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MAXIMUM LIKELIHOOD ESTIMATION OF A
COMPOUND POISSON PROCESS!

By LEoPoLD SIMAR
CORE

The problem of estimating the compounding distribution of a com-
pound Poisson process from independent observations of the compound
process has been analyzed by Tucker (1963). A maximum likelihood method
is proposed. The existence, uniqueness and convergence of the resulting
estimator are derived. One obtains practical solutions by means of a very
simple algorithm which is briefly described. A numerical example is pres-
ented in the risk business framework. :

1. Introduction and summary. This study analyzes the problem of estimating
the compounding distribution of a compound Poisson process.

The compound Poisson process is encountered in many contexts. In renewal
theory, it represents the distribution of the counts of a Poisson process of known
rate during the renewal intervals, where the renewal distribution is the com-
pounding distribution of the process. Similarly, in the M/G/1 queue with Poisson
arrivals of known rate, the number of arrivals during an arbritary service period
has a compound Poisson distribution. Here the compounding distribution is the
service time distribution. Furthermore, the compound Poisson process may be
more realistic than the Poisson process in modelling distribution of insurance
claims over fixed periods. (Proneness models: Seal [5]).

Tucker [9] has estimated the moments of the compounding distribution in
order to find an estimator. By contrast, in the present paper a maximum likeli-
hood procedure is proposed. In Section 2 the problem is formalized while in
Section 3 the existence, the uniqueness and the convergence of the maximum
likelihood (M.L.) estimator are derived. An algorithm for its computation is
proposed in Section 4. A practical application in the risk business framework
is in Section 4.3.

2. Definition and notation. Consider a random variable © with values on the
nonnegative integers and having a compound (“mixed”) Poisson distribution.
Thus Pr (0 = i) = =, is of the form

@.1) 7= Vo AR () =
1. 1
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where F(x) is any cumulative distribution function (cdf) supported by [0, co)
with F(+o0) = 1 and

(2.2) v = \§ xle~" dF(x), i=0,1,....

The cdf F is called the compounding (mixing) distribution of the process.
Note that s, (as defined in equation (2.1)) is not the usual power moment of F
but rather the ith power moment of the measure e~ dF(x). However, the moment
point z of F is defined to be the sequence {zy, g, - - -}.

The problem of estimating F(x) from ' independent observations on © makes
sense since the compound Poisson process is known to be identifiable in terms
of F(x) (Teicher [7]). In particular, this means that F is uniquely determined
by its moment point g.

In a sample of n independent observations on © define m, = m,(n) as the number
of observations equal to i, and let a, = a,(n) = m,/n. It is known that for all
i = 0 E[ay(n)] = p,/i! so that a,(n) — p,/i! with probability one as n— co. (Strong
law of large numbers.) Further ] a, = 1 and J] p,/i! = 1.

The logarithm of the likelihood function can be written

log L = 3} m,logp, = 3, m,log u, + constant.

The problem on hand is to determine the cdf F (if any) which maximizes the
function 3} m, log s, or (since n is given) the function:

(2.3) D= alogy =31, a,logpy,

where ¢ = g(n) < n is the number of indices i, where a;,>0,and 0 < i, <
i, < -+ <i,=N. Thus N = N(n) is the largest value of © observed in a par-
ticular sample.

3. Maximum likelihood estimator.

3.1. Existence of a solution. In order to prove the existence of such an F we
first prove the existence of a positive measure of mass < 1 which maximizes ®@.

Let & be the set of positive measures on R, with total mass less than or equal
to 1. The expression (2.2) defines a mapping of &~ to R, ¢ which associates to
each Fe & a g-tuple of moments (#3 +++» pa,). Let M,, the moment space,
be the image of .5

We claim that M, is convex and compact. Indeed .& is weakly compact
(Loéve [2], page 179). For each h =1, ..., g, the function x%e~* is continuous
and tends to zero at infinity. Therefore, from the extended Helly-Bray lemma
(Loéve [2], page 181), every sequence of points in M, contains a subsequence
which converges to a point of M,. Consequently M, is compact. Convexity is
obvious.

