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THE CONVERGENCE OF SOME RECURSIONS
By E. J. HANNAN

The Australian National University

In connection with a range of stationary time series models, particu-
larly ARMAX models, recursive calculations of the parameter vector
seem important. In these the estimate, 6(n), from observations to time 7,
is calculated as 6(n) = 6(n — 1) + k» where k, depends only on 6(n — 1),
f(n — 2), -+ and the data to time n. The convergence of two recursions
is proved for the simple model x(n) = &(n) + ae(n — 1), |a| < 1, where the
¢(n) are stationary ergodic martingale differences with E{e(n)?| & 51} = o2
The method of proof consists in reducing the study of the recursion to that
of a recursion involving the data only through the §(n). It seems that many
of the recursions introduced for ARMAX models may be treated in this
way and the nature of the extensions of the theory is discussed.

1. Introduction. The purpose of this work is to describe and analyse some
recursive estimation methods. These are methods that proceed by adjusting a
previous estimate as data for a new time point comes to hand. Such methods
are important for a variety of reasons. In the first place they are essential for
“real time” calculations, where the updating of the previous estimate must be
done in a time period short even by the standards of modern computers. Even
if there were no “real time” problem it might yet be necessary to update an
estimate as each new data set came in and it might be unnecessarily costly fully
to recompute each time. Most importantly these recursive methods are all, to
some extent, adaptive in the sense that they continue to track the parameter
values when they are changing through time. (See [2] for an example.) The
degree of adaption can be varied (at some cost in terms of the rate of conver-
gence to a stable value) but that will not be discussed here for we shall consider
only the stable case.

To motivate the recursions that will be considered, some iterative methods
are first described. These relate to the, so called, ARMA (autoregressive-moving
average) models and their generalisations. These are of the form

M Li PUY( = j) = Lt a(fe(n = j),  Efe(m} =0,
Ele(m)e(n)} = 0,,,0% .

If y(n) is to be stationary and the ¢(n) are to be the linear innovations then ([3],
Chapter III) the generating functions, g(z) = Y, a(j)z?, h(z) = X B(j)z’ must
satisfy g(z) = 0, |z] < 1; h(z) = 0, z < 1. The term “ARMAX” has been used
for cases where a term involving a vector exogenous variable, here called z(n),
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is included on the right side of (1). (By exogenous is meant the independence
of z(n) from the &(n) sequence.) In order to indicate the scope of the recursive
methods, and not because they will be considered in detail here, we introduce
the vector ARMAX model

(2) 2§ B(jy(n — j) = LT A(an — J) + ¢ AQ)e(n — ) »
E{e(m)e(n)} = 0,,,Q, E{e(n)} = 0.

In order that the A(j), B(j), A(j) and Q should be uniquely determined (i.e.,
identified), y(n) should be stationary and ¢(n) the linear innovations, then further
conditions are needed but these will not be discussed here (see [4]). However
(see [5] and references therein), the model (2) is fully equivalent to the, so called,
stable, “state space” system, namely one wherein an unobserved vector x(n) is
related to the observed y(n), z(n) by

x(n + 1) = Fx(n) 4+ Gz(n) + u(n), E{u(m)u(n)’} = 0, P
3) y(n) = Hx(n) + v(n),  E{p(m)v(n)’} = 0,,Q

E{u(m)v(n)'} = 0,,R . ,
The recursions considered herein ultimately extend to the recursive estimation
of such systems as (2) or (3) though they seem to have been used, in practice,
only in low dimensional forms of such systems. (See [10], [11].)

