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SEQUENTIAL ESTIMATION OF THE LARGEST
NORMAL MEAN WHEN THE VARIANCE
IS KNOWN:!

By SAuL BLUMENTHAL

University of Kentucky

Given a procedure 6 for estimating the largest mean 6* of k normal
populations with common known variance, it is desired to choose the
common sample size n so that the mean squared error (M.S.E.) of 6* does
not exceed a given bound, r, regardless of the configuration of values of
the k means.

Let Ay = -+ = A = 0 be the ordered values of (§* — 6;), where 6y, - - -,
6x are the unknown means. The M.S.E. depends on the A’s and the con-
servative approach chooses a sample size n* to hold M.S.E. < r for all A’s.
Sequential and multisample procedures are considered which use sample
information about the A’s to reduce sample sizes. Asymptotic properties
of the sample size and M.S.E. of the resulting estimates are developed.
Improvements over using n* are possible, but with limitations. The sample
size behavior of any 4% depends on the limiting variance of the estimator
as all of Ay, -+, Ag—1 become infinite.

1. Intoduction. Let @, - - -, 6, be the unknown means of k normal populations
with common known variance ¢? which will be taken as unity henceforth. Let
X,, - -+, X, be the sample means of n observations taken from each population.
Letfy < --- < 60y,and X, < ... < X, be the ordered population and sample
means respectively. Let A, = 6,; — 6, and A, be the strongly consistent esti-
mates X, — X;; (1 < i < k). Define 6* as 6;,; and X* as X,;. Consider esti-
mation procedures §* for 6* which have the form

(1.1) 6% = x* — (1/nt)y(A,ni, ..., A,_ nt)

for some real valued function y(+) defined on E*-*. Note that all the estimators
examined in [3], [5] and [6] are of this form. The mean squared error function
of * is given by

(1.2) R(0*;0,, ---,0,) = (1/n)Hsp(ntd,, - -, nth, ),

Received October 1974; revised March 1976.

t Some of the work in this paper was performed while the author was a visiting professor at
Cornell University on leave from New York University, and was supported in part by Office of
Naval Research Contract ONR N00014-67-A-0077-0020 at the College of Engineering, Cornell
University, by National Science Foundation Grant GK 14073 at the School of Engineering and
Science, New York University, and by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant No. AFOSR-75-2841. The United States government
is authorized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright notation hereon.

AMS 1970 subject classifications. Primary 62F07; Secondary 62L12.

Key words and phrases. Sequential estimation, estimation, largest mean, ordered parameters,
ranking and selection.

1077

[ (¢
%
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% )2
The Annals of Statistics. PIKGIRE ®

o

www.jstor.org
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where
Hé‘*(xv R ] xk—l)
=8+ 1@ -5 wen)) Dges, [ 8 — #py + x,) dy TT020 du,

S, is the group of permutations of k elements, ¢(.+) is the standard normal
density, #, = x, = 0 in the argument of ¢(+), and the region of integration is

0<y< 0,05y, <+ <u, < oo. For a given desired level of risk » and
a given estimation procedure, it is desired to choose n such that
(1.3) R(0*: 0, ---,0)<r, all (0,---,0,).

Achievement of this goal is complicated by the presence of the unknown A’s
in the risk function. The conservative approach would be to use n = n* where

(1.4) n* = (1/0)Hp oz »
and
H§*, max — supzl,-u,zk_l Hé*(xls Tty xk—l) .

We consider multiple-stage or sequential procedures which attempt to reduce
the sample size below n* by using the information available about the A;. Let

(1.5) n, = inf {n: (1/n)Hp(n*A,, - - -, ntA,_)) < r}.

The form of the rules is: after obtaining ¢ observations from each population,
compute estimates A, and compute A(f) = n; by using the A’s in (1.5).

A multistage procedure which has taken #; observations up to stage j will
observe on the next stage: max (0, A(¢;) — n;) additional values from each popu-
lation. A sequential rule simply observes the (¢t 4 1)st value if A(f) > ¢, and
stops otherwise. Let N denote the sample size at stopping for any of these rules.