Since M, is convex and compact and since @ is strictly concave in ( P+ s
#,) it follows that on M, the function ® assumes its maximum value at a unique
point to be denoted by 4 = (2, - - -, £,,). Note that this point is well defined
and in principle known though it may not be easily computed.



1202 LEOPOLD SIMAR

Each point in M, and thus 7 is realized by at least one positive measure of
mass < 1. Let dF be such a measure and suppose that dF has a total mass 1 — 7
with » > 0. Replacing £ by F + 7d(1) where 6(y) represents a unit mass at a
point y, all the g, (k= 1, .-, q) strictly increase, so that ® also increases, a
contradiction to the hypothesis that f is optimal in M,. (Note that ® cannot be
equal to — oo at @2, otherwise the point in M, realized by (1) would be better.)

Consequently, any positive measure dF corresponding to the unique optimal point
£ has a total mass equal to one. (Note that working with positive measures of
mass < 1 is needed in order to guarantee the compactness.)

3.2. Uniqueness of the solution.

UNIQUENESS THEOREM. There is a unique maximum likelihood estimator F. It is
supported by the set of points {x;, X,y +++, %} (0 Z x;, < x, < -+ < x,) where

(1) if x, = 0 then r < [(N + 2)/2], while if x, > 0, r < [(N + 1)/2]. Further

@ r=gq

PRrOOF. Let F be any cdf with moment point # in M,. Consider (1 — ¢)F + ¢F
for ¢ in (0, 1). The value of @ at this point is Y }i_; a;, log (1 — e)g;, + eu;,)-
Moreover @ is stictly concave and maximal for ¢ = 0, thus taking the derivative
with respect to ¢:
ai
(3.1) Lt /3:,
Equality holds in (3.1) if (1 — ¢)F + F is still a distribution function for some
e < 0.

Taking F as the distribution entirely concentrated at a point x, we have p, =
x'e=* so that (3.1) becomes

(s, — £,) = 0.

3.2) S0, S yine=s <1 forall x>0.
I’tih

Integrating the left-hand side of (3.2) with respect to £ we find that
$& >, of"h xthe==dF(x) = 1, since i, =1.
th
This shows that the measure dF is supported by a finite set of points such that
(3.2) holds with the equality sign. Let0 < x; < - -+ < x, be these points. The
following lemma yields an upper bound on r. Here, 8, = a;,/#,,.

LeEMMA 3.1. Let a sequence of real coefficients B,, h = 1, - .., q be such that
T Bxr < e forall x=0 where 0<i < ... <i,=N.
Let 0 < x, < - -+ < x, be the points where equality holds.

(1) If x, = O then r < [(N + 2)/2], while if x, > 0, r < [(N + 1)/2].
(2) Furtherr < gq.
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The proof of this lemma can be found in the Appendix.

Consider now a fixed #. The f;, are unique and well defined (but not neces-
sarily computable) by (2.3). The B, are also well defined, since the «;, and the
i, follow directly from the observations. Thus the number r and the points
X, - -+, X, are in principle also known.

Let p; denote the mass of df'at the point x; (j = 1, - -+, r; p; = 0; 5., p; = 1).
From (2.2) we have

3.3) DG pixieT = f, h=1,...,q.
We know that there is at least one solution { p,} to this system. Since the rank
of the matrix {x*,j =1, ..., r; A =1, - -, g} is equal to min (r, ), the system

(3.3) has a unique solution provided r < g. From the second part of Lemma
3.1, the latter is true.
Consequently, the uniqueness theorem is proven.

3.3. Convergence of the maximum likelihood estimator. Let F° denote the true
(but unknown) compounding distribution with moment point  and let £, denote
the M.L. estimator of F° with moment point v,, obtained by using n observations.
(The trivial case Fo(x) = (0) is excluded, since a,(n) = 1 and F,(x) = §(0) for
all n.)

CONVERGENCE THEOREM. Asn— oo, the sequence {F,} of M.L. estimators weakly
converges with probability one to the true distribution F°.

ProoF. Since v, denotes the M.L. moment point, we have, by (3.2):

3.9 Do a(n) & =1 for any moment point & .

From the weak compactness theorem we can draw from {F,} a subsequence
weakly converging to a df, say F, of total mass less than or equal to one. Ac-
cording to the Helly-Bray lemma lim, ., v,, = v, with v, corresponding to F.
We must prove that F = F°, that is (see Section 2), v = p.

