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MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS OF
AUTOREGRESSIVE PROCESSES WITH MOVING AVERAGE
RESIDUALS AND OTHER COVARIANCE MATRICES
WITH LINEAR STRUCTURE!

By T. W. ANDERSON
Stanford University and London School of Economics

The autoregressive process with moving average residuals is a station-
ary process {y:} satisfying 27, Bsyt-s = 2% ajve—j, Where the sequence
{ve} consists of independently identically distributed (unobservable) random
variables. The distribution of y1, - - -, yr can be approximated by the distri-
bution of the T-component vector y satisfying 317_, f:Ksy = Dicoaidiv,
where v has covariance matrix ¢2I, K, = J, =Ls, and L is the Tx T
matrix with 1’s immediately below the main diagonal and 0’s elsewhere.
Maximum likelihood estimates are obtained when v has a normal distri-
bution. The method of scoring is used to find estimates defined by linear
equations which are consistent, asymptotically normal, and asymptotically
efficient (as T'— o). Several special cases are treated. It is shown how to
calculate the estimates.

1. Introduction. A stationary stochastic process that serves as a useful model
for time series analysis is the autoregressive process with moving average re-
siduals {y,} which satisfies

(1.1) 200 Beyi-s = D0 ¥V

t=...,—1,0,1, ..., where the sequence {v,} consists of independently identi-
cally distributed (unobservable) random variables. [See Section 5.8 of Anderson
(1971a) and Box and Jenkins (1970).] To avoid indeterminacy we set 8, = a,= 1.
The mean of v, (assumed to exist) is independent of ¢ and is taken to be 0 for
convenience. (Modifications necessary to account for an arbitrary mean are also
discussed.) When &y, = 0 and second-order moments exist, stationarity implies

(1.2) EYeye= ot — 5),

dependent only on the difference of the indices.

We shall assume that the v,’s are normally distributed, that is, that the process
is Gaussian. Then the model is completely specified by the coefficients in (1.1)
and the variance of v,, say ¢*. A statistical problem treated here is to estimate
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1284 T. W. ANDERSON

Bis ++ s By gy - -+, @, and o® on the basis of a set of observations at T successive
time points, y,, ---, y, (T Z p + g + 1).

If an arbitrary random vector has the multivariate normal distribution N(0, Z),
the density of y is

1 —4y'z7 1y
(1.3) ] e s
where
(14) gy,y,:at,, t, s = 1,-~~,T,
is the ¢, sth element of . When the components of y are y,, t =1, ..., T, a
segment of the process satisfying (1.1), then (1.4) is (1.2); the covariances are
functions of the parameters 8,, - --, 8, ay, - - -, a,, and ¢°.

The method of maximum likelihood can be considered, but in general an
explicit solution cannot be found. The approach of this paper is to modify the
model slightly so that the derivatives of the likelihood function set equal to 0
yield relatively simple equations. The modification is equivalent to setting y, =
Ya=‘+=y,=0and v,=v_,=... =v,_,=0. Since the likelihood
equations are, nevertheless, nonlinear, an iterative procedure is proposed based
on the method of scoring, which involves estimating the information matrix.
The computations to be carried out are in the time domain. If the initial esti-
mates are consistent, the first step of the iteration yields consistent, asymptot-
ically normal, and asymptotically efficient estimates (as 7 — o).

Durbin (1959), (1960) and Walker (1961), (1962) have proposed estimation
procedures which are also carried out in the time domain, but are not based on
maximizing the likelihood or a modest modification of it. Box and Jenkins (1970)
have suggested maximizing the likelihood function (in the time domain) by nu-
merical means; a method of searching for the maximum by computing the likeli-
hood over a grid of trial values of the parameters is described in detail. Astrom
and Bohlin (1966) have approached the maximization of the likelihood of the
modified model treated in this paper in a rather different way and have develop-
ed a Newton-Raphson procedure, which seems to involve more computation
than the method of scoring.

The covariance sequence (1.2) of a stationary process has a spectral represen-
tation, which is in the case of an absolutely continuous spectral distribution
function

(1.5) o(h) = (. f(A) cos Ah d2A , h=0,+1,....
The spectral density f(1) may be determined by
(1.6) fd) = ZL S o(h) cos Ak

T

when the series on the right-hand side converges absolutely. In the case of model
(1.1) the spectral density is

2 q i27]2
1.7 PN D3 Y el i
1 O = o S ne
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Hannan (1969), (1970) has proposed estimation methods based on the sample
spectral density, the so-called periodogram. Akaike (1973) has shown that
Hannan’s procedures are approximately Newton-Raphson in the frequency do-
main. The methods developed in this paper differ from Hannan’s in that (i) they
are based on the use of the estimated information matrix (scoring) instead of
the matrix of second derivatives of the logarithm of the likelihood (Newton-
Raphson), (ii) they are carried out in the time domain instead of the frequency
domain, and (iii) the only approximation involved is setting equal to O the vari-
ables with nonpositive indices. An advantage of making the calculations in the
time domain is that the sample spectral density does not need to be computed.

If we let u, = 3 4 ,a,v,_;, where {v,} consists of independently, identically
distributed random variables with means &v, = 0 and variances &v,2 = %, the
spectral density of the stationary process {u,} is

(1.8) fd) = L T aets T age

= ’2—17;- ZL_Q Uu(h)eilh = 51;_ Zz:-,, Uu(h) cos Ak,
where
(1.9) . o, (k) =a* P A Xy pp) 5 h=0,+1, ..., +¢,

are the possibly nonzero covariances of {#,}. The parameters a,, - - -, a,, and ¢*
can be replaced by ¢,(0), (1), - -+, 0,(q). We shall assume the zeros of

(1.10) M(2) = Ty a;203

are less than 1 in absolute value. Then given ¢,(0),0,(1),---,0,(9) #0
" ni-_,0,(h)z* can be factored uniquely into oM(z)[eM(z7")], thus, defining
a, ---,a, and ¢’. [See Anderson (1971a) and (1971b) for details.] An alterna-
tive parametrization of the process {y,} is ¢,(0), ,(1), - - -, 6,(9), By, - - -, B,- We
modify the model by setting y, = y_, = --- = y,_, (but not altering {v,}). An-
other statistical problem considered in this paper is the estimation of these pa-
rameters on the basis of a set of observations.

