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DUALS OF BALANCED INCOMPLETE BLOCK DESIGNS
DERIVED FROM AN AFFINE GEOMETRY

By NosorU HAMADA AND FuMikAazU TAMARI

Hiroshima University

It is well known that by identifying the points of an affine geometry
AG (¢, q) with treatments and identifying the p-flats (1 < ¢ < ) of AG (¢, q)
with blocks, a BIB design denoted by AG (¢, q) : pis derived from AG (¢, q)
where ¢ is a prime or a prime power. In this paper, we introduce a new
association scheme called an affine geometrical association scheme and
show that the dual of the BIB design AG (¢, g) : p is an affine geometrical
type PBIB design with m = min {2z + 1, 2(¢ — )} associate classes. It is
also shown that in the case ¢ = 1 and ¢ = 3, the number of the associate
classes of this dual design can be reduced from three to two but it is not
reducible except for the above case. From those results, we can get a new
series of PBIB designs.

1. Introduction and summary. The design D*, which is obtained from a de-
sign D by interchanging treatments and blocks in D, is said to be the dual design
of D. Dualization of known designs sometimes yields new designs and the duals
of BIB designs [12] or PBIB designs [2] have been investigated by several authors
[4,5,6,7,8,9,10]. Shrikhande [9] proved that the duals of asymmetrical BIB
designs with parameters v,b,r,k,A=1o0orv=_3"), b=(G), r, k=r—2,
A = 2 are PBIB designs with two associate classes. But the dual of a BIB design
with 2 = 3 is not always a PBIB design. For example, let us consider a BIB
design with parametersv =8, b =14,r =7, k =4, 2 = 3. It is known [11]
that there are two non-isomorphic designs such a$

. {1248, 2358, 3468, 4578, 5618, 6728, 7138}
' 13567, 4671, 5712, 6123, 7234, 1345, 2456

_ {1234, 1256, 1278, 5678, 3478, 3456, 1357}
* 7 12457, 2458, 1358, 1467, 1468, 2367, 2368

where each of the numbers 1, 2, - - -, 8 represents each of the eight treatments
and each set of four numbers ¢, c,c;¢c, represents a block which contains four
treatments ¢,, ¢,, ¢;and ¢,. The dual of the design D,, which is isomorphic with
the BIB design AG (3, 2): 2, is a group divisible type PBIB design but the dual
of the design D, is not a PBIB design. This shows that in the case 2 = 3, the
dual of a BIB design is not always a PBIB design and it depends not only on
parameters (v, b, r, k, 1), but also on the block structure of the BIB design in
general. Recently, Hamada [4] showed that the dual of the BIB design
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PG (1, q): p, which is derived from a finite projective geometry PG (z, ) by
identifying the points of PG (¢, ¢) with treatments and identifying the p-flats of
PG (t, q) with blocks, is a PBIB design with min {¢ + 1, ¢t — p} associate classes
for any integers ¢ and x such that 1 < ¢ < ¢t — 1. The purpose of this paper is
to introduce a new association scheme called an affine geometrical association
scheme and to show that the dual of the BIB design AG (7, ¢): y is an affine
geometrical type PBIB design with m = min {2x + 1, 2(¢ — p)} associate classes.
Since the number of distinct coincidence numbers 4, ;, in this dual design is
min {g + 1, ¢ — p + 1} (< m), it seems that the number of the associate classes
of this dual design can be reduced to associate classes less than m. But it is shown
that it is not reducible except for the case 4 = 1 and ¢t > 3. From those results,
we can get a new series of PBIB designs.

2. Points and g-flats in PG (7, ¢) and AG (¢, g). With the help of the Galois
field GF (g), where g is a prime or a prime power, we can define a finite projec-
tive geometry PG (¢, ¢) of ¢ dimensions as a set of points satisfying the following
conditions:

(a) A point in PG (¢, q) is represented by (v) where v is a nonzero element of
GF (4.

(b) Two points (v,) and (v,) represent the same point when and only when
there exists a nonzero element ¢ of GF (gq) such that v, = ov,.