Throughout, we require that any sequential or multistage estimator take at
least n, observations initially, where

(1.6) ny = [(1/r)Hpe min] 5
Hé", min — infw>zk_1g~--gxl>0 Hé"(xv M) xk—l)

and [x] denotes the smallest integer not less than x. Clearly, A(f) = n, so that
any sequential procedure must eventually reach the nith observation and the
computations made at earlier stages serve no purpose; multistage procedures
might start with fewer than n, observations, then jump to more than n,, but
intuitively it seems more efficient to take as large a first sample as possible when
it is known that the total sample must exceed n, in any case.

The main result of this paper (Theorem 1) is that if we force n, to be large
by making r small, then (N/n,) is near unity. Our sequential procedure is
designed to try to achieve equality in (1.3) for the risk of the estimator based
on the random sample size. In the case k = 2, Theorem 2 affirms that this goal
is achieved for two-stage sampling. The A’s are assumed to be fixed and positive
in these theorems. If the A, are all zero, or are proportional to r* when r is
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small, then Theorem 3 and Corollary 1 show that (N/n,) does not have an
almost sure limit. The ratio does have a limiting distribution in that case and
this is examined in Appendix 2. In Section 3, some numerical results are ob-
tained for the mean squared error actually achieved by the two-stage procedure
for two populations and the estimator X*.

2. Fixed A’s as r becomes small. First, (N/n,) is examined. Note that for
two stage procedures,

2.1 N = A(ny,) .
For multistage procedures, the method of choosing the sample sizes implies
(2.2) N = #(ny) .

THEOREM 1. Given the strongly consistent estimates ﬁm = Xy — X of the A,
Letall A(1 £ i<k — 1) be > 0. Then

(2.3) lim,_, 7N = lim,_,rA(N) = Hj. ., a.s.,

(2.4) lim,_, E(rN)i = lim,_o E(A(N))} = (Hp. )}, for any
integer j (positive or negative) where

(2.5) Hpe oo = 1My gy oy ooy Hi(Xpy <225 Xiy)

ProOF. By the strong consistency of the A, ,, for given ¢ > 0, there is an M
such that

(2.6) PA,,> A2, 1 <i<k, al n>M}>1—c¢.

From (1.6), it is seen that for r < r, (say), n, = M. From (2.6), the fact that
A > n,, and (1.6) we see that r, can be chosen so that for any arbitrarily large T,

@7) PR, Am>T,1<i<k—1, all nzn}>1—¢, if r<n.
Since lim Hj(x,, - - -, X,_,) exXists as all the x, increase, and is Hj ., from (2.7)
and the fact that T is arbitrary, we conclude from (1.5) that for arbitrary 6 > 0,
(2.8) P{Hp ., — 0 < ri(n) < Hp o+ 0, all nZn}>1—¢ if r<nr.

This completes the proof of (2.3) for A(N).

For two-stage procedures, (2.3) for N is immediate from (2.1). The additional
steps for sequential and multistage procedures will be omitted. The dominated
convergence theorem gives (2.4), noting that N is bounded both above (for
positive j) and below (for negative j). This completes the proof of the theorem.

To see that (2.3) really implies

(2.9) lim,_, (N/n,) =1 a.s.
we use the following:

(2.10) lim,_orn, = Hp o, .
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To obtain (2.10), write n, as [p?/r] where p* is the smallest solution of

(2.11) o = Ha((oByfrt), - -, (oByssfrh) -

If p(= p(r)) has a limit as r decreases, and if all A, are > 0, the limit will
satisfy (2.11) with r replaced by zero on the right side, and (2.10) follows
directly.

We examine the asymptotic moments of d,* to see whether the goal of having
(1/r)E(@y* — 6*)* approach unity is achieved. We have not answered this
question in full generality, but for k = 2 and two-stage sampling, Theorem 2
gives an affirmative answer.