With this parametrization the spectral density (1.7) is f,(2)/| 22, B,€™*|".
Clevenson (1970) in an unpublished paper and Parzen (1971) have developed
iterative estimation methods using the sample spectral density; they are approx-
imations to the method of scoring in the frequency domain. In principle the
methods of Hannan, Clevenson, and Parzen could be obtained from the approach
of Whittle (1951) [developed further by Walker (1964)] who approximated the
logarithm of the likelihood function by integrals or sums of the ratio of the
sample spectral density to the process spectral density depending on a finite
number of parameters.

Anderson (1971b), (1973) developed an iterative procedure to estimate the
parameters ¢,(0), a,(1), ---, 0,(q) of a pure moving average process which is
essentially based on scoring (as pointed out by J. N. K. Rao). The covariance
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matrix of a segment of length T of the process was considered as a special case
of a covariance matrix with the linear structure Z* = Y.¢_,0,(h)G,, where G,
G, - -+, G, are known linearly independent symmetric matrices. The Newton-
Raphson method in general terms was developed in Anderson (1969), (1970); in
these papers methods were also developed for models in which the inverse of the
covariance matrix was such a linear combination. In this paper the models are
generalized to include covariance matrices of more general form, B-*Z*B'~* and
B-'AA’B'-!, where A = Y¢_;a,J, and B = 37, 5,K,. There may be N obser-
vations on a random vector y with such covariance matrices. The method of
scoring is developed in general terms and then specialized to the modified
autoregressive moving average models. The corresponding Newton-Raphson
methods can be written down similarly from the matrices of second derivatives.
The pure autoregressive model (Section 2) and the pure moving average model
(Section 3) are treated in these terms before the general models.

The multivariate models are treated in general terms in order that the methods
be available for other applications. The model in which the covariance matrix
is a linear combination of known symmetric matrices has been useful in the
analysis of variance and genetics; some models in econometrics and psychometrics
can be formulated in the terms of this paper. Estimation of the parameters of
the autoregressive moving average process in the frequency domain can also be
obtained from these general results.

2. Estimation of coefficients of linear transformations to approximate auto-
regressive processes.

~ 2.1. General linear transformations. Suppose y is a T-component random
vector defined by :

(2.1) 2 BKiy=v,
where K,, K, ---, K, are p + 1 known linearly independent T X T matrices,
Bo=1and B, ---, B, are p parameters such that };7_, 8,K, is nonsingular; we

assume that there is at least one such set. Suppose v is a T-component random
vector with mean vector 0 and covariance matrix ¢’I. Then

(2.2) Yy = (Xl 8KV

has mean vector 0 and covariance matrix

(2.3) Zyy = o (Xl B K) T (Dh0 B KY) 7 = 0 (X1.1-0 B B KK

Let y,, ---, yy be N independent observations on y, and let L denote the
likelihood function when v has a normal distribution. Then

% log L = —Tlog2r — Tloga® 4 log |37, B, K|
1

(2.4) T Not we1 (h=0 B KiYo) (X710 B K YV0)
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= —Tlog2r — Tloga® + 2log |57, B K|
1
) tr 332 120 B B KK, C,
where

1
(2'5) C = 7\; Ziv=1 Yaya’ )

and tr denotes the trace of the matrix that follows. [The proof of Lemma 3.2.2
of Anderson (1958) shows that (2.4) - —co for any parameter — co and for
o® — 0; therefore, the maximum occurs at a set of values of 8, -- -, 8,, and ¢*
for which the partial derivatives are set equal to 0.] To find partial derivatives
in this paper we use the results

(2.6) IAl _ |Ajtr a1 2 A,
ol a0
@.7) I a1 = —Aa1 2 aa-,
a0 a0
[See Dwyer (1967) or Appendix A of Anderson (1958), for example.] Then
a 2 2 ,
a—ﬁz N log L = 2 tr (37, B Ki) 7K, — No? D=1 ¥d Li-0 B KKy,
2
(2.8) = 2tr (D50 B K) 7K, — P tr 315-0 B KK, C,
I=1,.-.-,p,
a 2 T |1 ,
. (2-9) W—ﬁlogL = +;:tr 2hi=0 BB KK, C.

The maximum likelihood estimates may be defined by setting the derivatives
equal to 0. The derivative equations are

o 1 . ,
(2.10) tr (Xh-0 BeKe) 7K, = 7 T Bttt KK C, I=1,...,p,
- 1 5 3 ,
(2.11) 6" = T 2= BB tr KK, C.
We can develop these equations in an alternative way by letting
(2.12) K.y, = v.*, k=0,1,....,p, a=1,...,N.
Then
2

~ log L = —Tlog2r — Tloga® 4 log|>:7, B, K,
@.13) A B (B Bu¥ ) (Tt Y )

— _Tlog2r — Tloga® + 2log |7 B,K,| — ;lgﬂ'Mﬂ,
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where 8 = (B, B, - - -, B,) and

ya(o)lya(o) ya(o)’ya(l) . ya(O)Iya(y)
1 ya(l)’ya(o) ya(l)’ya(l) e ya(l)’ya(p)
(2.14) M=L s [T : .
N