(c) A p-flat, V, (0 < ¢ < 1) in PG (¢, g) is defined as a set of points

V= {(av, + ayy; + - -+ + a,v,)}

where a’s run independently over the elements of GF (g), not all zero, and
(%)> (v1)s + - -5 (v,) are linearly independent over the coefficient field GF (g), in
other words, they do not lie on a (¢ — 1)-flat. These x + 1 linearly independent
points (v,), (v,), - - - » (v,) are called the defining points of the p-flat V. For the sake
of convenience, we denote the empty set ¢ by (—1)-flat. Using ¢ + 1 elements
Xgs X;5 - -+, X, of GF (g) not all zero, any point in PG (¢, g) is also represented by
((xo, ESTILR xt))‘

Let U, be the (t+ — 1)-flat composed of all points ((x,, x;, - - -, X,)) in PG (¢, ¢)
such that x, = 0 and let us denote by P(t, q), the set of points in PG (¢, ) not
contained in U, and ZZ(t, v, q), the set of p-flats in PG (¢, ¢) not contained in
U, (i.e., the set of u-flats V in PG (¢, q) such that V' n U, is a (¢« — 1)-flat).

A point in the r-dimensional affine geometry AG (¢, 9) (or EG (t, q)) is repre-
sented by (v) where v is an element of GF (¢°) and each element represents a
unique point. A p-flat (0 < ¢ < ) in AG (¢, ) may be defined as a set of points
{((%15 X3+« 5 X)) (1, Xy Xy, -+ -, X,)) € V'} fOr some p-flat V in (1, p, q). Itis
well known that (i) there exists a one-to-one correspondence between points of
AG (1, q) and points of Py(t, g), and between p-flats of AG (7, g) and p-flats of
Byt 1, q), respectively and (ii) the number of points in AG (t, ¢) is equal to ¢*
and the number of u-flats in AG (¢, 9) is equal to ¢(t, ¢, 9) — é(t — 1, o, )
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where

1) (gt = 1) (g — 1)
@ =D =1 (¢-1
for any integers # and x such that 0 < ¢ < r. For the sake of convenience, we
make a promise that ¢(r, —1,g) = 1 forr = —1 and ¢(¢, pr, g) = 0 for p < —2
or u > t.

3. An affine geometrical association scheme. Let usdenote v = ¢(¢, pt, ) —
é(t — 1, p, q) p-flats in ZZ(t, i, q) by V(@ = 1,2, - - -, v) and let

2.1) 3(t, pr q) = 1

VX = {((x xa -5 X)) 1 (1, %y Xpy + -+ X,)) €V}
fora =1,2,...,v. Among those v p-flats V,* (a = 1,2, ..., ) in AG (¢, g),
we define a relation of association, called an affine geometrical (AG) association
scheme, as follows:

DerinITION 3.1, IfV, nV,isa (¢ — i)-flatand V, n V, n Uyisa (p — i — ¢)-
flat for some integers i and ¢ such that 1 </ <min{y,t — p}and 0 < e < 1,
two p-flats V,* and V,* in AG (¢, g) are said to be (i, ¢)th associates. In the
special case V, n V, = @, two p-flats V,* and V,* in AG (1, g) are said to be
(¢ + 1, O)th associates.

Note that (i) if V', and V, are p-flats in ZZ(¢, p, q), dim (V, n V,) = max {—1,
2p¢ — t} where “dim W = m” means that W is an m-flat and (ii) if V, n V,is an
m-flat (x¢ > m = max {0, 2y — ¢}), dim (V, n V,n U)) = m or m — 1 since U,
isa (t+ — 1)-flat in PG (1, q).

THEOREM 3.1. The association defined above is an association scheme with m =
min {2p + 1, 2(t — p)} associate classes and parameters

Bu) Mgy = g IG (L — i — e )t — p— 1, 4 ¢ — 2, 9)
X (1 = &gt — 1) + ¢},

PP = 2720 Lneu Lico 7™ H00(1 — i — &, 1, q)
X¢i+e—2,p—j—C—n—1,9q)
X¢li+e—2,p—k—§&E—n—1,9)

(3.2) Xopt—p—i—lLind+j4+C+k+&E—r—p—1-2,9)
Xyr+it+te+j+l—p—1,
nt+it+e+k+&—p—1,59)
X (L= (1 = &g — (— DL — )géee=
— (— 1 = gt o (— 1)+ e

for
5)(:520,1, i=1,2,"'are, j:1a23"'3TC’ k-_—l’Z’"'are
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where
ro=min{g 4+ 1,¢ — p}, 7y = min {g, t — p},

u=max{—l,p4+1—i—ece—j—Cp+1—i—c—k—2§¢,
p+1l1—j—0—k—¢},
w=min{g —i —epu—j—8Cp—k—¢E},
3.3) z=min{n+i+e+j+C—p—ln+i+e+k+&—p—1,
n+j+l+k+é—r—p—1},
crimliey=(n+j+C+k4+&—p—-1-1)
X@e+itj+l+k+é—r—p—1-1)
tp—n—i—l+2u—2m—j—C—k—§
and peY e = 0if u > worz < 0and y(w,, w, I; q) is defined by
= (9" — 97)(9"* — q7)
= (@' — 97)

for any positive integers »,, w,, | and y(w,, 0,, 0; g) = 1 for v, v, = 0.

