’_—',,;__IT H] 1 1t (z)(az(]))(ﬁxm(z)(az(y) + l)m(a“],) b

7( (7.)

and where 2, ,, denotes the Radon-Nikodym derivative of 2, , with respect
to ¥ 4; @y, is the jth distinct value in @, _,; n(a,;) is the number of times
the value a,;, occursin @, ,, _;; M5 = anm([O 1]« (A, ([0, 17) + 1) -

( nm(i)([o’ 1]) + n; — 2) and F‘:rm(w(az(:)) = sz(i)(ai(j)) if Xy is an atom of 'l::m(in
zero otherwise. We assume here that 377 1, has mass 1 at each atom of 4, 1 <
I < N, in order to apply Antoniak’s result.

Thus
E(1 — Xiiny | Gty s Oy )
- Vo () + me—l
:1—(Ztm)12xlt o
wnl(i)+n<—1
n; —1
= (T ) Ee (1 - e F 2T,
wnl(i)+ni—1

Now condition (1.2) of the G.S.M.C. essentially states that

E(1 — Xin, | Gypias 0t Gy )

E(1 — 0y, | @y gy ooy @ s v 5 By )
_ Bl = @ s By e By )
E(l — ®yny I al,nl—v cr, @y R B aN,nN—l)

for 1 <i,u,k <N,i+#k=u,i=+u Toensure this, we use the assumption
that w,w) =W, v, = v, independent of z,. Thus

_ v+ Dty
E(l — @y [ @rmss s Gy ) = 1 — TJF_Z;__IJ = E(l —a,, |a.,_,)-
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Hence (1.1) is satisfied, and the remainder of condition (1.2) follows by assuming
that (w, v) satisfies the strong monotonicity condition of Hall [6, Example (c)].
Hence the Blackwell-Black-Kadane-Chew search rule is strongly optimal in this
problem, and we have an example in which the N processes are dependent and
the G.S.M.C. holds.

Finally, we point out that Section 5, Example (d) of Hall provides an example
of an adaptive search problem with N = 2 such that {a,;};,,, {a,;},, are inde-
pendent processes, neither the S.M.C. nor the G.S.M.C. is satisfied, and, for
n, = 4 in Theorem 1 above, the one-stage look ahead rule (i.e., the G.B.B.K.
policy) is not optimal.

Acknowledgment. I would like to thank both the Associate Editor and the
referee for some very helpful remarks.
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