Iy (0) Iy (1 ’ )
ya(P) ya( ya(P) ya( ) .. ya(P) ya(l’

The partial derivatives of (2/N) log L set equal to 0 can be written in terms of
the elements of M as

2.15) [tr (-0 BeKe) K] = = BM,
(2.16) &= % BMB;

the left-hand side of (2.19) denotes a row vector with the /th component given
explicitly.
If N> 1and &y = g, where g is an arbitrary vector, then the sample mean

(2.17) y= % 28=1Ya

is the maximum likelihood estimate of g, and in the likelihood equations (2.10)
and (2.11), C should be replaced-by

A = oy
(2.18) C=F Tei (Ve = VO — ¥

In some models one wants &y, = u; that is, &y = pe, wheree = (1, 1, .. -,
- 1). Then 2/N times the logarithm of the likelihood function is (2.4) with C
replaced by

1

(2.19) C* = ~ a=1 (Yo — p&) (¥, — pe) .

The derivative of 2/N times the logarithm of the likelihood with respect to p is

a 2

2,
(2.20) '@ N log L = Not & Xhi-o B BKSK DN (v, — [E)

If e is a (right) characteristic vector of K, K, - - -, K, and K/, K/, - .-, K, then

1
2.21 f=_— >V ¢ N
( ) # NT Za—l ya

and in the other derivative equations C is replaced by

1 R .
(2:22) D (v — )y, — fe) .
If & is not a right characteristic vector of K,, K,, ---, K, and K/, K/, --., K’

p?
then usually (2.21) will not be the maximum likelihood estimate of p.
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The elements of the information matrix are N times

2 1
- _aﬁf_aﬂ; 108 L = tr (T 2eo K K (Do BKL) K,

+ ;12. & tr K,K,C

(2.23) = tr (X7-0 B Ki) Ky X 2-0 B Ki) 'K,
+ tr (X5=0 B K ) KK (X 5= B Ki) s
j,l= 1, Y 2
0? 1 1
(2.24) —& _——— —logL=——_&tr 37, B,K/K,C
08,00 N at =0T
1 ,
= ——‘—7—2’(1‘(Z§"=0‘B,¢K,‘)‘1Kj, j=1--,p,
02 1 T 1 T
(2.25) —%p(a—az);_ﬁlong ~ 20 + }-G—%”tr 210 1-0 B B KK, C = 51"

As N — oo, the normalized maximum likelihood estimates have a limiting normal
distribution with covariance matrix whose inverse has elements given by (2.23),
(2.24), and (2.25).

2.2. Autoregressive processes approximated by linear transformations. The pure

autoregressive process {y,} satisfies (1.1) for &, = ... = a, = 0, that is,
(2‘26) Zf=0 Acht—: =,
t=...,—1,0,1,.... Lety = (¥, -+, ¥z). Then the distribution of y,, - - -,

. yr is approximated by the distribution of y defined by (2.1) when K, = L¢, g =

0,1, ..., p, where L is
00

2.27 L= ( ) ;
(2:27) -
in (2.27) I'is of order T — 1. Then L? is of the same form, but I is of order
T — 2 and the upper right-hand 0 is replaced by a 2 X 2 matrix 0. In general L¢
has all 0’s except for 1’s g units below the main diagonal. Note that L/L* = Lo+*,
9 h=0,1,...,and Lt =0, g=T,T 4 1, ..-. In this case >2_, 3. K, =
>12_o B L* has i, jth component equal to 8,_; for0 < i — j < pand 0 otherwise
and is thus a lower triangular matrix with determinant 1. The components of
(2.1) are

(2.28) Sl By Vi = Vs t=1,...,p,

and (2.26) fort = p 4 1, ..., T. The equation (2.28) is such that the sequence
Yus -+ +» yr does not start out as a stationary process. An alternative way of con-
sidering the equation (2.28) is that (2.26) holds withy, =y_, = ... =y_,_,, =0.

In this model we are often interested in N = 1, y, = y, and C = yy’. Then

(229) y*=Ky=L'y=0---0p -y, k=0,1,...,T—1,
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where there are k 0’s,and L*)y = 0, k = T, T + 1, . ... Since |}2_, 5, L* =1,
its derivatives vanish. The derivative equations (2.10) can be written in this
case as

(2.30) A ‘gkyumy(z) = —yOryd I=1,.. P -
In components these are
(2.31) Tibe i1 Veer Vit = — Db Ve Vet l=1,...,p,
where yy=y_, = --- =y_,_;, = 0. These are the usual maximum likelihood
estimates of 8, --., 8, for initial values yy=y_, = -.. =y_,_;, =0 or the
“least squares estimates” since they minimize
(2.32) 2= (Dk=0 Buyis) -
[See Anderson (1971a), Sections 2.2 and 5.4, for example.]

Let
(2.33) c_h=ch=_172f=‘1"yiyi+h, h=01,...,T—1,

The right-hand side of (2.30) is —T¢,. Thesum Y7, y,_, y,_, differs from Tc,_,
by omission of

(2.34) 2 b 41 Ve Vst -

These terms can be added to the coefficients so as to make the equations agree
with

(2.35) Tiabicia = —c, I=1,.--,p.

[See Anderson (1971a), Section 5.6, for example.] Then the estimates derived
from (2.35) are the coefficients of a stationary process. [See Anderson (1971c),
for example.]

In this case of K, = L* the elements of the information matrix are N times

2 1 .
(2:36)  ~ T TI0EL =t (S ALY LIS ALY
YL
j’I: 19 s P
a? 1

2.37 P Lligr—o, =1, p,
@37 38,008 N & J P

and (2.25).