(3'4) X(wv oy, [ q) =

In order to prove Theorem 3.1, we prepare several lemmas. Let U be any
(t — 1)-flat in PG (¢, q) and let ZZ(t, u, q) be the set of p-flats in PG (7, g) not
contained in U and let ¢, p;, 1, and m be any integers satisfying the following
conditions:

(3.5) U ta = 0, —1 = m < min {p,, p.}, M+ ps—m =t
In the following lemmas, we denote by T(V, W), the minimum flat of flats which

contain both V" and W, and by V, and V,, any p,-flat and p,-flat in PG (1, q)
such that ¥, n V, is an m-flat.

LemMMA 3.1. Let V, ., be the (1, + 1)-flat generated by the defining points of V,,
and a point (3) (¢V,) in PG (t,q), i.e., V, ., = T(V,, (9). Then,V, n Vg 18
an (m + 1)-flat or an m-flat according as the point (5) belongs to T(V,, V) or not.

Proor. If (8)e T(V,,V,,), it follows from V, c V, ., c IT(V,,V,,) that
TV Vi) D T(Vypp Viysr) 2 T(V,pp V). Therefore, we have

dim (T(V,,, V) =2 dim (T(V,, V,,, 1)) = dim (T(V,, V) -
Since dim (T(V,, V,)) = dim V, 4 dim V, — dim (V, n V,) for any flats ¥, and V,,
it follows that dim (V, nV,.,) =m+ 1,ie.,V, nV,,, is an (m 4 1)-flat.
If )TV Vi) TV Vi) D T(T(V,p, V)5 (9)).  Therefore, we have
dim (¥, n V,,) = m. This completes the proof.

From Lemma 3.1, we have the following lemma.

LemMa 3.2. Let V, ., = T(V,, (0)) fori = 1, 2 where () is a point in PG (t, )
not contained inV, UV, . Then, V, ,, 0V, (or T(V,, (9)) n T(V,, (9))) is an
(m + 2)-flat or an (m + 1)-flat according as the point (5) belongs to T(V,, V)
or not.
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In the following, let m,, m, and n be integers such that
(3.6) —1<<m <y, —1<<m, <y, —1 < n < min {m, m;, m,} .

LemmMma 3.3. If Wis a p-flat (¢ = m, + m, — n) in PG (¢, q) such that
3.7 dm@@av,nV,)y=n, dm@aV,)=m (i=12),

dim (W n T(V,, V,)) = (m, + my —n) + 1

for some integer 1(= 0) and for V, and V, such that V, 0V, is an m-flat,
dim (T(W, V,) n T(W,V,)) = (m + m, + my — 2n) + 21 s where s =p —
(my + my — n+ ).

Note that / and » in Lemma 3.3 must be integers such that

O !<min{g, —m —my+n,py—m—m, + n,p —m — m, + n},
(3.8) max{—1,m+m — p, m+ my — py, my + my — p}
< n £ min{m, m;, m,} .
Proor. Since dim (T(W,V,)nT(W,V,)) = m 4 m, + m, — 2n in the special

case / = 0 and s = O (i.e., p = m;, + m, — n), we have the required result from
Lemma 3.2.

The following lemma is due to Hamada [4].

LEMMA 3.4. The number of p-flats W such that W0V, =V, forV, and ¥V,
(in V) is equal to

(3.9) (s, My 8, q) = gra=maemG(t — p — 1, py —m — 1, q) .

LeMMA 3.5. Let V,, (i =1,2) be an m-flat in V, such thatV, 0V, =V,
for a given n-flat V, inV, n V., Then, the number of (I + m, 4+ m, — n)-flats W
in the (, + pt, — m)-flat T(V,, V) such that

(3.100 WV, =V,, WaV,=Va, wav,nv, =V,

is equal to g™~y (p, — m — m; + n, y, — m — my + n, l; q) where 1 is an integer
such that 1 < 1 < min{p, — m — my + n, g, — m — m, + n}and y(0,, ©,, 1; q) is
given by (3.4).