Additional structure will be imposed on the form of 6%, namely

(2.12) 6% = x* — (B2)[1 — p(mh)] + (1/nt)A(n2h)
where A = A, and both ¢(-) and A(.) are bounded functions having, as their
arguments increase, finite limits denoted as ¢, and 2, respectively. (Note that
for X*, ¢ =1, 2= 0, and all of the other estimators in [3] can be expressed
this way). :

The following two lemmas are proved in Appendix 1.

LEMMA 1. Let * be given by (2.12) and A = A,, then
(2.13) lim,_,0,* = 0* — (A)2)(1 — ¢..) -
Thus 6,* is consistent iff ¢, = 1.

LeEMMA 2. Let 6* be given by (2.12). Then

(2.14) lim, o (1/r)E@y* — 6%) = (1/(Hp ) (Lo + 22)
.15)  lim, o (1NE@y* — 0% = (1/Hz )1 + (Lo + 2],
(2.16) Hpo =14 (Lo + 2)?,

where L., = lim,_, x(¢(x) — 1). If L, is infinite, the limits on the left in (2.14),
(2.15) and (2.16) are infinite.

Note that many of the estimators studied in [3] (such as maximum likelihood)
satisfy 1, = 0 and L, = 0. For instance, the generalized Bayes estimator has
(¢(x) — 1) = 2®(—x/2%), and 2(x) = 2ig(x/2%). Now we give our main result
on the moments of 4,*.

THEOREM 2. For k = 2, two-stage sampling, and 6% of form (2.12), with
Loo < m’

(2.17) lim,_, (1/P)E@y* — 0%) = (L + 2)/(1 + (Lo + 2)D)}
(2.18) lim,_, (1/r)E(0,* — 6% = 1.
The estimator is strongly asymptotically unbiased iff Hp. ., = 1.

Proor. From (2.16), we see that H,, is finite iff L is finite, and (2.17) comes
from (2.14) with (2.16), while (2.18) uses (2.15) with (2.16).
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3. Varying A’s, as r becomes small. Even though the function H may have
a minimum value considerably lower than H,, or H,,. (for a specified §*),
Theorem 1 indicates that the N which takes advantage of it is elusive. This
section explores to what extent this N can be achieved.

Define n, as
(3.1) n, = (1/r)Hp(x,, - -+, x,_y) -

The A values which correspond to n, are given by x, = A,(n,)* or
(3-2) A, = A(x) = x,r(Hplxy, -+, x,20))7E

Thus, the parameter value which leads to large potential savings is proportional
to rt, and the question is whether, if we fix x = (x, - - -, x,_;) and look at A(x),
does (N/n,) approach unity almost surely.

THEOREM 3. Let x be fixed and the A, given by (3.2). Let the estimates A, be
X* —X,(0=1, .-,k —1). Define

(3.3) S(r,0) ={A=(4,, -, Ak—l) [ny > (5/r)H5*,max} .

Let cA denote the set obtained by multiplying each element of the set A by the scalar
c. Assume there is some 6, < 1 such that for any 6, < 6 < 1, there exists a set B,
of positive Lebesgue measure such that riB, C S(r, 8). Then for any x such that
n, < n*, there is an ¢ > 0 such that for multistage procedures

(3.4) lim, o P{(N/n) — 1] Z ¢} > 0.

For any x such that n, > ny, (3.4) holds for sequential procedures if S(r, 9) is defined
by ny < on*, and B, exists for all § < 0, < 1.

Proor. For brevity, only the proof for multistage procedures will be given.
Let n = (¢/r) (any ¢ > 0). Let A = (A, ---, A, ). Note that

(3-5) P{fi(n) = 6} = P{A e S(r, )} = P{nid € n3S(r, 5)}
= P{n*A e (c/r)S(r, 9)} = P{n*A e cB,}

(the last inequality uses the assumption). Observe that the A, are the ordered
values of the nonnegative (X* — X)), that n}(X* — X)) is distributed as (Y* —
Y,) where the Y,’s are normal with means —(nA,)? and unit variance. If n =
(¢/r) (any ¢ > 0), and A, is given by (3.2), these means are (ctx,/(Hp(x,, - - -,
X)), independentl}: of r. For n of this form, the joint distribution of the
positive values of n*A, assigns positive weight to all measurable (k — 1) di-
mensional sets in the upper orthant having positive Lebesgue measure with
weight independent of r. Thus, since (¢B,) is such a set,

(3.6) P{A, =0} >0.
If n is taken to be ny, then ¢ = Hp. ..;,, and (2.2) along with (3.6) implies that
P{N = ¢} > P{fi(n)) = 0} > 0.
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For given x, d can be taken as (1 + ¢)(n,/n*) where ¢ is sufficiently large to
assure > d,. This completes the proof.