It is of interest to compare the covariance matrix of y defined by (2.1) with
that of T terms from the stationary process defined by (2.26). For p = 1 and
B, = B the covariances of the stationary process are
(2.38) 0, = 0a(t — 5) = a*(=p)* (1 — B, t,s=1,...,T,
and for y defined by (2.1) with K, = L* the covariances are

(2.39) Gy = [0(—B))(1 — B[ — FPmmem], f,s=1,...,T.
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For a stationary process || < 1, and hence (2.39) is close to (2.38) if ¢ and s
are large.

3. Estimation of coefficients of linear transformations to approximate mov-
ing average processes.

3.1. General linear transformations. Another model is defined by
(3.1) Y= 2l 0dV,

where J;, J;, -+, J, are ¢ + 1 known linearly independent 7 x T matrices,
a, =1, and a,, - .-, a, are ¢ parameters such that 37, a,J, is nonsingular; we
assume that there is at least one such set. Suppose v is a random vector with
mean vector 0 and covariance matrix ¢?I. Then the mean vector of y is £y = 0
and the covariance matrix is

(3.2) Zyy =0 Riicoaa 03 = (Do d) (Do) .

If L denotes the likelihood function when v has a normal distribution, then
(3.3) %logL = —Tlog2r — Tloga® — log |31, a,J,/
1 e -
) tr (T ad) (Dl J)7'C,
where C is defined by (2.5). The partial derivatives of (2/N) log L are

K % log L = —2tr (Siee @ d)™;

oa;
(3.4) R (D @0 9) (Dt @03 (o a0 JY)
j= 1, ..., q,
(3.5) % % log L= — 1+ % tr (S 8mo audy) (S 2,d,)-C..

The likelihood equations can be written [with the second term on the right-hand
side of (3.4) transposed]

. _ 1 P o T P
(3.6) tr (Xio @ dp)™J; = £ tr (Do &, d,) " (X @, 3) ' C( i, &, d)),

. J = 1, ceey g,
(3.7) ¢ = T tr (Xi-o @) (Xm0 @d,)'C.

The second partial derivatives of (1/N)log L are evaluated by use of (2.7).
Their expected values constitute the information matrix whose elements are N

times
0’ 1
a5, OB L = T (Bt @) I (Tia @),

(3.8 + tr (Dioo e di) I/ (X d)),
i,j: 1, g,

—-&
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Y 1 N .

(3-9) —JWFIOgL=}_2tri’(Z;1=oa,J,)1, j=1,--q,
(3.10) e ® Llyogr - T .
)} N 250

As N — co, the normalized maximum likelihood estimates have a limiting normal
distribution with covariance matrix whose inverse has elements given by (3.8),
(3.9) and (3.10).

The likelihood equations (3.6) and (3.7) cannot in general be solved explicitly
since they are nonlinear in «,, ---, @,. However, iterative procedures can be
based on expanding the partial derivatives in Taylor’s series and using the linear
terms. In general if L(x|@) is the likelihood function of a vector parameter &
and x is a vector observation, the expansion is
olog L(x|0) _ dlog L(x|8)

26 - 26
0*log L(x|8)
00 06’
where 9/06 and 6*/06 96" denote a vector and matrix of derivatives, respectively.
A Newton-Raphson procedure is started by taking #* as an initial estimate and
solving for @ the equation obtained by setting (3.11) equal to 0 and replacing
R(x |8, 6*) by 0; the solution is an improved estimate. The next step is to set 8*
equal to the improved estimate and proceed as before. The method of scoring

is based on

(3.12)

(3.11)

6=6*

+ (@ — 6*) + R(x| 8, 6%),

g 0*log L(X, 0) 6 — 6%) = 0 log L(x, 6) .
. 06 060 o=0* a0 o=6*
For both methods under certain conditions if 8* is a consistent estimate of the
“true” value, the solution is a consistent, asymptotically efficient, and asymptot-
ically normal estimate of . In suitable circumstances the sequence of iterates
will converge to the maximum likelihood estimate.
In the present case let &,, - -, @, G, be a set of initial estimates, and let
&®, ..., a,®, * be the solution to the ith set of equations. It will be con-
venient to let

(3.13) A = 0, a,5 V], .
Then the ith iteration involves the equations
Do [tr Ay, AT, 4 tr A, 3 7A@ — a,60)

(3.14) + ]
i—-1

A
-1 =2
tr A7 J, 6,

A-1 @ (i-1) 2 1 A
‘ - . o i T .
_ 1 tr A7 J(&; a; vy —— 0 = — :
a2_, 268, 248,

(3.15)

.80
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If > =1 and «, is a free parameter (not specified), the likelihood satisfies
(3.3) with ¢® = 1, the first partial derivatives are (3.4) for j =0, 1, -.-, ¢, the
elements of the information matrix are N times (3.8) fori,j =0,1, ..., 4, and
the equations for scoring are (3.14) for ¢ =0, 1, - .-, g.

3.2. Moving average processes approximated by linear transformations. The

moving average process {y,} is (1.1) for g, = ... = g, = 0, that is,
(3.16) Ve = D0 ¥V js
t=...,—1,0,1, .... Then the distribution of y,, - - -, y, is approximated by

the distribution of y defined by (3.1) when J, =L¢ ¢ =0,1, ---,9. The
components of (3.1) are

(3.17) Yo = Dihav,_;, t=1,-..,q,
and (3.16) for t = ¢ 4+ 1, ---, T. The moving averages for the first g obser-

vations, represented by (3.17), are truncated.
The covariance matrix of T successive observations on the moving average

process defined by (3.16) for t = --., —1,0, 1, - - - is

(3‘18) ZZ=0 ogGg ’

where G, = I,

(3’19) G”=L”—|-L’g, g=1,"',q,
(320) 0'”=0'2 Z?;(’)’aia“,, g=0,1’ -y q.

