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CONVERGENT DESIGN SEQUENCES, FOR SUFFICIENTLY
REGULAR OPTIMALITY CRITERIA

By CorwIN L. ATwWoOD
University of California at Davis

For an optimality criterion function @ and a design £., approximate
@(M(#)) near &, by a quadratic Taylor expansion, let &, + 7 minimize this
approximation, and let £x11 = & + ay, with @ minimizing ®(M(£n+1)). If
® satisfies regularity conditions, including strict convexity, possession of
three continuous derivatives, and finiteness only for nonsingular M, then
M(¢,) converges to the optimal value for both the Fedorov steepest descent
sequence and the above quadratic sequence, with the quadratic sequence
having a faster asymptotic convergence rate. Methods are discussed for
collapsing clusters of design points during the iterative process. In a simple
example with D-optimality, the two methods are comparable. In a more
complicated example the quadratic method is far superior.

1. Introduction and summary. For D-optimality and L-optimality, iterative
algorithms have been given for finding optimal designs. The first were the steepest
descent procedures of Fedorov [3] and Wynn [17], at each iteration adding mass
to the design at a single point. Improvements have been proposed in [1] and [8],
which are not essential departures from the steepest descent method. These
procedures are also discussed and extended in [18], [13] and [14]. Fedorov and
Malyutov [5], Whittle [16] and Kiefer [7] have pointed out that steepest descent
methods can also be used for more general optimality criteria. Some essentially
different iterative methods have been proposed for D-optimality by Sibson [9]
and Silvey and Titterington [10], and for more general optimality by Gribik and
Kortanek [6], However these generally involve mathematical programming
problems at each iteration, at least if the optimal support points are unknown,
and their convergence speeds have not yet been considered in print. See [12]
and [11] for further discussion.

A general failing of steepest descent methods is that they can converge very
slowly. Quadratic methods, or “generalized Newton methods,” in which the
function to be minimized is approximated locally by a second degree polynomial,
are commonly used as successful improvements to steepest descent methods, as
discussed e.g., in [15]. A

In this paper a specific quadratic iterative method is proposed. For sufficiently
regular optimality criteria, the Fedorov steepest descent sequence and the quad-
ratic sequence are both shown to converge to an optimal design. The asymptotic
convergence rates are found, and the improvement in a single iteration is seen
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to be asymptotically at least as great for the quadratic method as for the steepest
descent method.

Specific comments are made concerning the application of these methods to
D- and L-optimality. Methods are discussed for avoiding clusters of points, each
point having small mass. Some slight extensions of Fedorov’s lemmas on L-
optimality are given. Finally we report the results of trying the steepest descent
and quadratic methods in two examples. In the simpler example the execution
times are comparable for the two methods. In the more complicated example
the steepest descent sequence shows little hope of converging in any reasonable
time, whereas the quadratic sequence converges fairly quickly.

2. Main results. We will assume the usual regression model, with f =
(fis - -»fo)" @ vector of real valued functions on a euclidean space 2. Let B
be the class of probability measures on .27, and for £ € & define the information
matrix M(€) = § f(x)f?(x)é(dx). For an interpretation of these definitions, see
[17] or [3].

We will also define _#Z'= {M(£) | £ € E}, let _#Z* denote the set of nonsingular
members of _#, and let &2 denote the set of all k X k matrices, with the euclidean
topology. We will use || || to denote an arbitrary but fixed norm on .Z2. Note
that if » is any finite signed measure on .27, then M(z) = { f(x)f"(x)y(dx) is de-
fined and in %2, although not necessarily in _#. As a convention, the letter £
will denote an element of &, and the letters 5 and { will denote signed measures.
The letter M will denote an element of a neighborhood of _Z while letters such
as A and B will denote arbitrary elements of .Z2.

Let @ be a function which is real or +oco0 on _#. This function will be the
optimality criterion function, and &* will be called ®-optimal if it minimizes
®O(M(£)). Two examples which satisfy the regularity assumptions to be given
below are D-optimality:

Od(M) = —log|M|,
and L-optimality for nonsingular C:

OM) = trCM™*,
where C is given, symmetric and positive definite.