REMARKS.

1. The conditions involving S(r, ) and B(0) can be verified if the function
H satisfies mild continuity conditions near its maximum or minimum. For
instance, when §* = X*, these sets can be given explicitly and the conditions
verified directly.

2. Setting x = (0, - - -, 0) shows that the result of Theorem 1 does not hold
when all A’s are zero.

3. The role of ¢ has been suppressed by taking ¢ = 1. If ¢ = 1, ther (r/d?)

TABLE 1
Comparative mean squared errors and biases

2 £

| -

% = o >

= = S 5

2 < ' =

£ L =

= 5 S ) 3

% < J i ) J

= K ] E = £

] < E = = o) =
.0 .0000 1.0000 .8662 1.1028 .5642 5327
.1 1037 .9298 8664 1.0337 5148 4573
2 2135 8772 .8671 .9786 .4634 .3836
3 3274 8399 .8683 .9383 4116 .3139
4 .4429 .8156 .8702 L9121 .3608 .2503
.5 .5582 .8022 .8725 .8980 .3123 .1940
.6 .6719 .7976 .8753 .8936 .2671 .1454
.7 .7826 . 8000 .8785 .8963 .2259 .1043
.8 .8901 .8077 . 8820 .9041 .1892 .0703
.9 .9943 .8192 .8858 9150 .1569 .0425
1.0 1.0945 .8334 .8897 .9279 L1291 .0200
1.1 1.1937 . 8490 .8939 9417 .1053 .0021
1.2 1.2900 .8654 .8982 .9559 .0853 —.0120
1.3 1.3845 .8816 .9026 .9699 .0686 —.0228
1.4 1.4780 .8973 .9072 .9835 .0547 —.0308
1.5 1.5706 9121 L9118 .9963 .0434 —.0365
1.6 1.6630 .9256 9165 1.0084 .0342 —.0402
1.7 1.7555 .9378 .9213 1.0194 .0267 —.0423
1.8 1.8481 .9486 .9261 1.0293 .0207 —.0430
1.9 1.9410 .9580 .9309 1.0380 .0160 —.0425
2.0 2.0349 .9660 - .9357 1.0455 .0122 —.0411
2.5 2.5126 .9900 .9583 1.0643 .0028 —.0269
3.0 3.0035 .9977 .9764 1.0570 .0005 —.0120
3.5 3.5007 .9996 .9883 1.0398 .0001 —.0037
4.0 4.0001 .9999 .9949 1.0224 .0000 —.0005
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replaces r and (A/s), (A/s) replace A and A respectively in all formulas. If r is
fixed at 7, in (1.3), n will be large if ¢* is large, and we might ask what happens
to (N/n,) for fixed A as ¢® increases. Since r is (r,/0?), o is (r,/r)? so that the A’s
become proportional to r# (when (A/0) is used). This allows Theorem 3 to be
applied to give

COROLLARY 1. Let A = (A, ---, A,_,) be fixed, andlet A, = X* — X,,. Then
for any A, such that n, < n, < n* there is an ¢ > O such that
(3.7) lim,s ., P{|(Njn,) — 1| = ¢} > 0.