PrROOF. Let V, = L(ay, s, -+, ), Vi, = L(y, @y -+, Qs Bigs < -5 Biomy—n) (=
1,2) and W = L(ag, @y« 5 @y Brgs =+ -5 ﬁ1,ml—m Bas -5 ﬁz,mz—n’ ToTo = vt 17)
where L(d,, 0, - - -, d,) denotes a v-flat generated by the defining points (d,),
(0,), +++5(0,). Then, it follows from Lemma 3.1 that the first point (7,) must
be chosenin T'(V,, V) — {T(Vﬂl,' Wo)' u T(V,,» W)}, thesecond in T(V,, V) —
{T(V,y W) U T(V,,, Wy}, the third in T(V,, V,) —{T(V,, W) U T(V,,, W,)}
and so on where Wy = L(atg, @ty 5 @y By + v 0, ﬁl,ml—n’ Bas v s IBZ,’MZ—‘IL) and
Wiin = T(W,, (1440)) for k =0, 1, ..., 1 — 1. Since dim (T(V,, W) n T(V,,,
W) = (m + m; 4+ m, — 2n) + 2k from Lemma 3.3, it follows that the first
point (,) can be chosen in P(es + s — m, 0, 9) — d(py + my — 0, 0, ) — G(p, +
my —n, 0, q) + ¢(m + m, + m, — 2n, 0, g) ways, the second in ¢(y, + p, — m,
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0,9) — (s +my—n+1,0,9) — ¢(pty + my —n+ 1,0, 9) + ¢(m + m, + m;, —
2n + 2,0, g) ways and the third in @¢(g, + y, — m, 0, 9) — ¢(py + my — n 4+ 2,
0,9) — ey +m —n+2,0,9) + ¢(m + m, + my, — 2n 4 4, 0, g) ways and so
on. Therefore, the total number of ways of choosing a set of / linearly independ-
ent points (7,), (75), -+ +» (r;) is equal to g™ VYT, (g™ — g™~ "*7)(g*+™ —
gm~"*+1)}/(q — 1)'. While, each (I + m, 4 m, — n)-flat W satisfying the condi-
tion (3.10) can be generated by any one of [T {¢(! + m, + m, — n, 0, q) —
¢(m, + my — n + r, 0, g)} sets of / independent points (7,), (75), - - -» (7;). Hence,
the number of (I + m;, + m, — n)-flats W satisfying the condition (3.10) is equal

t0 gVl — m — my 4 n, gy — m — m, + n, Lg).

Note that Lemma 3.5 is valid for / = 0 if we define as y(w,, ®,, 0; g) = 1 for
(01, @, g 0

LEMMA 3.6. The number of u-flats W (¢ = m, + m, — n + I) in PG (¢, q) such
that dim(WnV, nV,)=n, dmWnV,)=m (i=1,2) and dim (W n
TV, V) = (my + my — n) + Lis equal to

Ly (e ts oy m, My my, my 1, q)
(3.11) = q°p(m, n, @)p(py, —m — 1, m —n — 1, 9)
X o(py—m—1,my—n—1,q)
X¢(t—pm—pp+m—1,5—1,9)
X x(py —m —my +n, gy —m —my + n,1; q)

where l is an integer satisfying the condition (3.8), s = p — (m; + my, — n + l) and
c=m—n)(l+m +my—2n) + s(pt;, + po+n—m—m, —m, —1).

Proor. From Lemma 3.5, it follows that for any flats V,, , V,,_ and ¥, such
that Vi, TV Vi, CVy, and V, C Vg 0V the number of (I + m, + m, — n)-
flats W, in T(V,, V,,)such that W, n V, =V, (i=1,2)and W, n V', nV, =
v, is equal to g™ ™'y (y, — m — m, + n, p, — m — m, + n,l; g). Since the num-
ber of n-flats ¥, in the m-flat Vynbv, is equal to ¢(m, n, g), it follows from
Lemma 3.4 that the number of (I + m, + m, — n)-flats W, such that dim (W, n
V) =m, dm@nV,)=m, and dim(W,n ¥, nV,)=n is equal to
P(m, n, q)yn(my; m, n, gy, yn(my; m, n, pa, 9)q"""y(ey — m — my 4+ n, p, — m —
m, + n,l; q). Since the number of (s + ! + m, + m, — n)-flats W in PG (¢, q)
such that W n T(V,, V,) = W, is equal to n(s + | + m, + my — n; p1, + py —
m,l + m, + m, — n, t, q) for any flat W, in T(V, Vyz), we have the required
result.

l,
LemMA 3.7. Let V be a u-flat in B¢, i, q). Then, the number of u-flats W in
GB(t, 1, q) such that W n Visan m-flatand W 0 V 0 U is an (m — ¢)-flat is equal to

(3-12) Ny m, 1, 9) = qu=m=10=mg(u — 1, m, g)
X¢(t_la_ l,y—m—Z,q)(qo—l)
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or
G13) N m, 1, q) = glemmem(p—1, m—1, g)p(t—p—1, p—m—1, g)
according as e = 0 or 1 where § =t — 2y + m + 1.