To explain the construction of the recursions we consider first the iterative
estimation of systems such as (2) or (3) from a given block of data, y(n), z(n),
n=1, ..., N. Thisisspoken of as an “en bloc” or “off line” calculation. For
examples, in relation to (1), see [1]. Typically such estimates are obtained from
an approximate form of the likelihood function (constructed on Gaussian as-
sumptions) but they may also be obtained in other ways, for example via moment
estimators (see [3, Chapter VI]). In any case they lead to an iterative procedure
for the estimate 4, of the parameter vector ¢ associated with the equations of
estimation (e.g., likelihood equations) 6, = hy(@,). The iteration is of the form

“) 049 = hy(@y97) .
Typically, in the cases to be studied below, this is effectively a regression pro-
cedure whgrein, at the jth iteration, the v«:,ctors to be regressed upon, or the
weights in the regression, are functions of 6,=". Of course the same set of
likelihood equations (i.e., equations having the same solution) can be expressed
in different forms (4) and result in different iterations. We illustrate by a simple
case that will also be studied, in relation to recursions, below. Let y(n) satisfy
(1) forg =0, p=1. Put _

euln) = y(n) — ac(n — 1), &,(0) =0

£,(n) = ¢,(n) — a&,(n — 1), £,0)=0.
©) by(a) = — 2117 €u(n + DEu(n)/ L1 €un)*

cex(@) = L7 y(n 4+ DM Sa(m)ea(n)}

dy(a) = L y(n + De(m)/{20 eu(n)’} -
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Then the insertion of any of b, c, or d, in (4) with § = a, leads to an iteration.
The first two of these equations, a = by(a), a = c,(a), are the same equation
because £,(n + 1) + aé,(n) = y(n + 1) — ae,(n). They are both forms of the
likelihood equation. The third, a = dy(a), is not. However, the three have
different iterative properties as can be seen from the fact that, using a prime to
indicate differentiation with respect to a, and assuming y(n) ergodic,

limy . by/(@) = 2, limy_. cy(a) = —a¥/(1 — a?),
lim,_,d, () =0, a.s.
In general, when /,(6) is differentiable,
(O — 0} = (9hy(0,5)/00}f 5 — 0},

where the Jacobian, 9k, /30 is evaluated at §,4-", intermediate between ¢ and
6,91, Tt is apparent that 6,9 can hardly be expected to iterate to 9NAunless
the Jacobian has a suitable norm at the true value 6, since for N large 0, will
be near to §. Thus the iteration based on b,(a) cannot be expected to converge
while that based on c,(a) may converge only for a*/(1 — a?) < 1i.e., |a| < 1/2%.
If 6 = by(0) is replaced by § = 26 — b,(6) convergence can be expected to take
place. Some of these observations have been borne out by experience with
simulations (see [3, Chapter VI], for example).

Recursions are now discussed. These are also spoken of as “on line” calcu-
lations. All of those considered here arise from (2) when y(n), z(n) are scalar
though it is not really difficult to see how to generalise them. Most of these
recursions appear to be recursive equivalents of (4). In general these recursions
are of the following form, using 6(n) for the estimate from data to time n,

(6.1) O(n + 1) = 6(n) + P(n + 1){(n + 1)é(n + 1)

(6.1i) P(n + 1) = P(n) — (1 4 ¢(n + DP(n)(n + D
X P(r)C(n + 1)g(n + 1) P(n)

(6.1ii) En+ 1) =y 4+ 1) — ¢(n + 1)'0(n) .

Here ¢(n), {(n) are vectors that depend on the data to time n, partly through
the 6(j), j < n. The vector ¢(n) is to be identified with a regressor vector and
€(n) with a vector of instrumental variables. Of course we may have ¢(n) =
&(n). P(n)~' is essentially the matrix of sums of squares and cross products of
the regressor vectors (or the corresponding matrix in an instrumental variables
regression.) For some further background the reader may consult [10], for ex-
ample. A detailed description of a wide range of such recursions will be found
in [9], together with simulations and some analysis which accords fairly closely
with that to be given here. Earlier examples of what might be regarded as re-
cursions are provided by the techniques that occur in connection with stochastic
approximation. Here we illustrate by some simple cases, studied further below,
and shall further illustrate by slightly more elaborate examples in Section 3. It
may be mentioned that there are examples where (6.iii) does not obtain but



THE CONVERGENCE OF SOME RECURSIONS 1261

instead y(n + 1) has to be replaced by some vector, 5(n) say, that also depends
on 6(j), j < n (i.e., the “dependent” variable in the regression is “manufactured”
from past values of 6(j) as well as the regressor or “independent” variables).
An example will be found in [2], [6]. Two first cases considered are examples
of procedures called AML in [10] or RML in [9]. (In fact the first, which cor-
responds to d,(a) above, is not approximate or recursive maximum likelihood
in any sense that we can perceive.) Consider

4y &(n) = y(n) — a(n — 1)é(n — 1), £€0)=0
§(n) =8&(n) — a(n — H)(n — 1), §0)=0.