Since for i = 0, with probability one lim,_, a,(n) = g,/i'! > 0 we have from
(3.4) for all fixed K and for large n:

>k, () . <1 for any & with probability one.
Consequently
DK, Bifi<1  for any moment point £ .

z'v

Note that v, == 0 for all i, otherwise the sum would be equal to +co which is
impossible since for all n it must be less than one. Since the last relation is true
for all K, we have

(3.5) =0 f‘T’ Si< for any moment point §.
ity
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Consider now the function

$(e) = ro—logf—

defined at any moment point &, such that 332, &,/i! < 1. Itisa strictly concave
function and since Y52, x,/i! = 1, from Jensen’s inequality we have ¢(§) < 0
with equality if and only if § = p. If F = F°, thatis, v # pthen ¢(v) < 0, and
the directional derivative of ¢(&) at the point v in the direction of x would be
strictly positive, i.e.,
Diito - ﬂi =% 5 0.
Y,

As an easy computation shows, this would however contradict (3.5) with § = p.
Consequently v = p. Therefore, with probability one, any convergent subse-
quence of {F,} weakly converges to F°, and the convergence theorem is thus
proven.

4. Practical applications.

4.1. An algorithm for computing the M.L. estimator. We now present an algo-
rithm for computing £, from the data a; = m,/n. Let S, be the unit simplex of
dimension k:

Se=Appj=1, - k|p; 20, Zi.p; = 1}.

Let(x,, - -+, x;) € R, *,andlet P = {(p;, x;), j = 1, - - -, k}. The problem on hand
is to determine a point P € S, @ R,* that maximizes the function

4.1 D=, a;log 3k p;x;le®i.

A solution P is defined as “admissible” if k is less than or equal to the bounds
given in Lemma 3.1, i.e., letting 0 < x, < -+ < x,

(1) if x, = 0 then k < [(N + 2)/2] while if x, > 0 k < [(N + 1)/2].
(2) k =< q where g is the number of «, different from zero.

From an arbitrary point P, with moment point g, the gradient (directional
derivative) of the objective function ® in the direction of an other point Q with
moment point v is given by:

Vpoo = 2L —o—z v, — 1.
(3
This gradient is maximal if Q is concentrated at the point x* which maximizes
2iloa;/(pg)xe=" on [0, co). Therefore from a given point P the optimal direc-
tion is towards d(x*). The corresponding gradient is then

(4.2) Vosian = Max,so Y2, L xtes — 1.
M
Now we can describe the algorithm.



COMPOUND POISSON PROCESS 1205

Step O (Initialization). Choose an arbitrary but admissible solution which is
not the unit mass at the origin.

Step 1. From the fixed support x,, - - -, x, select {p;} to optimize (4.1) on S,.
This gives a point P in S, ® R, * with moments (z, - - -, p,) such that
(4.3) o, S dhen < 1 =1, k.
Auih

(If it were not the case, (1 — ¢)P + ed(x;) would be better than P for ¢ ¢ (0, 1]
and P could not be a solution of Step 1.) Moreover at each point x; that has a
positive probability the equality holds in (4.3) since

b P Doy -o-li-"—xjihe‘”a‘ =1.
ih

Step 2. From this point P we compute x* and the optimal direction by (4.2).
If the maximal gradient thus computed is equal to zero we stop the algorithm.
If not, we have to compute the optimal point in this direction. Therefore we
add the point x* to the preceding support and go back to Step 1.

If necessary at each iteration, after Step 1, we transform the solution to get
an admissible one as shown in the next section. Note that the desired point
achieves the minimum in the minimax problem:

min, max@o[ N L xigme 1:] .
My
(This minimax being equal to 0.)

This algorithm was found quite satisfactory from a practical point of view.
Furthermore since it uses the inherent structure of the problem to facilitate the
search of a good direction, it is more attractive than most heuristic procedure.
In the next section we prove that in the (eventual) transformation of the current
solution of Step 1 to get an admissible one the objective function @ does not
decrease. Since the computation in Step 2 gives a direction along which the
gradient is strictly positive, it is clear that the optimization of Step 1 (with the
new support). will strictly increase the objective function. Therefore at each
iteration @ strictly increases. This however does not guarantee the convergence
toward ®@,,,, which seems actually difficult to prove but it shows the relevance
of the procedure.