ASSUMPTIONS. ‘
1. fis continuous and -2” is compact.
2. @ is defined (possibly -+ oco) and continuous on _; and is defined and real-
valued on ./, a neighborhood in &2 of _Z*.
3. The first three partial derivatives of @ exist and are continuous in .47, with
0DPM 4+ aA)/oal,, ,
*@(M + aA + B)/0a 0B|,=0,5=0

*OM + aA + BB + yC)/0a 9B 97 |a=0,5=0,7=0
linear in A, Band C, for Me .4, Ae %, Be A%, Ce F2.

and



1126 CORWIN L. ATWOOD

4. For all M e _*, and symmetric A € &%, A + 0, we have
FPDOM + aA)/da?|,_, > 0.

5. ®(M) = oo for singular M e _Z.

Some comments on the assumptions are in order. Assumption 1 is standard.
It implies that _# is compact, so ®(M) attains its minimum at some M* = M(§*).
Assumptions 2 and 3 are similar to those of [5], [16], [7] and [6]. Those papers
only assume one derivative. However, most optimality criteria are differentiable
infinitely often if they are differentiable at all, so in practice Assumption 3 is
not as restrictive as it appears. All the results of the present paper can also be
proved if, instead of 2 and 3, analogous assumptions are made on @S], defined
as the restriction of ® to symmetric matrices. The verification of this is routine.

Assumption 4 implies strict convexity of ® on _#*, but is slightly stronger.
Strict convexity implies that the optimal M is unique. The stronger condition
will be needed to define the quadratic sequence, and to get the asymptotic con-
vergence rates of Theorem 2.2. Assumption 3 implies the existence of the de-
rivative in Assumption 4. Note also that for any ¢’ and any A € &2 and M’ € %
such that M’ 4+ a’A e ¢, we have

AOM’ £ aA)fdal,_y = 3 a;; ID(M)/M,|ymrprsar

and similarly the higher order derivatives exist and can be expressed as sums of
products of elements of A and partial derivatives of ®. In particular, the deriva-
tives exist and are continuous in M, A and a for Me .4, Ae &2 and a = 0.
Assumption 5 is a real restriction. Results when Assumption 5 is not satisfied
will be given in a sequel.
We record here a fact mentioned by Kiefer [7, equation (6.5)]: If @ is convex,
as it is in our case, and &, is supported at x, then for any Me 27+

@1)  min 0OM + a[M(,) — M))fda],-, < DM¥) — (M) .
Here M* is the optimal M.

One more piece of machinery is useful. Suppose Me .4 For M+ a||A||"’A €
A, define

K(a; A, M) = O(M + «a||A||'A) — (M) .
This is the increment in ® obtained by moving a distance « in the direction A.

Here A has been standardized by dividing by its norm. If A s 0, the nth deriva-
tive with respect to « is given at a« = o’ by

(2.2) K™(a'; A, M) = [|A]|7"0"®(M + aA)/0a™| e qrjay-1 -

This exists and is continuous for n = 1, 2, 3 and M + «'|[A||"*A € .4, as men-
tioned in the discussion of Assumption 4. Therefore for Me . 4" and A € &,
we have that K™(0; A, M) exists and is continuous in M and A. Moreover,
since K is unchanged if A is multiplied by a constant, for M e .#" all possible
values of K (0; A, M) are attained on {A € ZZ|||A|| = 1}.
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LEMMA 2.1. Let _#; be a subset of _#* which is closed in _#7. Under Assump-
tions 1-4, there exist lower and upper bounds L,, U,, L, and U, such that for all
M e _#; and symmetric Ae Z, A = 0

0<LZK'"0;A,M)U,,
L,<K"0;A,M) < U;.
Without loss of generality U, and U, are positive and L, is negative.

Proor. We have seen that K™ (0; A, M) is continuous in M and A and takes
all its possible values when [|A|| = 1. Since _# is compact and {A | A symmetric,
[|A|| = 1} is compact, it follows that K (0; A, M) is bounded above and below.
Since K"'(0; A, M) attains its minimum but by Assumption 4 is never 0, the lower
bound L, may be taken to be positive. []

We must now explicitly define the design sequences. They both begin with
some M, = M(§,) e .#Z*. Having obtained M, = M(§,), let x, minimize

where £, is concentrated at x. The steepest descent procedure sets &,,;, = &, +
a,(§,, — £,), with a, chosen to minimize ®(M(¢,,,)).