If (6) is used with ¢(n) = {(n) = é(n — 1), O(n) = a(n), with a(l) = 0, then it
is easily seen that

a(n) = 23 y()EG — DAZE ()}

which shows the connection with d,. We shall call this RML,. If (6) is used
with 6(n) = a(n), ¢(n) = &n — 1), and {(n) = &(n — 1) then again it is not hard
to show that, given a(1) = 0,
() a(n) = 23 y()EG — DAZE €0)EG)}
which is connected with c,(a). We speak of this recursion as RML,, again
following [9]. '

In the next section a rather complete and general proof of the convergence
of RML,, RML, is established for this simple case. There appears to be no

comparable treatment of any case in the literature. In Section 3 the technique
is extended to other cases and is discussed.

2. Two simple recursions. Any case of (1) for which p = 0 is simply re-
duced to a recursion by estimating the 8(j) via a regression of y(n) on y(n — j),
j=1--,9,n=q+ 1,9+ 2,...,N. This regression is computed recursively
by a standard procedure (see [9] for example). In this case the off line and on
line procedures give the same result and the question of convergence of the
recursion is not a new question. The simplest nonelementary case is therefore
g =0, p=1. That is considered here, the recursions being RML,, RML,. It
is required that the ¢(n) sequence be stationary and ergodic. Call %, the Borel
field determined by y(n), m < n or, equivalently, e(m), m < n. It is required that

8 lal < 1, Ele(n)| >+ ,_1} =0, Efe(n)*| & ,_1} = o2

The requirement in g(z), mentioned below (1), here amounts to |«| < 1 but the
stricter condition in (8) now seems necessary. The ergodicity of e(n) is a costless
assumption if (part of) only one realisation is available. The second condition
in (8) amounts to saying that the best linear predictor for y(n) is the best pre-
dictor (both best in the least squares sense) which seems natural in the context
of linear models such as (1), (2). The last condition in (8) seems minimal, in
connection with en-bloc calculations, in order to ensure that limiting distributions
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are of a reasonable kind. It could be replaced by a higher moment condition
but it does not seem easy to replace it by an unequivocally weaker condition.

THEOREM 1. Under the above conditions, for (1) with p = 1, ¢ = 0, a(n) given
by RML, converges a.s. to a.

It will be convenient to take ¢* = 1. Since

©) Lseeir=Lsror+ L Srag — 1yeg — 1y
n n n
— 2 5ty — Ve = 1)
and ’

lim,_,, 1 >ry(jy =1+ a* as.
n
then, using Schwartz inequality in the last term on the right in (9),
1 P 1 . .
- NPE() 2o T a(j — DEG — DL = LF +o(D),

L=[1+a){n T a(j — 1)e( — 1)}
Here and below the term that is o (1) converges a.s. to zero. Thus if S is the
set of integers whereon (say) /, < 4 then the limit inferior of ¥} &(j)¥/ X a(j —

1)%(j — 1)% on S, is not less than . On the other hand

1 o 1 . . o

— XPE) =1+ - mi{ee(f — 1) — a(j — De(j — DY
(10) — 2Tt e(a(j — D — D/Zta( — 1)%( — 1)%

1 . L
X — T a(j — Y2 — 17 + o(1).

The bracketed factor in the third term on the right converges to zero when
37 a(j — 1)%(j — 1)? diverges and otherwise converges ([8, page 150, corollary].
This reference will be repeatedly used and will be referred to as [8].) In the
latter case evidently lim inf 3} ¢*(j)/Y; {a(j — 1)%(j — 1)’} > 0 while in the

former the ratio under this limit sign is evidently, on the complement of S,
bounded below by {4(1 + a?)}* + o(1). Hence

lim inf Y17 651 a(j — 1% — 1) > 0 a.s.