[This is of the form considered in Anderson (1969), (1970), (1971b), and
(1973).] The covariance matrix of y,, - - -, y, defined by (3.17) and (3.16) for
. t=¢+ 1, ..., T differs from (3.18) only in the upper left-hand ¢ X ¢ subma-
trix. If T is large relative to ¢ the difference between the two models will not
be important; the model (3.1) with J; = L7 can be considered as an approxi-
mation to the moving average process.

When J; = L/, tr (3 /o, d))d; =0,j=1, ..., 4. The likelihood equations
(3.6) and (3.7) for @,, - - -, @, and §* (with @, = 1) are

(3.21) tr (L&, L)LY X, a,L)'C(Xi,aqL)*'=0, g=1,.-.-,q,
(3.22) ¢ = —;— tr (Zi-o & L") (Xl a,L)7C.

The method of scoring leads to

(3.23) 1_, tr Ap, LA (@,0 — a,0-v) = L

~2

i—1

A-1 CAT-17 tg Ar-1
tr A7, CAIZIL"9AIZL,

g=1,""qa

(3.24) 32 = LwAmAnc,

T
where
(3.25) A= N0, &0 VL,
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The set of linear equations (3.23) is solved for &, — &%V, ..., & ® — &, %",
If N=1andy, =y, then C = yy. The equations (3.23) and (3.24) are

(3.26)  ¥o_tr ArLLo(AzL Liy(a,® — a,0-v) = 6;_1 (AL yyLrArL (AT y)
g=1,--+,9,

(3.27) 82 = % (A= yYAsLy.

The calculation of z = A;_‘ly can be done by solving

(3.28) S & VLiz =y .

The component equations are z;, = y;,

(3.29) z 4 Ditaivz, =y, t=2,--,9,

(3.30) z,+ N, e Yz, =y, t=gq+ 1,

These can be solved successively for z,, - - -, z,. Each component z, involves at

most ¢ multiplications and the entire solutlon less than ¢7 multiplications.

The first column of A; can be obtained by solving (3.28) with y replaced by
the first column of I. Thus z; = 1 and the successive calculations are z, =
—nta iz, t=2,--4,¢, 2, = — L, &z, t=9+1,.--,T. Be-
cause the (j + 1)th column of I is L/ times the first column of I, the (j + 1)th
column of A“l is simply L times the first column; that is, it is the first column
displaced by ] posltlons, the rth component of Lz is 0, t = 1, - - -, j, and is z,_;,
t=j+ 1, ..-,T. FurtherL’z=0forj=T,T + 1, ---. The calculation of
. A-l1 mvolves less than 7T, multiplications. Note that Al LL7is A;1, with each
row displaced downwards by j rows.

If we let the elements of the first column of A7 be 8,40, 6,¢-Y, ..., d4¢~P,
we can write
(3.31) A;_‘l = s gt(i—l)Lt .
Then

(3.32)  tr Ap LoL/iALTE = 3771 5,600 -0 tr LEHL! it
= DT [T — t — max (g, /)16 ;0.7

because trL*L'" =0, |+ m, trL’L"* =T —h, h=0,1,...,T — 1, and
trLAL"* =0, h=T,T + 1,

Note that 5;"_-1” =1z,t=1,2, ..., satisfy the homogeneous linear difference
equation (3.30) with y, replaced by 0. If the roots of the associated polynomial
equation

(3.33) T80 85030k = 0

are x, - - -, x,, then 8,0-b = T kxt t=0,1, ..., for suitable k, -- -, k,.
If the roots of (3.33) are different and of absolute value less than 1 (which can
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be made the case with arbitrarily high probabilily if &, -, - .., @,%-" are con-
sistent estimates), 6,~" damps geometrically. Then (3.32) is approximately T
times

w  Si- S (i— a —J
(3.34) o Bty by = Tand ),
where o,;(9 — j) is the g, jth covariance of the autoregressive process corre-
sponding to the coefficients 1, &%, ..., &% and ¢*. [See Section 5.2 of
Anderson (1971a).] The equations (3.26) are approximatel

q PP y

(3.35) Dia104r(9 — @ — a4 ) =d,,
where d, is the right-hand side of (3.26) divided by 7. The solution to (3.35) is
(3.36) &, — &40 = N0 f,.d,, j=1,---,q,

where (f;,) = [04:(9 — j)]*. The elements f;, are the coefficients of the quad-
ratic form of w,, - - -, w, having a normal distribution with covariance g (g9 — ).

4. Estimation of coefficients of linear transformations when a covariance
matrix has linear structure: autoregressive processes with moving average re-
siduals. Let

4.1) By = u,
where
(4'2) B = Z£=o .BkKk s

K, Ky, -+, K, are p + 1 known linearly independent T X T matrices, 8, = 1,
and B,, ---, 8, are p parameters such that 33?_; 8, K, is nonsingular; we assume
there is at least one such set. Suppose u is a random vector with mean vector
Zu = 0 and covariance matrix

(4.3) ¥ = 319=09,G,

where G,, G,, - - -, G, are ¢ 4+ 1 known linearly independent symmetric T x T
matrices and o, 6,, - - -, 0, are g 4 1 parameters such that };¢_ ¢ G, is positive
definite; we assume there is at least one such set. Then y = B-'u has mean
vector £y = 0 and covariance matrix

4.4 Lyy = BT1Z*B'!.
If u is normally distributed, then 2/N times the logarithm of the likelihood is

4.5) % log L = —T log 27 + log [B|* — log |Z*| — tr B/(Z*)~'BC .