For the quadratic sequence, let &, be supported on a finite set. At the nth
iteration let 227, be a finite set which contains x, and the support of &,. For &
supported on 227, consider ®(M(£)) as a function of m variables, namely the m
values £(y,) for y, € &Z,. Write § = §, + 7 where & is an m-dimensional column
vector with components £(y;), and write ®(M(§)) = ¢(§). The second degree
Taylor expansion of ¢(§, + %) is

(2.3) #(§,) + 772 + $m"Hy

where the gradient g is the m-dimensional column vector with ith element
04§, + af,)/0a|,-, and the Hessian H is the m x m symmetric matrix with ijth
element

(&, + aévi + .Beyj)/aa 9P| a=0,5=0

for y, and y; in 227,. As always, £, Is the design supported on y,, and e”i is the
corresponding m-vector.

Expression (2.3) is to be minimized with respect to 3, subject to the constraint
that 3" 5(y,) = 0, i.e., »”e = 0, where e is the column vector consisting of m
I’s. To do this let 2 be a Lagrange multiplier and set the usual derivatives equal
to zero:

2.4) g+ Hp — e =0,
1)Te:0.

By Assumption 4, "Hz > O for all 5 = 0, i.e., H is invertible. Multiply (2.4)
on the left by e’H™?, yielding

e’H'g + 0 — leTH e =0.
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Therefore the solution is

(2.5) p =H(—g + Ze),
2 = (eTH-'g)/(eTH "e) .

Since expression (2.3) is convex, this stationary point gives the true minimum
of (2.3). Since also 7 was chosen to minimize this strictly convex expression,
it follows that g, i.e.,

0OM, + aM(n))/oal, ,

is strictly negative for nonoptimal M,,.

Subject to qualifications to be given below, write 7, for the » of (2.5), and
define £,,, = £, + a,7,, with @, > 0 chosen to minimize ®(M(£,,,)).

* The first qualification is that if for some y, 7,(y) < 0 while &,(y) = 0, then
é. + an, is not a design for any a > 0, since it assigns negative mass to y. Sup-
pose that there is exactly one such y. We must go back and try to minimize
(2.3) subject to the same constraints as before and the additional constraint
n(y) = 0. By the convexity of (2.3) and the fact that the original », minimizes
(2.3), itis clear that the minimum subject to n(y) = 0occurs only when 5(y) = 0.
So the desired 5 can be found by deleting y from 27, and solving (2.4) as before,
working now in m — 1 rather than m dimensions. If there are several such y
then it is not obvious which y must be deleted, but ways to proceed are easy to
devise.

The other qualification to the definition of 7, is a theoretical technicality.
To prove Theorems 2.1 and 2.2, it is necessary that for n large, «, should be in
the interior of the range of possible «, i.e., the range of a for which £,(y) +
an,(y) = 0 for all y. To guarantee this, we require that there exist a constant
C > 0 such that for all y and for n sufficiently large, 7, satisfies

(2-9) IM@)IIE4(y) = —Cn(y) -

This inequality is trivial if »(y) = 0. In principle we must find 7, subject to
this additional constraint, which we hereby incorporate into the definition of 7,.
Observe that there exist possible » satisfying (2.6), and one such 7 is £, — &, for
arbitrary x. For M(§,) is singular and M(§,) is in

2.7) M= {Me A |OM) < D(M,)) .

So ||M(§, — &,)|| is at least the minimum distance from an element of _#; to a
singular element of _#Z. If C is less than this number then §, — &, = 7 satisfies
(2.6).

In normal practice the constraint (2.6) can probably be ignored, since C can
be set arbitrarily small, and since also we will recommend below that nearby
support points be combined, so that &,(y) remains fairly large at all support
points y. Condition (2.6) must be invoked explicitly only if the sequence is
failing to converge satisfactorily because the best possible «, is consistently the
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right end point of the range of possible a. I do not know if such a situation can
actually arise. It does not arise in the examples of Section 4.