Now from (10), replacing Y} a(j — 1)%(j — 1)* by X &(j)* in both places in the
third term, it follows that

(11) liminf L Sre(ir=1 as.
n
Next
a(n + 1) = T2 {e(j + 1)E(j) — ae(a(j — 1)E( — 1) + ac(f)y(DY X1 €0)?
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and, by [8], the contribution from the first two terms in the numerator converges
to zero so that

(12) lim, .. {a(n +1)— } -0 as.

(44
nt LrEg)
Thus lim sup |a(n)| < |a| (see (11)). For a = 0 this already proves the theorem
so that henceforth we take @ # 0. From (9)

1 o 1 o I
DR S L+ @+ @ SR + 20l + @ By + o).,
which shows that the left side is uniformly bounded, a.s. Similarly
né(n)* < n'a(n — 1) + n7ly(n)? + 2laln~ty(n) | |&(n — 1)
and since y(n)’/n — 0, a.s. then taking the limit superior on both sides, it is

seen that é(n)’/n — 0 a.s.
Since, from (6),
a(n 4+ 1) = a(n) + &(n + I)é(n)/Z? &), a(l)=0,
it follows from (11) that a(n 4+ 1) — a(n) — 0 a.s. We shall repeatedly use this

last result.
Put ¢®(j) = ¢(j) for |e(j)| < 4 and zero otherwise and e®(j) = ¢(j) —e™(j). Now

L Zra()e) = 1) = - DG — BE0F el — 1)

- DEEPO) — BEGF T la0) + o)

The first term on the right converges a.s. to zero by [8] while the second is
dominated by

af - THeOF + - T EEGP
n n

which converges to 2aE{¢®(j)’}, by the ergodic theorem, and this may be made
as small as is desired by taking A large. Thus

(13) LTt a()e() = - Tt a) + o).
New from (8)
LRHP =14 o+ - a0 — 20 Tt d(ali)0) + o(1)
=1+ 0"+ T a()e() — 2a— Nra(al — 1) + o(1)
=1+ + - TLa(yeg) — 2a - S e(p()aG — 1)
— 20 Tt e()al — 1) — 1) + o)

= -’:— Sr{l + @@ — 2aa(j)} + _;ll_ Sra(j)E() + o(1)
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using [8], again, and (13). Now repeating the process with n™* 3] a(j)%(j)" then,
after k steps, we reach

Lgragy = Lu + @ = 2001 + aGF + a()' + - + 2]
+ - St a(e() + o().

Thus, because of |a(j)| < « < 1 and of the boundedness of n= 3, &(j)%

Lrregyr = Lo {2 4 oq.

[ = a(jy
Thus
(14) a(n + 1) = a[ni iy { ! +1“2__a(2j‘)’f‘(f) }T +o(l).

The proof may now be completed'in various ways. The most informative is
as follows. Call @(n + 1) the first term on the right in (14) and K(n + 1) its
denominator. Then

+ {a(n) — a(m)}o(n™) .

Since K(n + 1)7{1 — a@(n)}/{1 — &(n)’} = ¢ > 0 and the last term is o (n™") (be-
cause {a(n) — &(n)} = o(1)) it follows that {&(n) — a}, and hence {a(n) — a},
converges to zero. Indeed, calling the last term in (15) /,/(n — 1), then

@+ 1) - a) = m A= i (1= ),
n—j n—k

with the coefficient of |/,| being unity. Since
Z;z_;__m:j(l - %>_> 1, H;»(l - %) = O(n™).

The required result follows and the theorem is proved.

Consider next RML, (see (7)) for the same ARMA model, p =1, ¢ =0. It
seems probable that the method used in Theorem 1 will fully generaljes but in
this and more elaborate cases it has been found difficult to complete the proof
unless 6(n) is bounded to lie in some “acceptable region.” The following modi-
fied definition of a(n) is therefore used. Call &(n) the expression given by the
right side of (7). Require

(16) laf <1 -3, 8>0

and put a(n) = &(n) if a(n) lies in the acceptable region, |@(n)| < 1 —o0,and
otherwise put a(n) equal to the boundary value nearer to &(n). Of course a(n), not
a(n), is used in (4)'. In terms of (6) it is the a(j), not &(j), that are used throughout
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(6.ii), (6. iii)’ (e.g., via (4)" and in the definition of {(n)) but (6.i) now reads
6(n + 1) = O(n) — P(n + 1)&(n + De(n + 1), .