Although (N/n,) does not have a probability limit, the proof of Theorem 3
suggests that it should have a distribution which has a limit as r — 0. For the
case k = 2 and two stage sampling, the limiting moments of N and the low
order moments of §,* are obtained in Appendix 2 for general 6*, and specialized
to X*. The formulas are quite complex, and numerical integrations have been
performed to help ascertain the performance of N and X,*. In Table 1, x isan
indexing variable, n, is given by (3.1) and A(x) by (3.2). Columns two and three,
respectively, give A(x)(n*)} and n,/n* (note n* = 1/r) to eliminate r from the
table. Column 4 (see (A2.15)) should be compared with column 3 to determine
the sample size effectiveness of the two sample rule. Column 5 (see (A2.14))
should be compared to the ideal value (1/r)E(X — 6*)* which is unity. Column
6 gives the normalized bias of the perfect information procedure, namely (1 —
H(x))/x(2H(x))* and column 7 (see (A2.11)) should be compared to this.

4. Conclusions. Although Theorem 1 indicates that our sequential procedure
does not take full advantage of the possible sample size savings for known A’s,
it can improve on the conservative approach since Hj. , < Hj. ... for many
estimation procedures. Using our sequential plans, all estimators with the same
H;. ,, are equally desirable. Note that H,., = 1 and that heuristically, there
is only one observation available to estimate §* when (k — 1) of the A’s are
infinite, which leads to the conjecture that Hp. , > 1 for any @*. 1If this is true,
then no procedure can really improve on X* (in terms of sample size needed
to achieve (1.3)), and none are as simple in form. The conjecture implies that
the minimax value of Hp(A,, ---, A, ;) is at least unity, so that any 6* with
H;. , =1 leads to an asymptotically minimax procedure in conjunction with
our sequential approach.

It is conjectured that Theorem 2 holds also for sequential sampling and k > 2.
If so, the various 6*’s behave the same on the basis of mean squared error and
should be compared according to sample size behavior as discussed above.

Theorems 1 and 3 indicate that our two-sample plan is asymptotically equiva-
lent to the more complex plans in terms of sample size. Theorem 2 indicates
that this sampling plan achieves the desired moment behavior of ] v*. Also, since
n, < Ai(n) < n* by construction, even our sequential plan is curtailed, and since
(no/n*) is a constant (nonzero), as n, and n* increase the information about the
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A;’s contained in the initial sample of n, is almost as great as the information
available by looking at n observations for any n, < n < n*. Thus intuitively,
the simple two-stage sampling scheme should be almost as efficient as any se-
quential rule as well as being much simpler to analyze, and to use. Table 1
shows that (E(N)/n,) is not too close to unity, and that for small values of A,
M.S.E. (X,*) fails to achieve the goal of being constant at unity. Nonetheless,
it is seen that the two-sample procedure does take some advantage of the possible
savings available when A is known, and the M.S.E. curve does not rise very far
above unity. Compared to the conservative procedure, about a 109, saving in
sample size is achievable for moderate values of x. Thus the two-sample pro-
cedure may very well be of practial value.

APPENDIX 1
Proors oF LEMMAS 1 AND 2. Use the notation of [3], namely

Zow=Xn+ X025 Ziw= K — X)25  Zy=|Zu. = B)2)
n = (0, + 6,)/2; v= (0, —6,)/2; o= = (4/2); 0* =9+ o

A

0* = Z,, + (1/nH)é(nZ,) ; §(x) = x — r(2x), (see(l.1)).

Note that Z, , and Z, , are independent, normal with respective means » and
v, and variances (1/2n). The risk (1.2) is a function of » and the stopping rules
depend only on Z,. A straightforward consequence of the above characteri-
zations and the independence of Z, , from N is that for any stopping rule

(ALL)  E@y* — 0% = i (EWHE([(1/N)E(NIZy) — o] ~/2N)H},

where W is a standard normal variable, and p is any positive integer. To
evaluate the term in { } in (Al.1), the two-sample rule will be assumed.
Writing

(A1.2) Zyw =120 + (N = n)Zy (v np] >

1
N
where (N — no)Zy y_y, is the sum of (N — ny) normal random variables, with
mean o and variance }, which are independent of Ly, and of one another, and
writing