Note that if 5 satisfies (2.6) for all y, and 5(y) = 0 for y with £,(y) = 0, then
the same is true for ay with @« > 0. That is, the two conditions refer to the
direction rather than the magnitude of 5. For any 7 satisfying these conditions,
(2.3) is smallest at that 7’ = az which minimizes

an’g + sa'p"Hy .
The minimum value is

(2.8)  —[7"el/2p"Hy = —[0D(M, + aM(y))/0a]’[2[*D(M, + aM(y))/0a’]
= —[K,'(0; M(z), M,)P’/2K,”(0; M(z), M,)

with the derivatives of @ evaluated at « = 0. Thus », has been found to mini-
mize (2.8) among all 5 supported on 27, such that (2.6) is satisfied for all y and
7(y) = 0 when &,(y) = 0. In particular, (2.8) is at least as small for » = 5, as
fory =¢, — &,

It will be shown below that (2.8) is the asymptotic change in @ at the nth
iteration. It follows that the improvement is asymptotically at least as good for
the quadratic sequence as for the steepest descent sequence. This argument can
easily be extended to include steepest descent sequences [1] which allow 5 =
§, — &, for x a support point of &,.

We are now ready to prove the main results. For unified proofs, define a
unified notation, setting &,,, = €, + «,C,; here {, = §, — &, for the steepest
descent sequence and {, = 7, for the quadratic sequence. Write A = [[M(C,)||-
By the remarks following (2.6), for both sequences there is a positive number C
such that for all y and sufficiently large n

AL(y) 2 —CL(y) -
From this, it follows easily that for all y and sufficiently large n
(2.9) 0<ad<C  implies &,(y) + al,(y) =0.

THEOREM 2.1. Under Assumptions 1-5, ®(M,) — inf , ®(M) monotonically, for
both the steepest descent and the quadratic sequence.

Proor. Since d®(M, + aM((,))/da|, < 0 in both cases, monotonicity is glear.
Let _#, be defined by (2.7). Then _# is contained in _#* and is closed in _#;
so Lemma 2.1 applies. By monotonicity, M, € _#; for n > 0.

Denote K(a; M(,), M,) by K, (a), and as above denote |[M({,)|| by A. Let 4
be the set of a such that &, + a{, is a design with (I)(M,! + aM({,)) < O(M,).
For any a € 4 we have, by (2.2),

M, + aM({,)) — O(M,) = aAK,’(0) + L(ad)’K,”(a*D)
for some a* between 0 and @. But

K"(a*A; M(G,), M,) = K”(0; M(C,), M, + a*M((,)) .
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By the convexity of @ and choice of « it follows that M, 4 a*M((,) € -#;, so
by Lemma 2.1

(2.10) M, + aM(Z,)) — O(M,)

(2.11) < aAK,'(0) + $(ad)’U, .

Suppose K,’(0) does not approach 0, i.e., for some ¢ > 0 and infinitely many
n, we have K,’(0) < —d. Without loss of generality, d may be chosen so that
/U, is less than the number C in (2.6). Then

OM,,,) — ©(M,) = min, , [OM, + aM((,)) — ©(M,)]

(2.12) < min,., [aAK,'(0) + 3(a«ld)’U,] .
Let a, be the right end point of 4. If (2.10) is zero at @ = a,, then (2.11) is at
least zero there, so by the convexity of (2.11) it is positive for &« > a,. If on
the other hand (2.10) is negative at &« = a,, this means that &, + a(, is not a
design for @ > a,. In either case, the minimum in (2.12) is equal to the mini-
mum over all a such that §, + a{, is a design. From (2.9) and the choice of ¢
we have that §, + a(, is a design for aA = 6/U,. Substitution of this value into
(2.12) yields

oM, ) — OM,) < —0*/2T, .
Summing over these infinitely many n, we obtain

L[eM,,,) — OM,)] = —co,
which is impossible since ®(M(€)) is bounded below. We conclude that K,’(0)—0.