Proor. Since T(V, U) is the r-flat in PG (¢, ), the number of p-flats W in
A, ¢, q) such that dim(WnV)=m and dm(WnVnU)=m—e is
equal to the number of p-flats W* in T(V, U) such that dim (W* n V) = m,
dim(W*nU) = p — 1,dim(W*n¥VnU) =m — canddim (W*nT(V,U)) = p
for the p-flat V and the (r — 1)-flat U. It follows, therefore, from Lemma 3.6
that the number of p-flats W in <Z(¢, p, q) such that dim (W n V) = m and
dm(WnVnU)y=m—cisequaltol',_ (s 4, t — 1, p— 1, myp —1,m—e,
t,q). Hence, we have the required result from (3.11).

LeMMA 3.8. LetV,andV, be any p-flats in <5 (t, p, q) such that dim (V, n V,) =
mand dim (V, n V, n U) = m — e. Then, the number of p-flats W in Z(t, p, q)
such that
(3.14) dim (W n V) =m, and dim(WnV,nU)=m, —e¢
fori =1, 2 is equal to

O o1 m, iy iy 1,9)
= T DDl g7 0g(m — &, )
Xop—m+e—2,m —e —n—1,9)
Xop—m+e—2,m—e¢e—n—1,9q)
(3.15) X¢t —2p+m—1,p+n—m+¢e —m,
e —r—101-—2,9)
Xyp+n—m+e—m+e—1,p+n
—m+4+e—m+e—1,19q)
X AL — &)(1 — &gt — (—1)a(l — e)gr-mtat
— (= 1)2(l — e)gemrant 4 (—lyata(r 4 gnHi-en
for e, e, e, =0, 1 where
w*=max{—1,m—c+m —e —p+1,m—c+m—e¢
—v+1l,m—e+m—e—p+ 1},
w* = min{m — ¢, m — &, m, — &},
(3.16) zx=min{g+n+et+e—m—m—1l,p+n+ec+e
—m—m—lpt+nte4e—m—m—r—1},
c*romiey=n4+p+e+e—m—m—1—1)
XMm+2u+e+e—r—m—m —m—1-—1)
+(m—n—¢e)(l +m +m—2n—c¢ —¢).

Note that if u* > w* or z* < 0, @52,52)(;1; m, my, my, t, q) = 0.
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ProoOF. Let W, be a (¢ — 1)-flat in the (+ — 1)-flat U such that

(3.17) dm(W,nV,)=m, —e¢ (i=1,2), dim (W, nV,nV,)=n,
dim (W, n T(V, V,)) = (my — ¢, + my — e, —n) + k

for some integers nand k such that u* <y <w*and 0 <k < p—1— (m —
¢, + my — ¢, — n)and let W be the p-flat generated by the defining points of W,
and a point (9) in PG (7, g) not contained in U. Then, it follows from Lemma
3.1 that a necessary and sufficient condition for the point () that W is a p-flat
satisfying the condition (3.14) is that (d) is a point (¢ U) in PG (¢, g) satisfying
the condition: (i) (6) ¢ {T(W,, V) U T(W,, V,)}, (ii) (0) € {T(Wy, V) — T(Wy, V)}
or (iii) (8) € {T(W,, V) n T(W,, V,)} according as (¢,, ;) = (0, 0), (1, 0) or (1, 1).
Since T(W,, V,) n U = T(W,, ¥, n U) for any flat W, in U, we have

(3.18)  T(W,, V) 0 T(Wy, V;) n U= T(W,, V, n U) n T(Wy, V, n U).

Since both ¥, n U and ¥, n U are (¢ — 1)-flats, it follows from Lemma 3.3 and
(3.18) that

dim {T(W,, V,) n T(W,, V,)}
(3.19) = (m — e +m—e+m—2n)+2k+s
=pu—1l4+m—n+k
and
dim {T(W,, V}) n T(W,, V;) n U}
(3.20) =(m —e+m—e+m—e—2n)+2k—r)+r+s
=p—1l4m—ec—n+k—r

where s = ¢ — 1 — (m;, — ¢ + m, — &, — n 4 k) and r is a nonnegative integer
such that

(3.21) dm{W, n TV, n U, V,n U} = (k — 1) + (m — &, + my — ¢, — n).