Because of the cost of checking that f(n) lies in the acceptable regions, in
more general cases, it is not suggested that the restriction to this region will be
used in practice. Indeed the following theorem shows that, in the present case,
eventually this will not be necessary.

THEOREM 2. If y(n) satisfies the conditions of this section and also (16) then the
modified RML, estimator a(n), just defined, converges a.s. to a.

In almost the same way as for the latter part of the proof of Theorem 1 it
may now be shown that

A7) an+ 1) = a|: s L+ @+ aa(j) — 3““(J)J +o(1).

{1 — a(Gyy
The proof of this will be omitted since it follows much the same lines as for
Theorem 1 save that the calculations down to formula (11) are now rather
trivial because of (16). In any case in the next section, in a more general con-
text, it will be shown how the first term on the right side of (17) is formed.
Now calling d(n) the first term on that right side and K(n + 1) its denominator

(18) {@(n 4 1) — a} = {a(n) — a} {1 - __K(n + 1)~ 1 — “0‘("2) }
— a(n)
+ {a(n) — a(n)}O(n?) .

Now as before the second factor in the first term on the right is not greater than
(1 —¢/n), ¢ > 0. However, the proof is not so easily completed- because it is
d@(n) — a(n) that is o(1) and not {@(n) — a(n)} = {@(n) — a(n)} + o(1). However,
returning to (17), it is evident that @(n) cannot stay indefinitely outside of the
acceptable region for if that were so a(n) would stay indefinitely at one of the
boundary points, say 1 — 4. But then, from 17

1 4+ & + a(l — 0)* — 3a(l — §)
{1 =@ —2app
However, it is easily seen that the first term on the right side is less than (1 — §).
Thus a(n) returns indefinitely often to the acceptable region. When this is so,
the last term in (18) is o(n~") and the proof may be concluded as for Theorem 1.

Following the same kind of argument it is easy to show that for a(n) corre-
sponding to by(a) (see below (5)) convergence will not take place. Incidentally
while it seems that the iteration (4) will not converge for all a, for &,(a) = c,(a),
yet the corresponding recursion does converge for |a] < 1 — 4§, § > 0.

d(n—|—1)=a|: :I_l—l—o(l).

3. A more general discussion. To illustrate the general case consider (1) for
p=9= 1. Thus

yn) + By(n — 1) = e(n) + ag(n — 1) .
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In addition to the requirement on a, § it is also necessary that a + §, since
otherwise the model is not distinguished from p = ¢ = 0. Once more ¢(n) is
required to satisfy (8) and to be ergodic. Now we define the acceptable region by

(19) laf, 8| <1 =6, Ja—p>d, 3>0.

We consider RML, so that 6’ = (a, ), ¢(n)’ = {(n) = (&(n — 1), —y(n — 1))
which completes the definition of the recursion via (6). Of course initial values
must be chosen for P(1), 6(1), the former reflecting the confidence felt in (1)
in the same way as the inverse of the matrix of sums of squares and cross prod-
ucts in a regression does for the estimated vector of regression coefficients.
Again, however we modify [6] by defining 6(n) to be_the output of (6.i) but
putting 6(n) = G(n), only if 6(n) lies in the acceptable region defined by (19)
while otherwise it is kept at the boundary value nearest to the last value of b(n)
before exit from the region. Again 6(n) is used throughout (6.ii), (6.iii) and in
the second term in (6.i).