The partial derivatives are

a 2

4.6) — Zlog L = —tr (Z*)7'G, + tr B'(Z*)7'G(Z*)"'BC,
do, N

f=0,1,...,qg,

0 2 1oL =2tr B-K, — 2tr B(Z)-K,C, I=1,-.-,p.

4.7) N
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In case K,=LFand y® = L*y,, k =0,1, ..., p, and N = 1, the derivative
equations are
4.8)  tr(X1.08,G,)7'G; = L2100 BBiY ¥ (5120 ,G,) "G AT 1, 4,G,) 7y,
f=0’ 1’ g,
(4.9) Z£=1 y(k)’(Z q=0 &ﬂ G”)—ly(l)‘ék —_ _y(O)’(Zg=o 6'!; Gg)—ly(l) s
I ey 1, oo ,P .

The equations are nonlinear in G, é,, - - -, ,, but (4.9) is linear in Bl, <oy By
The second partial derivatives of (2/N) log L are

¢ 2
Zlog L = tr (Z)'G A(Z“)'G
030, OB L = 1 (BTG,
(4.10) — 2tr B'(Z%) "G (Z%)'G,(Z*)'BC ,
f’h':o’ 1’ e g,
@.11) P2 1og L = 2tr B(Z%-'G,(Z%)-K,C ,
ds,08, N
f:O’ l, e q, | = 1, e p.
it 2
4.12 —logL = —-2trBK,B-K, — 2tr K,(Z*)-K,C,
( ) 38,98, N g k 1 r K,/(2*)7'K,
k,i=1,---,p.
The information matrix has elements that are N times
¢ 1
4.13 —-& — log L = Ltr (29)"'G (Z9)'G, , ,h=0,1,...,¢q,
(4.13) 3o 50, N \CBL = A E)IC,EG, S g
(@4.18) % lioglL— —trG,E" KB,
06,08, N
f=0, 1’ "',q9 = 1’ "',P9
@15)  —#_ 9%  Liog L — tr B-K,B-K, + tr BE*B'-K,/(Z%)K, ,

0B, 9B, N

k,i=1,...,p.

Let B, , be (4.2) with B, replaced by 8,4V, and let }5;‘_1 be (4.3) with o, re-

placed by é{~». The method of scoring leads to the following iterative proce-
dure:

2ii=otr (2?—1)_1(;!(27—1)_IGhah(i)
(4.16) — 2 3, tr G (Er ) K, B, (B, — §,6-v)
= wB Er)6,E)BoC,  f

’ 1’ M) q ’
—2 %o, tr G(8r ) K, Bi1,8, 4 2 mr, [tr B K, BRLK,
4.17) + tr B B BIDK/(BEL) K (B — B6Y)
= —2tr CB_, (&))" K, , j=1,---,p.
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IfK,=L%j=0,1,...,p, N=1,andy, =y, the scoring equations are
Do tr B1)7G(21,)7G, 3,
(4.18) — 2 57 tr GEL)LBLB — B)
= yBEHEL) GG By, f=0,1,-.1,9.
—2 Ti_otr G,(Bv_ ) LB, 6,
(4.19) +2 3, tr B B Brotia @ )Lk B — f0Y)
= —2y'B; (&) LYy, k=1,p.

When Z* represents the covariance matrix of a moving average process, G,=I,
G, is given by (3.19), g =1, - -+, ¢, and g, is given by (3.20), g =0, 1, - - -, g.
Since L¢L™ is L*~*, h < g, except for at most & 1’s being replaced by 0’s, ﬁ;‘_l
and B/-1L" almost commute and the coefficient of (B, — B,%) in (4.19) is
approximately

(4.20) 2 tr By, L\L"'B!-1

The matrix ﬁi_l has the same form as Ai_l; hence, the computation of expres-
sions involving B, can be carried out as suggested in Section 3 for A;Y. The
computation of expressions involving £:1, was considered in Anderson (1971b),
(1973). '

Initial (consistent) estimates of the parameters can be obtained by equating
the first p + ¢ + 1 theoretical and observed covariances. From initial estimates
G4, 3,”, .-, 3,” (4.9) can be solved for improved initial estimates Bl“”, cee,
8,. Then (4.18) and (4.19) can be solved for 4,*, 4,*, . .-, ¢, [the right-hand
side of (4.19) being 0], and these can be used in (4.9) again.

The second derivatives, (4.10), (4.11), and (4.12), can be used to set up a
Newton-Raphson method.

5. Estimation of coefficients of linear transformations; autoregressive pro-
cesses with moving average residuals. Here we combine the models of Sections
2 and 3. Let

(5.1 Lo BKy = Ziscandiy,

where K, K,, ---, K, are p + 1 known linearly independent T X T matrices,
Jo Jy - -+, J, are ¢ + 1 known linearly independent T X T matrices, 8, = a, = 1,
Bis -5 By @y, -+, a, are p + g parameters such that 37_, 8K, and >2_,a,J,
are nonsingular; we assume there is at least one such set. Suppose v is a random
vector with mean vector 0 and covariance matrix I. Then y = B-'Av has mean
vector 0 and covariance matrix

(5.2) €yy' = o*B-'AA'B'1,

where A = > ¢_,a,J.and B = > 7 5K,
Ify,, ---, yy are N observations on y with a normal distribution, 2/N times
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the logarithm of the likelihood function L is
(5.3) % log L = —Tlog2r — T loga® + log |B* — log |AJ?
~Luma-a-me.
o?