Since U is a (t — 1)-flat, dim {T(W,, V) n T(W,, V,)} — dim {T(W,, V) n T(W,,
V, n U} £ 1. Therefore, we have 0 < r <1 — ¢ (i.e., r = 0 in the case ¢ = 1
and r = O or 1 in the case ¢ = 0) from (3.19) and (3.20). Since dim T(W,, V) =
2p — 1 — (m, —¢;) for i = 1, 2, in the case (s, &,) = (0, 0), the number of points
(0) (¢ U) satisfying the condition (i) is equal to {¢(z,0, g) — #(t — 1,0, 9)} —
[$Qu —m — 1,0, 9) — §(2p — my — 2,0, 9)) — {$(2r — m, — 1,0, ) — (2t —
m,—2,0,}+{¢p(t—14+m—-n+1+r0,9)—d(r—14+m—ec—n+
1,0,q)} = q* — g™t — gi-m~l 4 getlimen—e(getr _ 1)/(g — 1) where [ =
k — r. Similarly, in the case (¢, ¢,) = (1, 0), the number of points (6) (¢ U)
satisfying the condition (ii) is equal to ¢*~™ — grtitm=r=¢(g=tr — 1)/(g — 1) and
in the case (¢;, &,) = (1, 1), the number of points (9) ( ¢ U) satisfying the condition
(iii) is equal to grtitm=r=¢(getm — 1)/(g — 1).

On the other hand, each p-flat W satisfying the condition (3.14) can be gener-
ated by the defining points of the (z — 1)-flat W, and any one point () of ¢~
points in W — W,. Hence, the number of y-flats W such that W n U = W, is
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equal to {(1— &)(1— &g+ — (—1)a(1 — e)gu—mrtat — (—1)a(l — e)gr—"ata~t +
(—l)rtea(e 4 r)g™*+i—c-=} for any (¢ — 1)-flat W, satisfying the conditions (3.17)
and (3.21) because (¢* — 1)/(¢ — 1) = { for { = 0 or 1. Therefore, it is suffi-
cient to obtain the number of (¢ — 1)-flats W, in U satisfying the conditions
(3.17) and (3.21) in order to obtain the number of u-flats W satisfying the con-
dion (3.14).

Let V* =Un V, fori =1,2. Then, the conditions (3.17) and (3.21) can be
also expressed as follows:

dim (W, nVi*)=m, —e, (i=1,2),
(3.22) dim(W,nV*nV, ) =n,

dim (W, 0 T(V,*, Vy¥)) = (my — ¢, + my — &g — n) + (k — 1),

dim (W, 0 T(V,, V) N U) = (m;, — &, + my — ¢, — n) + k

where r is an integer such that 0 < r < 1 — . Note that T(V,*, V,*) C T(V,,
V,) n Uand dim (T(V,, V,) n U) = dim T(V,*, V,*) 4+ (1 — ¢) because dim (7(V,,
V) nU)=2p —m —1and dim T(V,*, V,*) = 2(t — 1) — (m — ¢).

(i) Inthe case ¢ =1, T(V,, V,) n U= T(V,*, V,*) and r = 0. Therefore, it
follows from Lemma 3.4 and Lemma 3.6 that the number of (z — 1)-flats W,
in U satisfying the condition (3.22) is equal to I'; (I 4+ m, — ¢, + my, — &, — 13
p—lLp—1,m—1,m—e,m—e,n2u—m—1,qppr—1;2—m—1,
I+ m —e +m—e¢—n,t—1,q) wherel = k.

(ii) In the case ¢ = 0, dim (T(V,, V,) N U) = dim T(V,*, V,*) + land r =0
or 1. Therefore, it follows from Lemma 3.4 and Lemma 3.6 that the number
of (# — 1)-flats W, in U satisfying the condition (3.22) is equal to I', ,(r + [ +
m—e+m—e—n p—1, p—1,mm—e,m'—e,n2p—m—1,qn(pr—1;
2p—m—1,14+m —e +my—e —n,t—1,q9)forr=0,1wherel =k — r.
Since those results hold for any integers n and [/ such that u* < n < w* and
0 < I < z*, the number of p-flats W satisfying the condition (3.14) is equal to

o i i D+l m— g my— e, —myp— 1, — 1,
m—e, m —e, My —e,n2u—m—1,q)
Xppe—12p—m—1,14+m —¢e +my—¢e,—n,t—1,q)
X {(1 = &)(1 — &gt — (= 1)1 — e)grrara
— (=1l — gt 4 (—1yrra(e + g
Therefore, we have the required result from (3.9) and (3.11).