Again it will be convenient to take ¢> = 1. It is first proved that n~*P(n)7%,
which we call R(n) for short, has its smaller eigenvalue bounded away from
zero, a.s. To do this put y(j) = u(j) + €(j) = a(J) + &), u(j) = —By(j — 1) +
ae(j — 1), () = —p(j = Dyj — 1) + a(j — DE(j = 1).. Clearly u(j), i())
are measurable .% ;_,. Using [8] it now follows that ‘

Rn + 1) = gg’ + L(n) + O(1),
L)y = = 2 oGnGY s Y = @G) = 4 4G

where g is the vector composed of 1 and —1. Let p, be the smaller eigenvalue
of R(n + 1) and w, the corresponding eigenvector, w,'w, = 1, and put w, =
£,9+n.f, fl9=0, f/f=1. Along a subsequence whereon p, — 0 then
g, — 0, |7,| — 1 since gg’ and L(n) are semidefinite. Hence along such a sub-
sequence f 'L(n)f — 0. But 2f'L(n)f = n~' }] 4(j)* and

— Zl"u(J)2 =— Z {faj = 1) =BG = DG — 1) + — L a(j — oG — 1y

- 7,— T — 1) = 8(j — Dya(j — 1y — DaG = 1)..

Using Schwartz’s inequality in the last term, and the fact that |a( N1, it
follows that liminfn=" 3 d(j)? = 0 implies liminfn= 3 {a(j — 1) — B(j —
1)y(j — 1)* = 0. This is a contradiction since |a(j) — B(j)| > 0 > 0.

It now follows that 6(j) — 6(j — 1) = o(1), using (6.1) and the result just
established. However it does not now follow that 8(j) — 6(j — 1) = o(1) though
failure of this can occur only at points of reentry of 6(j) into the acceptable
region. It is apparent also that, ultimately, 6(j) — 6(j — 1) can fail to be o(1)
only at such points of reentry which have been preceded by long excursions
from the acceptable region. Thus the points whereat ||0(j) — 0(j — 1)l = 7 > 0
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will eventually become sparse in the sense that the proportion of them in the
first n points will, a.s., decrease to zero, for any » > 0.
It remains to derive the analogue of (18). It is easily seen that

O(n) = P(n)™ Lt y(1)B() -

Consider n=* 37 y(j)é(j — 1) for example. Now

) =y0) ={a(G = 1) =BG — DG = 1)
(20) o (S)maj — Da(j — 1) -

a(j —m 4 Dia(j —m) — B(j — m)}(j — m)
—(=)ra(j = 1) - a(j — m){E(j— m) — y(j — m)}.

(21) S YA — 1) = Deek)nt Ty e(j — k)E(j — 1)
where 35 c(k)z¥ = (1 + az)/(1 4+ Bz). Using Schwartz’s inequality, the ergodic
theorem, the a.s. boundedness of n~! 3} &(j)? and the geometric rate of conver-
gence of the ¢(k) to zero, it is evident that (21) may be evaluated term by term.
Because |a(j)] < 1 — 4 it follows in the same way that é(j — 1) may be replaced

by the first m terms in its expression, (20) with a.s., an arbitrarily small error.
In turn an expression such as

LT — Bfalj = Da(j — 1) -+ a(j — m + 1)

X {a(j —m) — B(j — mpy(j — m)
jmay be evaluated term by term replacing y(j — m) by 3 c(k)e(j — m — k).
"This reduces us to expressions such as

(22) 7 Le(j = hRe(j —De(j — 1),

=D ={aj=1) - a(j —m+ D{a(j — m) — B(j — m)}.
For k > I, n™* 3 e(j — k)e(j — D)¢(j — k — 1) converges a.s. to zero, by [8].
Thus for k > I the expression (22) will converge to zero if
(23) lim,  n '3 (g — 1) —¢(j —k — 1) =0 as.

However |¢(j — 1) — ¢(j — k — 1)| — 0 on a set of density 1 and hence (23)
holds ([12], Vol. II, page 181). If k = the proof that (22) converges to
nt Yo — 1) is accomplished via the type of argument used above (13).
This allows 6(n) to be evaluated, to o(1), as follows.