For the steepest descent sequence, let D be the minimum distance between

an element of _#; and a singular element of _#. Then
K,'(0) = K'(0; M(§, — £,), M,)
(2.13) = [IM(,,) — M,||770@(M, + o[M(5, ) — M,])/9al,
< DT[O(M¥) — O(M,)]
by (2.1), so ®(M,) - O(M*).
For the quadratic sequence
[K,/(0)F/L, = [K'(0; M(7,), M,)P/K"(0; M(7,), M,,)
= [K'(0; M(§,, — &,), M,)P/K"(0; M(§,, — €.), M,)
z [K'(0; M(,, — £.), M)T/U,
by the remarks following (2.8). So K,’(0) — 0 implies, by (2.13), that ®(M,) —
OM*). [

The assumption of third derivatives was not used in the above proof. A proof
of the steepest descent portion of the theorem, under conditions similar to ours,
is given in [4].

Observe that since ®(M,) — ®(M*), it follows that M, — M*, by the com-

pactness of _# and the strict convexity of ®. Since & is compact, {¢,} has an
accumulation point £*, and any such £* must be optimal.
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LEMMA 2.2. Under Assumptions 1-35,
a,A < —K,)(0)/L, .
Here A and K, remain as defined in the last proof.
Proor. Since a, minimizes ®(M, 4 aM({,)) subject to the condition that
§.(») + an,(y) = 0 for all y, it follows that
0 = 0D(M, + aM((,))/0a| 4=,
= 0OM, + aM((,))/0a|, + @, @M, + aM((,))/0e’|,—
= AK,(0) + a,AK,"(a*A)
for some a* between 0 and a,. As in the proof of Theorem 2.1 we conclude

that
0 = K,/(0) + a,AL,

from which the assertion follows. []

THEOREM 2.2. Under Assumptions 1-5, for both the steepest descent and the
quadratic sequence, the improvement on the nth iteration is given by

OM,,,) — ®M,) = —(1 + &,)[K,'(0)/2K,"(0)
where ¢, — 0 as n — oco.

COROLLARY. The improvement in a single iteration is asymptotically at least as
good for the quadratic sequence as for the steepest descent sequence.

The corollary follows from the remarks after (2.8).

ProoF oF THEOREM 2.2. The same reasoning as in the proof of Theorem 2.1

shows that

M, ,,) — ©(M,) < min, [«AK,'(0) + $(«A)’K,"(0) 4 (aB)’Uy/6] .
The minimum may be taken over the set of a for which &, + af, is a design
and the expression in brackets is convex.

Consider aA = —K,’(0)/K,”(0). The proof of Theorem 2.1 showed that
K,’(0) — 0. So for n sufficiently large the aA under consideration is less than
the C of (2.9), so &, + a{, is a design. Also for n large this @A is less than
L,/|Uj|, so a is in the region of convexity of the expression in brackets above.
Therefore for n large

oM, ,,) — P(M,) < —[K,'(0)F/2K,"(0) — [K,'(0)/K,"(0)U:/6

= —(1 + K,/ (0)U,/3L,")[K,'(0)"/2K,"(0) ,
and K,'(0)U,/3L,* — 0.
In the other direction,
®M,,,) — ©(M,) = «,AK,'(0) + §(a, A)K,"(0) + (a,A)*L,/6
= —[K,/(O)F/2K,"(0) + (@, AVLy/6
= —(1 + K,/ (0)U,L,/3L,)[K,'(0)]/2K," (0)
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using Lemma 2.2 to get the last inequality. Since K,'(0) — 0, the theorem is
proved. []

There are two respects in which the corollary to Theorem 2.2 falls short of
a complete endorsement of the quadratic sequence over the steepest descent
sequence. First, it is only asymptotic, and says nothing about how the sequences
compare in the early iterations. Second, it does not take into account the effort
needed to perform each iteration, which will be substantially greater for the
quadratic sequence. The steepest descent method has the advantage that M™*(§,,.,,)
can be written as a simple function of M~%(§,), eliminating the need for matrix
inversion. These simple computations are exploited for D- and L-optimality in
[3]. If the quadratic method is actually to perform better, the decrease in @ at
each iteration must be substantial enough to justify the extra work. In Example
4.2 this is indeed the case.

We would expect the difference in methods to be greatest when the 7 to mini-
mize (2.8) is selected from a large class, i.e., when there are many possible sup-
port points, not related to each other by any constraints such as symmetry. The
two examples of Section 4 support this conjecture, and also suggest that the
quadratic method seems to perform as well as the steepest descent method even
in the early iterations.