The partial derivatives are

(5.4) 9 2105 L = —2tr A", + ——tr A-'BCB'A’-1 /AL,
aﬂ
g = 19 e g,
(3-3) azh 2 jog L = 2tr B-K, — _z_trB’A’ -IA-K,C, h=1,...,p,
o 2 T |1
5.6 A | L = — ~ tr A-! ’A?—1
(5.6) 507 v 108 5+t ATBCBA,

In case K, =L% k=0,1,...,p, J,=Ls, g=0,1,...,¢9, N=1, and
¥, = ¥, the derivative equations are

(5.7) k=0 Bkaél YLD, a; L) (X4, a;L'9) Loty , g=1,.--,¢q,

(5.8)  TiL YL (X1, a,L"%) (X1, &;Li)'Ltyp,
= —¥(Xi-0 & L)X &;L)7Ly,  h=1,..-,p,

A 1 5 A s i R
(5.9 ¢ = T D hi=0 BB YLD 4o &, L) (X 4o @;L9) 'Ly

The second partial derivatives of (2/N) log L are

2
;2 ~logL=2tr A, AN, — 3 tr A=1J, A-'BCB'A’~1J /A’
oa, da; N
(5.10) - 32; tr A=BCB/A’-1J /A’-1] A/~
— 2 tr ABCB/A-1J,/A- 1 A1,
0.2
gaf= 1, RN
2 1ogL = _2__tr A-1K, CB'A’-1J /A"
oa, 0B, N _
(5.11) + % tr A-1J, A-IK, CB'A’"
g = 1’ RN A h= la ces P
a’ 2 - — 2 PAT—1A -1
(5.12) logL-——ZtrB*KB‘K —__trK A''ACK, C,
9B, 3B; N
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) @ 2 2 - r—1Y P AS—
(5.13) s 0B L= — St ASBCBATI AT, g =1, g,
g

& 2 2 :
5.14 " 2 jogL = 2 tr AK,CBAY, h=1,...,p,
(5-14) 3B 00t N BE T AT p
(5.15) 9 2 10g =T _ 2t ABCBA-.

d(e*? N gt a®

" The elements of the information matrix are N times

@& 1

(616~ T logL = AT, AT, 4 AT I/A,
g’fz 1, e q,
(5.17) _gaa,azaﬁ,, _]1\_[ log L = —tr J,A-K, B~ — tr J JA"TA-'K, B-'A ,
g=1,-0,q, h=1,...,p,
(5.18) —& a_ﬁ,,azTﬁ,. % log L = tr B-KB-K, + tr K/AA“K, B ANB,
hj=1,--,p,
(5.19) —Ef%%logL:%trJ,’A’-‘, g=1,--1,q,
(5.20) e P ligr—_LlukB, h=1,....p,
3B, 90" N pe
(5.21) _ga_(f’(%;%long_z%.

The method of scoring can be developed from these results.

When K, =L* k=0,1,...,p,andJ, = L%, ¢g=0,1, ..., q, the first term
in each of (5.16), (5.17), and (5.18) is 0, and (5.19) and (5.20) are 0. Moreover,
because L*, g =0, 1,---, A, B, A~' and B~ are polynomials in L they commute.
Then (5.17) is —tr B-'L*L’?A’-* and (5.18) is B-'L*L’’B’-!, When N = 1 and
¥, =Y, the scoring equations are

%200 tr A LILAL (@, — 6,0)
(5.22) — P tr LmA;:ith;i—jl(ﬁhm — B,5v)
1

22
i1

yB_ AZAz Ly, g=1,...,9q,
— 2o, tr LB L7AZY @, — @,Y)
(5:23) + D tr BIELOLAB(BY — )
= _.721_ Y'ﬁ:_lA::{AZ_IIL’y, ]= 1’ s Py

i—1

and (5.9) for &, = &,0~", f, = B,¢°", and & = 4.
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The computations involving Ai‘_’l and B;?, have been discussed earlier. Initial
estimates of a;, - - -, @, and ¢° can be obtained by “factoring” the initial estimate
of f,(4). Then (5.8) can be used to obtain (improved) initial estimates of g, - - -,
B,- Then (5.22) and (5.23) are solved for &,* — &,°, ..., &,* — &,, and
these can be used in (5.8) again.

The second derivatives, (5.10) to (5.15), can be used to develop a Newton-
Raphson method.

6. Asymptotic theory. The exact distributions of the maximum likelihood
estimates developed in this paper cannot be obtained in closed form in general.
However, asymptotic distributions can be found. If N — c we have the case
of repeated observations on the random vector y; in the case of time series,
however, N may be 1 and 7' — co. In either case when consistent estimates of
the parameters are used as initial estimates (with either the coefficients or vari-
ance of order 1/T* in probability), the estimates obtained in the first step of the
iteration procedure are consistent, asymptotically normal, and asymptotically
efficient (when normalized by Nt or T?, as the case may be).

In the model of Section 2.1 no iteration is involved and the asymptotic
properties are the usual ones as the number of observations N increases. The
model of Section 2.2 is the autoregressive model with the first p observations
treated as fixed (y_,,; = - -+ = y, = 0); the asymptotic theory as T — oo is well
known. [See Anderson (1971a), Section 5.5, for example.]

For each of the models in the other sections an iterative procedure was
proposed. If the initial estimates are consistent, the matrix of coefficients of
the linear equations is a consistent estimate of the information matrix of one
~ observation. The asymptotic distribution of the right-hand sides is normal with
covariance matrix equal to this matrix. It then follows that the estimates have
the stated properties. We shall carry out the details of the proof only for the
model of Section 3.2, which shows the pattern.

Lety = (y,, -+, yp) be defined by

6.1) y = i, Lfv = Av.