4.2. Admissibility conditions. Let P = {(p,, x;),j =1, - -, k} be the current
solution of the optimization of Step 1, where we only consider the points x;,
Jj=1, .-+, k having a strictly positive p;. Since the initial solution was chosen
to be an admissible one and since we add only one point to the support at each
iteration of the algorithm (in Step 2) it must be noted that the admissibility
conditions can only be violated by one point more than the bound (1) and (2)
given in Lemma 3.1.
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4.2.1. Condition (1) is violated. Let P the inadmissible solution of Step 1 be
supported by 0 < x, < --- < x,,, where m =[(N+ 2)/2] if x,=0, m =
[(N + 1)/2] if x, > 0.

Let ¢ be the moment point of P. Consider now the lower principal representa-
tions of {z,, - - -, py} relative to [0, oo) (Karlin and Studden [1] page 45 and page
157). This point, say Q, issupported by 0 < y, < --- < y, and can be computed
solving an algebraic moment problem (Mammana [3]). Let v be the moment
point of Q. Obviously v; = p; for j < N but it is well known, since x/ for j >
N 4 1 is strictly convex relative to the Tchebycheff family x!, i = 0,1, ---, N,
that v; < p; forallj = N + 1. (Markov-Krein theorem [1], page 157). There-
fore the total mass of Q is less than one. Indeed:

Yrg = Zz;o%';— < Zf=o,f—f = yrip =1.

(The last equality holds since P is a solution of Step 1.) Now if we normalize
the solution Q into Q* so that

_ 9
‘['* - >¢],
’ 27195 !

the corresponding moments strictly increase, i.e., v,* >v,. Therefore

Yoalogy* > 3N, logy, = 3V a, log u, hence the solution Q* is admissible
and is better than P in the sense that the corresponding value of the likelihood
function @ has strictly increased. Now we go back to Step 1 with the new
support 0 <y, < + -+ < Y. )

4.2.2. Condition (2) is violated. In this case the solution P of Step 1 is sup-
ported by (¢ + 1) points. Consider now x;, j=1,---,9+ 1 and p,, b =
1, ..., q as fixed constants. The following system (S) of (4 + 1) equations in
(9 + 1) unknowns p;; j =1, ..+, g + 1.

(4.4 S pixhe T = g, h=1,...,q,
(4.3) Deip =1

has at least one solution (which corresponds to the point P). The linear com-
bination (of coefficients ;,/p,,, & = 1, - - -, q) of the ¢ equations (4.4) is

A,

(4.6) ZZ=1% Lipixhe™ = Xl 7 ty,=1.

i, i
Since the equality holds in (4.3) at each point x;, j =1, ---, g + 1 of the sup-
port of P, the left member of (4.6) is precisely ;%1 p; so that (4.6) is exactly
(4.5). Consequently the rank of the system (S) is equal to the rank of the system
(4.4) which is exactly g. (See Section 3.2, the system (3.3).) Therefore all the
solutions p,, - - -, p,,, of the system (S) lies in a subspace of dimension one (a
straight line) in the unit simplex S,,,. In particular, there exists a solution at

the frontier of S, (one of the intersections of that straight line with this frontier)
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which cancels one of the p;. Such a point, say Q, can be easily found. Consider-
ing only the points in the support of Q which have a strictly positive probability,
we have now an admissible solution and since the values of p,, A =1, ..., ¢
are the same, @ has not changed. Now we go to Step 2 of the algorithm.

4.3. ' A numerical example. From Thyrion [8], we took the number of accident
claims submitted in a single year to La Royale Belge Insurance Company out
of 9,461 policies covering both “business” and “tourist” automobiles. (See
Table 2, column 1).

After six iterations or passes through Step 1 and Step 2, and one solution of
an algebraic moment problem, we obtained the following results. (Execution
time was less than two seconds on a IBM 370/155.) Table 1 shows that there
are essentially two classes of customers: about 769, of them with a low Poisson
risk 2 = 0.089 and about 249, with a risk 2 = 0.58. Table 2, column 2 shows
the compound probabilities computed with these estimators. Seal ([5], page 16,
Table 2.3) proposes three other fittings for the same data. To summarize, it is
found that a Poisson fit (1 parameter) is very bad while a negative binomial fit
(2 parameters) is judged poor. Finally the Thyrion’s fitting (3 parameters, mixed
Poisson) is said to be adequate.