3. Specific optimality criteria.
A. D-optimality. Here the optimality criterion function may be taken as
O(M) = —log M|

if M| > 0, and ®(M) = oo otherwise. Assumptions 1-5 are all easy to verify.
In particular, 4 follows from the fact that the derivative under consideration
equals tr M—'AM~A = tr UAM~'AU”, where U"U = M~'. This is strictly posi-
tive if M is nonsingular and A is symmetric and nonzero. Using standard
notation, we have dOM[€ + a(§, — §)])/dal, = k — d(x, §), where d(x, §) =
f7(x)M-(£)f(x). The argument ¢ will sometimes be suppressed below. For
calculating (2.5), the ith element of g is —d(y,, §,), and the ijth element of H
is d*(yy, y;> €4), Where d(x, y, §) is defined as f"(x)M~Y(§)f(y).

Points of support. As mentioned by Fedorov [3] and Tsay [13, 14], steepest
descent procedures tend to give designs with clusters of support points, with
each point having very small mass. These can be collapsed into single points
at the end of the iteration procedure, as suggested by Fedorov. Or they can be
collapsed from time to time during the iterative process, for example after every
tenth iteration; however, whenever this is done Fedorov’s formulas [3, Theorem
2.6.1] are not applicable, and M~ must be computed directly.

With the quadratic method there is no reason to defer combining nearby sup-
port points. On the contrary, the fewer support points there are, the easier will
be the calculation of (2.5). The question then arises of the best way to combine
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them. We consider here the case of two nearby points on a line, and assume
that f has three continuous derivatives in the local region of interest.

Suppose that 27 is one-dimensional, and that d(x, §) is locally maximized at
an interior point x,, with d(x,, §) > k and the second derivative of d(x, £) strictly
negative at x,. Suppose also that x, = x, 4 ¢, is a support point of &, with ¢,
small. Consider adding measure y to § at some x = x, + ¢, and at the same time
transferring all of the measure now at x, to x. What choice of x is best?

Formally, let

¢ =(1—a— B+ ab, + B,
where &« = —§(x,), and @ 4 § =y, with y presumably positive. Application
twice of Theorem 2.5.1 of [3] yields
G- IMEN/IME)] = (1 — N1 + ad(x,, I[1 + bd(x, §)] — abd*(x, x,, €)}

where a = a/(1 — @« — B) and b = /(1 — @ — ). Toavoid possible confusion
about primes, we will here use one or two dots to denote first or second deriva-
tives with respect to x, and continue to use 7 for transpose. By the assumptions
on the behavior of d(x) at x,, we have

32) d(x) = d(x)) + }ed(x,)
= d(x)) + [fTMf + fTM-f],

where f and its derivatives are evaluated at x,, M means M(§), and terms of
order ¢* are ignored. Similarly, we have

(3.3) d(x, x,) = d(xX,) + ¥ + eHTMf 4 ¢ fTMIf
Substitution of (3.2) and (3.3) into (3.1) yields
(3-4) IM(E)I/IM(E)] = (1 — 7)1 + ad(x,) + b[d(x)) + $e'd(x,)]

+ ab(e — &)d(x)f"M-*f} .
For fixed a < 0 and b + 0, expression (3.4) is maximized when
(3.5 ¢ = e[ad(x) "M~ ]/[ad(x)f"M-f + 1d(x,)] .

Note that ¢ lies between ¢, and 0, so x lies between x; and x,.

So if it is decided that &’ should have only one support point near x, then
the best such point is approximated by x = x, + ¢, with ¢ given by (3.5). To
use (3.5) just as it is written, one must use 7, the additional new measure to be
placed at x, and one must treat the local maxima one at a time, with M~! and
d(x) being recomputed after each change. However, the quadratic sequence in
Example 4.2 converged very satisfactorily when local adjustments were made
as- follows:

At any local maximum x, near a support point x, of &,, the point x = x, + ¢
was found from (3.5), witha = —§,(x,)/(1 + &,(x))), i.e., with y set to 0. Then
&, was defined to include such x, rather than the corresponding x, or x;. The
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next design &, ., was taken to be supported on 227,. All of the calculations were
based on the original M-*(§,) and d(x, &,).