Proor oF THEOREM 3.1. From Definition 3.1, Lemma 3.7 and Lemma 3.8,
it is easy to see that (i) n, ., = N(u; ¢ — i, 1, q) and p{i%,, ., = ©F (¢; ¢ — i,
u—jopp—kyt,g) fore,(,6=0,1,i=1,2,.--,7,j=1,2,--.,7,and k =
1,2,...,7. where y,=min{y 4+ 1,7 — ¢} and y, = min {g, t — p} and (ii)
Rgo = No(us ¢ — i, ¢,9) > 0and n,;;, = Ny(u; ¢ — i, t, g) > 0 for any integer i
such that 1 < i < min {g, t — p}. Sincen,,,, = No(; —1, ¢, q) = q** Vot —
#—1,p—1,9)(g""* — 1) in the special case i = ¢ + 1 and ¢ = 0, n,,,, isa
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positive integer or zero according as ¢ > 2u or not. Hence, the association de-
fined by Definition 3.1 is an association scheme with m = min {2¢ 4+ 1, 2(t — p)}
associate classes and parameters n, ., and p%9, ., given by (3.1) and (3.2),
respectively. This completes the proof.

4. The dual of the BIB design AG (7, g): p. It is well known [1] that by
identifying the points of AG (¢, g) with the v* treatments and identifying the
p-flats (0 < ¢ < 1) of AG (¢, g) with the b* blocks, a BIB design, denoted by

AG (t, 9): ¢, with parameters

@1)  vr=g, =gt —dt—1 g, k*=g,
rF=¢t—1,p—1,9) and =gt —2,p—2,9)

is obtained from AG (¢, q) where ¢(t, r, g) is given by (2.1).

THEOREM 4.1. The dual of a BIB design AG (t,q): p is an affine geometrical
type PBIB design with m = min {2u 4 1, 2(t — p)} associate classes and parameters

v=¢(tp,q) — ¢t —1pq), b=gq, r=gq",
(4.2) k=¢@t—1,p—1,9), Aapy =9 (i=1,2,---,71),

Aao = Ao =+ r =4
and ng; ., and ps%,, ., given by (3.1) and (3.2), respectively, where y, = min {y 4 1,

t — p} and v, = min {p, t — p}.

Proor. It is obvious that parameters v, b, r and k are given by (4.2). Let
V,* and V,* be any two p-flats in AG (¢, ¢) which are (7, ¢)th associates. Then,
the number, 4 ., of points in AG (¢, g) contained in ¥V,* n V,* is equal to
o —i,0,9) —d(r —i—¢,0,9) =eg** for ¢e=0,1and i=1,2,...,7,.
Therefore, we have the required result from Definition 3.1 and Theorem 3.1.

In the special case 4 = ¢ — 1, we have the

CorOLLARY 4.1. The dual of a BIB design AG (t, q): t — 1 is a (semi-regular)
group divisible type PBIB design with parameters
v=@G"-9l¢g-1), b=g", r=gq",
(4.3) k=("—-1/(g-1), Aoy =477, Ao =0,
nay = (@ —¢H/(g-1), Ny =49 —1, Pidan =9 —1
and Pidan =0.
In the special case # = 1, we have the

COROLLARY 4.2. For any integer t > 3, the dual of a BIB design AG (t, q): 1
is an affine geometrical type PBIB design with three associate classes and parameters
V=47 = Dig =1, b=¢, r=g¢,
4.4) k=@ —-Djg—-1, A=1, =0, A3=0,
m=@*"-Plg-1), m=g"-1,
n= (g —)g" = Dig— 1),
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@'+ —=3¢+9 ,_1 P g
=1 (¢—1 ¢ —9)
I1pisll = 0 G =9 ,
(sym.) (¢ = ‘1)(?;:1‘;2 —q+1
q* 0 @ =g -1
“4.5) sl = (1 —=2) 0 ,
[ (sym.) @ =gt —g9—-1)(g—1)
¢ g G —¢—¢+9lqg—1
il = ’ A
Pii (qzt—x _ 2qt+1 _ th + qt-l + qs + 3q2 _ Zq)
(sym.) = 0

where the numbers 1, 2 and 3 represent (1, 1), (1, 0) and (2, 0), respectively.

In Section 5, it will be shown that the number of the associate classes of this
dual design can be reduced from three to two.

5. Reduction of the number of the associate classes. Since 2, g =234 =":-+=
A0 = 0, it seems that the number of the associate classes of this dual design
can be reduced to associate classes less than m where m = min {2¢ + 1, 2(r — p)}.
In this section, we shall show that in the case # = 1 and ¢ > 3, the number of
the associate classes of this dual design can be reduced from three to two but it
is not reducible except for the above case.