G(n) = O(n) + o(1)
b(n) = K(n)*i St EG(D . K = - T3 EFGIGY) -

Here §(j) is ¢(j) but with all 4(k), k < j, used in its construction replaced by
6(j — 1) while E indicates that the expectation is taken with 6(j — 1) treated as
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if it weve a constant. Of course E{y(j)$(j)}, E{$(j)é(j)’} may be written down
in spectral terms since ¢(j) is merely composed of y(j — 1) and é(j — 1) and,
in ¢(j), &(j — 1) is replaced by the output &(j — 1) of the filter with response
(z-transform) {1 + B(j)z}/{1 + a(j)z}. Thus
24)  O(n + 1) = [Tt o) Hy(e)H*(e) do] ™ D1t (2 flo)Hy(e*)e™ do,
where flo) = (27)7Y1 + a expiwl’/|1 + Bexpio|* and
r— (1 BG)z
H(z) = (—54%, —1),
() ( 1 + a(j)z )

Now from (24),

@5)  {f(n+ 1) — 0} = {f(m) — 0} + —

n+1

However &n + 1) = e(n + 1) + ¢4(n + 1)’0 — ¢(n + 1)'6(n) where ¢y(n) is B(n)
computed using ¢ in place of (n). Moreover E{¢(n + 1)e(n + 1)} = 0. Thus

E{d(n 4 1)e(n + 1)} = —E{g(n + 1)é(n + 1)}{(n) — 6}
— E[§(n + 1){d(n + 1) — gn + VYO -
And since {¢(n + 1) — go(n + 1)Y8 = —a{f(n) — 0Yd(n) + afpy(n) — $(n)}'0 we
obtain by induction B
E{g(n + D)e(n + 1)} = — XI5 (—a)E{¢(n 4+ 1)@'(n + 1 — j)}{o(n) — 6}.
Thus

B+ 1)~ 0 =1 = Lk 17 57 (—a) B + D+ 1 = )]

X {B(n) — 0} + O(m=){b(n) — 6(m)} + o(n™)
A further simplification can be achieved by returning to (25). Put 16(n) — 6]],2
for {f(n) — 0YK(n){f(n) — 0). This converges to zero if and only if {6(n) — 6}
converges to zero because the smallest eigenvalue of K(n) is bounded away from
zero, a.s. Thus from (25) we obtain

1801 4+ 1) = Ol = 16(0) — O]l = 2 {8(m) = BYE(G(r + el + D)

K(n + 1y E{g(n + D(n + 1)}

+ L {b) — VG + Dn + 1Y) — 0)

' + O(n7?) .
i.e.,
1801 4+ 1) = Ol = 16(6) — 6* = - {6(m) — 6}
26) X [2 555 (~ayBid(n + Ddn + 1 — )}

— E{g(n + 1)g(n + 1))){0(n) — 0}
+ O(n~){f(n) — O(m)} + o(n™) .
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It is easily checked that the matrix of the quadratic form inthe second term in.
(26) is '
1 —a?

S’ikf(w)H'ﬂ/+l(eiw)H’:l:+l(eiw) m dw

and that this is positive definjte for all values of f(n) in the acceptable region,
with smaller eigenvalue bounded away from zero.

It remains only to prove that f(n) is infinitely often in the acceptable region.
If this is not so then @(n) stays indefinitely at the value, 6, say, associated with
last exit and, from (24), (n) — 0

0 = [§2, flw)H () H,*(e*) do]™ |2, flo}H (e)e™ do

where H, is H; calculated at 6,. It seems likely that this value, §, does lie in
the acceptable region but we have not been able to prove that, though it is easy
to evaluate the expression for . Lack of convexity of the acceptable region,
especially in the metrics »» remains a problem.

The treatment given above seems rather general. The particular aspects are
as follow. (1) The proof that K(n) has smallest eigenvalue bounded away from
zero. In fact this proof seems to carry over to many cases (see [7]). (2) The
proof that the quadratic form (see (26)) is positive definite. This will have to
be particular to the case since for some cases it is known to be indefinite or
negative definite. (See [9]and the example based on b,(a) in Section 1.) (3) The
proof that § (see (27)) lies in the acceptable region. This has to be special also.
(4) The case where an exogenous variable, z(n), occurs has to be covered. For
reasonable conditions on z(n) which enable the analysis to be extended to this
case see [7].
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