When 27 has dimension greater than 1, the above method still can be used,
by restricting attention to the line through x, and x,. The derivatives are then
understood to be derivatives along the line, and (3.5) gives the approximate
location of the best support point, among points on the line.

B. L-optimality. It M is nonsingular, the criterion function is
O(M) = tr CM!

for some given symmetric positive definite C. C must be nonsingular. If M is
singular, define ®(M) = oo. All the assumptions are easy to check. Assumption4
follows from the fact that the derivative in question equals 2 tr CM—'AM~AM~' =
2tr UAM'CM~'AU’, where UTU = M~!. This is strictly positive if M is non-
singular and A is symmetric and nonzero. For calculating (2.5), the ith element
ofgis —p(y,) = —f7(y,)M*CM~f(y,), and the ijth element of His 2¢(y,, y,)d(y;,
y,), where ¢(x, y) is defined as f7(x)M~CM~f(y).

The analogue of (3.5) for L-optimality can be given in principle when a = b,
but the algebra is very messy.

Extensions of Fedorov’s results. In this subsection C is only required to be non-
negative definite, not necessarily positive definite. Write L(M™?) instead of ®(M),
and for any given x define the following notation:

¢ = LIMT(OF)F (x)MT(E)] = F(x)MH(ECM(€)f(x)
t = L(M7Y(§)) = tr CM~(§)
d = d(x, §) = fT(x)M(&)f(x) .
THEOREM 3.1. Let M(§) be nonsingular. Then:

(@) td = ¢, with strict inequality if the rank of C is greater than 1.

(b) AL(M(1—a)é +at,])/da = (1 —a) (1 +a(d — 1))t — ¢ + 2at(d — 1) +
a(d — h[Hd — 1) — ¢]}

Part (a) is stronger than Lemma 2.10.1 of Fedorov [3], which states that
¢(d — 1) = ¢ — t. Part (b) enables one to calculate the steepest descent a for
any x, by setting the expression in braces equal to zero. This last would seem
to be of only academic interest to users of the quadratic sequence. However
the steepest descent a can be substituted into (3.7) to give a numerical upper
bound on ®(M*) — ®(M). This complements the lower bound of (2.1) and is
the analogue for L-optimality of (4.5) of [17].

Proor. By Lemma 2.10.2 of [3] we have

3.7 LM — a)f + a&,))
=1 —a)y'(1 4+ a(d— 1))t + aoft(d — 1) — ¢]).
If td — ¢ =t 4 [t(d — 1) — ¢] is negative, then (3.7) approaches —oco asa — 1,
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which is impossible. If td — ¢ = 0, then
LM7[(1 — a)§ + a,]) = t(1 + a(d — 1))~

which is bounded as a — 1. This is impossible if rank C > 1. This proves part
(a). Part (b) is a routine exercise, based on (3.7). []

4. Numerical examples. Two examples with D-optimality were tried on a
computer, using both the steepest descent method and the quadratic method.
They are discussed in somewhat more detail in [2]. The steepest descent sequence
incorporated suggestion 1 of Atwood [1], in which mass may be subtracted at
a point with small d(x, §) if this is better than adding mass at any point with
large d(x, §). The other modifications of [1] and St. John and Draper [8] were
not used because then the time saving formulas of [3] for computing M-Y(£,,,,)
and d(x, §,,,) could not have been used.

As shown in [1], if §(x) > 1/k for some x, then & can be improved by reducing
&(x) to 1/k and distributing the excess mass proportionately among the other
support points of §. In the quadratic sequence this was always done with any
&, obtained, before M(£,) was calculated. For the steepest descent sequence in
Example 4.2, clusters of design points were periodically collapsed into single
points. At that time the resulting & was also adjusted to make &(x) < 1/k for
all x.

In computing the quadratic sequence, H™* need not be found explicitly, since
only H-'e and H-'g are needed.