Amongv = ¢(t, 1,9) — ¢(t — 1,0, g) 1-flatsV * (a = 1, 2,- .., v) in AG (¢, q),
we define a relation of association, called a redyced affine geometrical (RAG)
association scheme, as follows:

DEFINITION 5.1. Two 1-flats ¥, * and V,* (@ # f) in AG (¢, q) are said to be
Ist associates or 2nd associates according as V,* n V,* is a 0-flat or a (—1)-flat.

Note that two 1-flats ¥, * and V,* are 1st associates if V',* and V,* are (1, 1)th
associates by Definition 3.1 but two 1-flats ¥, * and V,* are 2nd associates if
V,* and V * are (1, 0)th or (2, O)th associates by Definition 3.1.

THEOREM 5.1. The association defined above is an association scheme with two
associate classes and parameters

G m=@"—-¢)g-1), AH=G"'-D)¢—-¢+9-D1/¢g-1),

(qt+q3_3q2+q) (qt_qz+q_1)
(5.2) ”P:JH = @ - 1) 2t—-1 t+1 t t-1 3 2 ’
(sym.) @' =2¢"+¢'— ¢+ ¢ — ¢+ q)
i (¢—1
“pzan — qz (qt+l - qs)/(q - 1) }
LGym.) (¢ = 29" — g+ ¢+ ¢ =29+ 2)/(g — 1)
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and the dual of the BIB design AG (¢, q): 1 is a RAG tyge PBIB design with two
associate classes and parameters

(5.3) v=9g(t1,q) —dt—1,1,9), b=¢', r=gq,
k=@ —-1/g—1, Ah=1, 4=0

and fi,, pi, (i, j, k = 1,2) given by (5.1) and (5.2), respectively.
Proor. From (4.5) in Corollary 4.2, it is easy to see that

Ph = P Di=aPli = D=2 Pl and
=2 D5ma Pl = Xiaa Liaa Pl -
This implies that in the case ¢ = 1 and ¢ > 3, the AG association scheme with
three associate classes can be reduced to the RAG association scheme with two
associate classes by combining 2nd associate with 3rd associate. Since 2, = 4,,
we have the required results from Corollary 4.2,

REMARK. This result coincides with Shrikhande’s result [9]. Because the dual
of the BIB design AG (7, ¢): 1 with parameter 4 = 1 is a PBIB design with two
associate classes from Shrikhande’s result.

THEOREM 5.2. If p > 2, the number of the associate classes of a AG type PBIB
design, D*(t, pt, q), with m = min {2p2 + 1, 2(¢t — p)} associate classes and parame-
ters v, b, r, k, ;, n 0, Piw.e given by (4.2), (3.1) and (3.2) cannot be reduced
to a number less than m.

PROOF. Since 2, > A, > « -+ > 4,1, We cannot combine (7, 1)th associ-
ate with (j, 1)th associate for any distinct integersiand jsuchthat1 < i, j <7,
where 7, = min {¢, t — p}. Similarly, we cannot combine (i, 1)th associate with
(k, 0)th associate for any integers i and k suchthat 1 < i< r,and 1 <k < 7,
where y, = min {¢ 4+ 1, ¢t — p}, because 4, ,;, # 4,,. Hence, if the number of
the associate classes of the design D*(z, ¢, g) can be reduced, there must exist
at least one pair ((7, 0), (j, 0)) (i # j) such that we can combine (i, 0)th associate
with (j, 0)th associate for some integers i and j. In order to prove Theorem 5.2,
it is, therefore, sufficient to show that we cannot combine (i, 0)th associate with
(j, O)th associate, i.e., there exists at least one integer / such that p{9, ,, +
p{Y, 1, for any integers i and jsuch that 1 < i < j < 7,.

From (3.2) and (3.3), it is easy to see that pii9,,, =0 for [ =2,3, ..., 7,
andi=1,2, ...,/ — 1because # > w. On the other hand, p:3, ,, = ¢¥¢(x —
Lpy—1l—1,9)¢t —p—1—1,—-1,9) >0forl=2,3, ..., r,. Hence, there
exists at least one integer / (I = j) such that p:0), ,, # pi{:), ., for any integers i
andjsuchthat 1 < i<j< . Hpu<tZ2u,ry=7,=1¢— pand if t > 24,
rn = p¢ and 7 = p + 1. It is, therefore, sufficient to show that in the case ¢ >
2p, there exists at least one integer [ (2 < I < y) such that pif), ., # péiL?,
for any integer i such that 1 < i < p. Since pii)), ., = ¢%, piie;, = ¢**'(q* —

1)/(g — 1)and pi&Y,,.,, =O0fori =1,2, ..., # — 1, we have the required result.
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