The latter fit is in fact very close to the M.L. fit given in Table 2. This is not
surprising since the M.L. estimator derived here turns out to be essentially a 3
parameters distribution (see Table 1), but it shows the power of our procedure
since it starts without this a priori restriction.

TABLE 1
Maximum likelihood solution
Abscissas x; Probabilities p;, i =1 to 4

0.08854 0.75997
0.58020 0.23617
3.17606 0.00370
3.66871 0.00016

TABLE 2

N =17and n = 9,461
Observed frequencies Computed probabilities

ap = 0.82867 Py = 0.82793
a1 = 0.13920 P; =0.13880
az = 0.02526 P; = 0.02579
as = 0.00444 P3; = 0.00524
ay = 0.00148 P, =0.00131
as = 0.00042 Ps = 0.00051
ag = 0.00042 P; = 0.00024
a7 = 0.00011 P; =0.00011

sum = 1.00 sum = 0.99993
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It is difficult to compare all the fits together. Nevertheless, computing the
errors |a; — p,| for all i we observe that the M.L. fit of Table 2 produces a uni-
formly smaller error for all i greater than zero than the Poisson and the negative
binomial fits and Thyrion’s fit has larger errors for five of the eight differences.

In Simar [6], a comparison is made between Tucker’s procedure [9] and the
M.L. estimator developed above, where it was found that for large n, the two
procedures are nearly identical. Nevertheless, using simulation techniques it
was concluded that the maximum likelihood method is better in the sense that
the sampling distribution of the error of estimation, defined as

maxa:e[o,eo) IF'/&(X) - FO(X)I

was significantly less for the M.L. estimator than for Tucker’s estimator. This
is a crude result, but it allows us to hope that such a result can be proven
analytically.
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aid throughout this work. I wish also to thank S. Pollock and J. P. Vial for
their help in revising the paper.

APPENDIX

Proor oF LEMMA 3.1. Consider the function f(x) = 3., B,x* — e* with
0si<---<i,=N.

Part (1) of the lemma. The functions x? (j = 0, ---, N) together with the
function e® form an extended Tchebycheff system {u,, u,, - - -, uy, uy,,} on [0, co)
(see Karlin and Studden [1] page 6) and thus (see [1], page 24) no nonzero linear
combination ¢(x) = Cy + Cix + -+ + Cpyx¥ + Cy,,e* can have more than
(N + 1) zeros counting multiplicities. Hence, if ¢(x) < 0 for all x > 0, then
either ¢(0) = 0 and there are only [N/2] positive zeros or ¢(0) < 0 and there
are at most [(N + 1)/2] positive zeros.

Part (2) of the lemma. Consider an entire function ¢(x) = a, + a,x + a,x* + - ..
with real coefficients. Let  be the number of positive zeros of ¢(x) counting
multiplicities and let s be the number of changes of sign in the sequence a, a,, - - -
ignoring the zero terms. Then (Pdlya-Szegd [4], page 48, problems 38 and 40)
r < s and further if s is finite then s—r is an even integer.

Now apply this to the function

Jx) = Xfe0aix! = Zio Bxh — €
with f(x) < 0 for x = 0. One has
1

(@)!
L
7

aih:ﬁh for h:l,---,q

a,=——<0 otherwise.



COMPOUND POISSON PROCESS 1209

Let ¢’ denote the number of j > 0 with a; > 0, that is, the number ¢’ < ¢ of
indices & = 1, - -, g for which 8, > 1/(i,)!. It follows that f(x) has at most 2¢’
zeros in (0, co) counting multiplicities; that is, at most 9’ positive zeros.

Consider the case where also f(0) = 0 which means that i, =0 and 8, =1,

while g, = 1. Then by the same reasoning there can be at most ¢’ < g — 1
positive zeros where ¢’ denotes the number of indices # =2, ..., g with

By > 1/(i)!.
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