In the quadratic sequence, after finding 5 from (2.5) we were supposed to find
a, to minimize ®(M(¢, + a7,)). It seemed satisfactory merely to approximate
this @, using a few iterations of Newton’s method. Of course, it is understood
always that a, must be such that £, + a,7, does not assign negative mass to

any point.
ExampLE 4.1. This is Wynn’s example [17], in which
f1(x)0 = 0, + 0,x, + 0,x,, x = (X, X,)

and 227 is the closed convex quadrilateral with vertices 4 = (2, 2), B = (—1, 1),
C=(1, —1)and D = (-1, —1). A crucial simplifying feature of this problem
is that an optimal design can only be supported on {4, B, C, D}. In each sequence,
§, was taken to be uniform on {B, C, D}. Both sequences converged quickly.
Iterations were stopped when max, d(x, §,) was less than 3.00005. The steepest
descent sequence took 9 iterations to achieve this; the quadratic sequence took
3 iterations. The execution times were both approximately 4 second on the
UCD Burroughs 6700. Since exact execution times fluctuate with the time shar-
ing mix in the machine, all that can be said is that the execution times were
close to each other. The major portion of the computer time was for compila-
tion rather than execution. The steepest descent program was considerably
shorter to compile.
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ExaMmpLE 4.2. This example is given by Tsay [13, 14]
f7(x)0 = 0, + 0,x + 0,x* + O,x,* + O,(x — .3),°
for xe[—1, 1], where

x—a),"=0 if x<a
( )+
=x—-am if x=a.

As an initial design, &, was chosen to be uniform on {—1, —.5,0, .5, 1}.

In the steepest descent sequence, clusters of points were collapsed into single
points from time to time, following Fedorov [3, page 109]. Doing this fairly
often seemed to help slightly more than doing it infrequently.

As [M(£,)| increased monotonically, d(¢,) = max, d(x, &,) oscillated, gradually
tending downwards. It stayed below 5.5 from iteration 16 on, and below 5.05
from iteration 46 on. The procedure was terminated after 82 iterations, and
6.20 seconds. At that time d(&,) was 5.028. Information for a few of the itera-
tions is shown in Table 1. The values §(x,) are not shown in Tables 1 and 2,
but all designs which are supported on only five points assign equal mass to each
point.

Column 5 of Table 1 reflects the fact that the point .1281 was not ever moved
after iteration 6, and other points were left untouched for long periods of time.

Tsay [13, 14] tries other steepest descent sequences with this example, using
different choices of {a,}. His results are equally unsatisfying.

The quadratic sequence was much more successful, as can be seen in Table 2.
It converged in 4 iterations, requiring 1.5 seconds to achieve d(&,) = 5.00002.

TABLE 1
Steepest descent sequence, example 4.2

Points of Support

Iteration Time (sec.) 107 x |M]| d After Collapsing
Clusters

16 1.42 2.0792 5.47125 —1.0000
—.5000

.1281

.5000

.6177

1.0000

46 3.72 2.1305 ) 5.04634 —1.0000
— .4875

.1281

.6125

82 6.20 2.1363 5.02770 —1.0000
—.4804

.1281

.6125
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TABLE 2
Quadratic sequence, example 4.2

Points of Support

Iteration Time (sec.) 107 x |M| d After Collapsing
Clusters

0 .23 1.3613 7.58633 —1.0000
—.5000

1 .65 1.9953 5.80774 —1.0000

2 1.02 2.1219 5.27046 —1.0000

3 1.25 2.1497 5.00155 —1.0000

4 1.50 2.1502 5.00002 —1.0000

1.0000

For this sequence, 227, was taken to consist of the support of &,, together with
all x; at which d(x, £,) was locally maximized and > 1/k. If such an x, was close
to a support point of £,, the two points were combined according to the remarks
following (3.5).

One lesson from the computing experience is that excessive caution in collaps-
ing clusters slows down convergence. Points were considered close enough to
be treated together if they were within some d of each other. In the sequences
summarized in the tables, 6 was set equal to .06. Both sequences converge more
slowly if § = .02, and more quickly if § = .15. The danger with too large a &
is that points may be combined which should have been left distinct. However
for greatest speed in the early iterations it seems that 6 should be as large as is
felt to be safe.

In this example, d(x, §) was a quartic polynomial in each of the three intervals
[—1,0], [0, .3] and [.3, 1]. This simple structure greatly eased the search for
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the local maxima. In a different example if the search for the local maxima
were much harder, this would give a greater advantage to the sequence with
fewer iterations, the quadratic sequence.

(1]
[2]

[3]
[4]
[5]
6]
(7
(8]
[
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

(18]
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