We shall let T — co. We assume that the zeros of (1.10) are less than 1 in
absolute value. For i = 1 (3.26) and (3.27) are

62) Rt AcLLiAam = L yAroRoLAey — i ALAs,
Oy
. g = 1, s g
(6.3) 37 = .lf vy A/ A,y

We shall show that

(6.4) plim,_.. % tr A -ILoL A,/ 1 = lim,_., % tr ASLIL/AT1 |
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The right-hand side is

(6.5) 23720 0419-40; -

The left-hand side is the probability limit of

(6.6) T-i-max(,9) |:1 i + max (g, ])J 5(0) 5 o
= T

With arbitrarily high probability for T sufficiently large &,”, - - -, &, are such
that the roots of the polynomial equation with these coefficients are less than 1
in absolute value, in fact, are less than p < 1 for some p [greater than the largest
zero of (1.10)]. Then (6.6) converges in probability to (6.5).

We can write (6.2) as

Z‘:-:l% tr A,"ILILYA T, — a;)
1

(6.7) =

[ Ly A/-1A,-ILoA,ty — tr A, IL7A’A, - 1}

g=1""’q-

We want to show that the right-hand sides have a limiting normal distribution
with means 0 and covariance matrix with elements (6.4).

Consider
T: 5 YA TIA-ILIA- Yy = T*l 5 VA-'Lfv
o o
(6.8) =50, — 1 v/Litoy
1 )
=i { Tig? 2SO0V

For any n the set (1/T%) 317, v, v,,4, - -+, (1/T%) [, v,v,,, has a limiting normal
distribution [Theorem 7.7.6 of Anderson (1971a), for example] with means 0 and
covariances

’—gZzs lvtvt+1v v8+h - —fg Zt lvt vt+]vt+h

T
(6.9) =0", ]=h=1,
=0, j#+h.
Then the set
1 ,
(6.10) L0, ngz“v‘v‘““’ g=1,--.,¢q,

has a limiting normal distribution with means 0 and covariances
1 _ 1 e—lo— i
(6.11) pry 211320 0:0, T & et VeVisiagVeVppjyn = Dirsilo=dl 0:0i419-41

which has the limit as n — oo of (6.5). That the limiting distribution of (6.8) is
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the limit as n — oo of the limiting distribution of (6.10) is justified by Corollary
7.7.1 of T. W. Anderson (1971a), for example. Note that
(6.12) & (DI d o DI 000) S DI 08 S Dy 37

i=n—q+1 Vi Téaz t=1

Now consider the difference of (6.8) and (6.7), which is '

6.13 L [i VA-Loy — Ly A’A/1A,~1LIA, A o+ tr Ao-lLvA'Ao'—l] .
TiLg? a,

We write

(6.14) Ayt = At — ASYA, — A)AL,

Then (6.13) is
% {_1_ v'A-1L%y — - [v'Al(Al—l _ AI—I(AO _ A)IAOI—I)
0
X (A7 — Ao_l(Ao — A)ATHLI(A — ;\o_l(;\o — A)AHAv]
+ tr (A~ — A, YA, — A)AHLIA/(A-! — A'HA, — A)'Ao'—l)}
1

FK%“éw*“”+%ﬂ&~m%H~vv

(6.15) n 51_2 VAR = ALY + L vASLAA(A, — A

— tr ATILY(A, — AYA/ ! — :_2 VI(A, — AYA/ A, YA, — A)
)
X A-Loy — (gl_zv'(A0 — AYA/TIATILIA, YA, — A)Y

- l VA, (A, — A)ATILIA, YA, — A)v
é;

+ L vk — AYA/AA, — AALAA A, — Ay
g, .

1 tr Ay YA, — A)A-TLo(A, — A)’Ao’-l} _

The first term on the right-hand side of (6.15) has probability limit 0 because
(6.8) has a limiting normal distribution and plim,_,, é,> = ¢* > 0. Each of the
third and fourth terms is

©6.16) L l vAILI(A, — A)A-ly
6T

(84,9 — a 200,99, 1 v/ Lo+itithy
k k 1, i= g T*

_1
rx
Let

(6'17) Wir = 2150 9; ‘;j VLMY
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Then
(6.18) EWir < 0* 15200,
We can write

(6.19) ®:002

1,5=0

j %; VLotktitiy = 3= giOWg+k+i,T .
With arbitrarily high probability |6, < p,' for some p, such that 0 < p, <
p, < 1. Then the square of (6.19) is less than

- 5,0\ .. 2% /2
(6.20) i=0<pl ) PISY N W,+k+i,1' .

li
Since the expected value of the second sum (which is nonnegative) is less than
o' 115502 /(1 — p,), (6.20) is bounded in probability. Since plim,_, &, = a,,
(6.16) has probability limit 0. The second term and fifth terms give

L1 yA, — AyA/—A-1Loy — _T%

Gt tr (A, — AYA,/~*A-'Ls
(6.21) = T (00 — )
0

X [ = 0800, Tli (VL™ +iLo+iy — g tr L/++Lo+i)

i,7=0 Vi
+ L osim 595, (0% — 6) tr L/HHLo*s |
Ti t,J=0 "7 Y

The sum of §; times the first parenthesis in the brackets is treated like (6.17);
note that the parenthesis has mean 0 and the right-hand side of (6.18) is a bound
on the expected value of its square. The same argument carries through. If
T¥(¢* — ) is bounded in probability [or T#(&,” — a) is], then the second term
converges to 0 in probability. The other terms in (6.15) are treated similarly.

It follows from these results that the solutions to (6.7), namely T#(&,® —
a,), - --, T¥a,"” — a,), have a limiting normal distribution with means 0 and a
covariance matrix that is the inverse of the information matrix.

The sample covariances c, defined by (2.33) are consistent estimates of a(k),
h=0,1,...,p + q. From these can be obtained consistent estimates of 3,, - - -,

» 0,0), ---,0,(¢9)and of 8, - -+, B,, @;, - -+, @, and ¢? as described in Section

5.8.1 of Anderson (1971a).
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