(A1.3) Ry = (Hp/rN),  Roy = (m/N),

it is straightforward to arrive at the characterization for positive v,

(Al.4) Z, v = (rRy[2Hp )H(Ry x)tY, + (1 — Ry )Y, + (0(2Hp o/rRy)})},

where Y, and Y, are independent standard normal variables, R, and R, , are
functions of Y, and

(Al.5) lim, , Ry, =1, a.s., lim, o Ry v = (Hje, min/Hir o) s a.S.

r—0

For negative v, replace w by (—w) in (Al.4). The characterization (2.12)
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becomes

(AL.6) 0% = Zy + ZLG(WPZ,) + ((HA(n)}Z,) .
From (Al.4) and (Al.5) the a.s. convergence of Z, to  (as r — 0) follows and
that of Z, , to » follows from independence of Z, , and N. These convergences
used in (A1.6) give Lemma 1.

Next, (Al.4) and (A1.5) are used to establish

(AL1.7) lim, _, (1/(")E(Zy — @) =0,
(A1.8) lim,_, (1/(r))EX — @) = 0,

(A1.9) lim, , (1/r)E(Zy — w)* = (2Hj )™,
(A1.10) lim,_, (1/r)E(X§ — 0)* = (1/Hj..) -

For instance, to get (A1.9), (Al1.4) is used to obtain

(Al1.11) (E(Zy — 0)’[r) = (1]2H)E{Ry R, vY:* + Ry(1 — R, )
— (2(2)'0/(rH.,)})(Bp(A|B) — AD(—A[B))},
where

(Al1.12) A = (Ryy)tY, + 0(2H,[rRy)t, B=(1—R,,t.

Take the limit as r — 0 in (A1.11) using (A1.5) and dominated convergence for
the first two terms. To see that the expectation of the third term (which has a
(1/(r)}) factor) approaches zero, note that for fixed Y,, the tail approximation
to the normal shows pointwise convergence, and the integral can be split into
two parts—one where the pointwise limit can be taken, and one where A is
small (Y, < ¢/(r)t for some c), in which case (Bp(+) — AD(+)) is bounded and
the entire integral is small enough to give (A1.9).

Now (2.14) and (2.15) can be established. An outline for (2.15) follows. Find
the limit of E((Zy 4 2 — w)*[r) thenadd (1/2H.,). Rewrite (1/r)(Z¢ + 2 — w)*as
(1MNZ = ) + @(§ — 1(Z* — 0?)fr) + BAJrN) + 22(L/(rNY)(Z — 0)/(1)) +
[o(¢ — D)/ + 24(1/(rN)H)[w(¢p — 1)/(r)¥]. Assume that L, < co, which im-
plies that ¢, = 1. Dominated convergence can be used to justify all limit and
expectation interchanges. The first term is handled with (A1.9), having limit
(1/2H.,), the third with (2.4), having limit (1,}/H,,), the fourth term has limit zero
using (2.4) and (A1.7), the fifth term by strong convergence of Z, and (2.4) has
the limit of (L.}/H,,), the sixth by (2.4) has the limit of (22, L,/H.). To handle
the second term, note that by (Al.11), and dominated convergence it will be
lim {g($ — D[Ry Ro,x + (1 — Ry y)] + P(0/(r)})(¢ — 1)(2Ry Ry x/H.)*E(Y})}. Since
the R’s have finite limits, (¢ — 1) has a zero limit, (w/(r))(¢ — 1) has a finite
limit, and E(Y;) = 0, this term disappears. Noting that (2.15) is infinite if L,
is not finite completes the proof.

To get (2.16), use formulas (A.1) and (A.5) of [3] to characterize H(w) as an
integral, then take limits in the integral.
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APPENDIX 2
Limiting moments. In Appendix 1 the quantities R, and R, , of (Al1.3) had
a.s. limits as » — 0. If however o is not fixed but is a function of r (as in
Theorem 3) then R, and R, , have a limiting distribution. Using the notation
of (AL.5), let

(A2.1) 0" = H(pZ, (2/r)) = H(p|(1/(rn)1) Y, + ((2/r)})o])
(A2.2) N=[p/r]; B = o0QHjuu/)),
(A2.3) P*(x) = Hxp(x)/(Huin)?) »

where we omit the §* subscript unless it is needed to avoid ambiguity. Using
(1.6) and expanding (A2.1) in a Taylor series, if H(+) has a bounded derivative,
0 — p* a.s., which with (A2.2) gives
(A2.4) lim, orN = g%(|Y, + B) a.s.,
(A2.5) lim, , EeN) = E[f(Y, + B)F, any j-

Next, the distribution and moments of §* will be given.

LEMMA A. Let A, be the set ((Hy,/O)))H*(t). Let A, = U,y A,. Let
T<H

(A2.6) P{g(1Yy + ) = T} = §u4p (9 + B) + $(u — B)) du,
E@(Y, + B)))
(A2.7) = (Hpin)? {7 HHO)[H(V) + vH () [ $((v(Humin/ H(V))}) + B)
+ $((V(Honin/H(V))!) — B)]dv .

PRrOOF. Let u, be asolution of H(u) = t,i.e.,u, € HX(f). If xp(x)/(Hpin)t = u,,
then §*(x) = 1, so that x = u,(H,;,/?)}. Clearly, if p°(x) = ¢, then xp(x)/(Hp;n)? =
u, for some u, € H™'(f), and {x: p*(x) < T} = A,. Using the density of |Y, + |
where Y, is standard normal gives (A2.6). Next, (A2.7) follows from making
the change of variables v = up(u)/(Hy;,)? in

E@(1Y, + B))Y = §& (6)*[$(u + B) + ¢(u — B)] du,
which follows from (A2.3).
Finally, to get the second moment of 6} using (Al.1), we need

LEMMA B. For estimators of the form (Al.6),
lim, o (2H /1) E[Zy $((N)2Zy) + (L/(N)HA(NPZy) — @]
(A2.8) = E{|Z(Y,, Y, BIYLIZ(Y1, Yo, B)I/(2)Fr(1Y: + BD)]
+ @4 (1Y1 + BDALZ(Y,, YaB) /)4 (1Y, + BT — BY

where the expectation is w.r.t. Y,, Y, (see (Al.4)) and
(A2.9) Z(Y, Y, B) = (Y, + B)Y,

+ 1Yy + BN — (1Y, + )Y, + B,
(A2.10) 7(1Y: + Bl) = Huw/0(|Y: + B)) -
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The proof uses (A1.3) and (A1.4) with (A2.4), (1.6) and (A2.2), and dominated
convergence.

In the case of X* more explicit forms for the expressions in Lemmas A and

B can be given. These are summarized below:

(A2.11) lim, o (1/rE(X,* — 0%) = ()bl — L]
(A2.12) lim,_, (1/1)E(Z.y — %)* = (1)2HZ;)1, ,
(A2.13) lim,_, (1/nE(Z, — 0)* = (1/2H%;,)[4], + I, + 4BL5] ,
(A2.14)  lim,_, (1PEX* — 0% = (1/H)[2E, + 1 + 281,

(A2.15) lim,_, rE(N) = I,

where

(A2.16) I, = {7 [$(v) — 20@(—0)[r*'(V)[C(v)$(C(v)) + D(v)$(D(v))] dv ,
(A2.17) L = {¢ )1 — va()[$(C(v)) + ¢(D(v))]dv ,

I = {F{(()CO) + BP(—=(*(V)C(v) + B)/B(v))$(C(v))

(A2.18) — (P0)D(v) — PO((F(1)D() — £)/B(r)P(D(v))

— 2B)$(vr*(v)[B)(B/r()} (V)1 — vh(v)]dv,

(A2.19) I, = {7 [$(v) — 200(—)[*W)[H(C()) — H(D®)]dv ,
(A2.20) I, = §7 7)1 — v$(@)][H(C(v)) + $(D@)]dv ,

B(v) =)A= r*(v); €)= vr(v) — B3

(A2.21) D) =vy(®) + B;  7(¥) = +Huw/(1 + 2F()))};

(1]
2]
131
[4]
1]
1]
[7]

F(v) = v’O(—v) — vd(v) .
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