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STRONG ADMISSIBILITY OF A SET OF CONFIDENCE
INTERVALS FOR THE MEAN OF A
FINITE POPULATION

By V. M. JosHI1
University of Kentucky

In a previous paper the admissibility was proved of a generalized ver-
sion of the confidence sets, commonly used in practice, which are based on
the sample mean and the sample standard deviation. A stronger definition
of admissibility is obtained, if instead of the length of the interval for each
individual observable sample s, only the expected length for all samples
together for each x € Ry, is taken into consideration for defining the per--
missible alternatives to the given set of confidence intervals. This stronger
definition corresponds exactly to the definition of strong admissibility for-
mulated by the author (1969) for confidence procedures for the parameter
6 in a uni- or multivariate population. Using the stronger definition it is
shown that confidence sets centered at the sample mean but having a fixed
length are strongly admissible. The question of the strong admissibility of
the usual confidence intervals with length proportional to the sample devi-
ation remains open.

1. Introduction. In a previous paper (1967), a generalization of the usual
confidence intervals, based on the sample mean and the sample standard devi-
ation for the mean of a finite population, were shown to be admissible, what-
ever be the sampling design. In defining admissibility the alternative sets of
confidence intervals are subject to the restriction that for any observable sample
s and any point x € Ry, the length of the alternative set does not exceed that in
the given set.

In the case of confidence procedures for estimating the parameter ¢ in an
infinite population, two concepts of admissibility, weak and strong, have been
formulated by the author (1969). The weak concept is derived by considering
the Lebesgue measures of the individual confidence sets and the strong concept
by considering instead the expected Lebesgue measure for each @, of all the
confidence sets taken together.

Correspondingly for a finite population, we derive a stronger definition of
admissibility, if instead of the length of the individual confidence interval for
each observable sample s, we take into consideration the expected length for a
given sampling design, of all the confidence intervals for a given point x € R,.
Defining ‘strong admissibility’ in the above sense, we show in the following that
if the sampling design is of fixed sample size, then the set of confidence intervals
centered at the sample mean but having a fixed length, are ‘strongly admissible’.

Such ‘fixed length’ confidence intervals are not often used in practice. However,
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the result is of theoretical interest. Also it may facilitate investigations regard-
ing the ‘strong admissibility’ of the commonly used confidence intervals.

2. Notation and definitions. The argument in this paper follows very closely
that in the previous paper (1967), waich for brevity is referred to in the follow-
ing as M.P. (short for Main Paper). We use the same notation as in the M.P.
Equations in the M.P. are referred to by starred numbers to distinguish them
from equations in this paper. Because of the limited nature of the result, and
also because the argument has been set exhaustively in the M.P., in the following
we shall give the argument only in outline.

In place of Definition 2.2 of the M.P. we definite ‘strong admissibility’ as
follows.

DEFINITION 2.1. The set of confidence intervals [e,(s, x), ey(s, x)] is ‘strongly
admissible’ for the population mean if there exists no other set of confidence
intervals [e//(s, x), &,/(s, x)], such that

(i) Dees P(3)[e) (s, x) — e/(s, )]
< Xaes P(S)ea(s; x) — ey(s; 0] for all xe Ry
and

(ii) Zseéelr,gzl,x P(s) = Zseéel,ez,x P(s) ’
for all x e Ry, the strict inequality holding either in (i) or (ii) for at least one
x e Ry.

Note 2.1. We take this opportunity to insert a sort of ‘corrigendum’ to Defi-
nition 2.2 in the M.P. The strict inequality in clause (ii) of that definition was
required to hold for at least one x € R,. The definition is ‘improved’ if, instead,
we require that either the strict inequality in clause (i) holds for at least one s € S,
and one x € Ry, or that in (ii) holds for at least one x € R,. It is easily verified
that the result in the M.P. holds for the definition so modified.

3. Bayes solution. We now take [e,(s, X), e,(s, X)] to be the set of intervals
given by
) e(s,x) =%, — ¢, es,x) =%, + ¢
where ¢ > 0 is a known constant. The sampling design is of fixed size m, say, i.e.
() n(sy=m  forall seS.

‘

We assume the prior distribution as in the M.P. The Bayes confidence intervals
[by(s, x), by(s, x)] are subject to the restriction on lengths, in (i) of Definition 2.1,
viz.

3) Thaes PO)b(s, ) — by(s, )] < 2e.

By (32)*, the Bayes intervals are (in this case also) centered at %,9/g,. We
next show that they are of fixed lengths 2c. Let the length of the Bayes interval
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for sample s be 2u(s, x). Put
4) K = (N — mmg,[Ng,

where the rig..t-hand side is the constant in the expression for F, in (27)*, after
putting n(s) = m, by (2). Note also that, by (2), g, in (26)* has the same value
for all s. Substituting for F, in (32)* by (27*) and (4), and summing over se S,
we obtain

K\? K
(5) Zse§ P(S)Br,x = Zs€§ P(S) SR,,L(s) LlFl dxs {(E) E(;E:,)x) exp |:—'E' 22} dZ} .

Now for each s e S, substitute for x,, i e 5, taken in some particular order, x,,
Xgy =+ v5 Xp. Let Li*, Fi* and u*(s, x’) be the resulting functions derived from
L,, F, and u(s, x) respectively. Because the prior distributions of x,, i = 1,
2, .., N, are identical, the expressions L,*, F,* are identical for all se S, be-
cause of (2). Let

(6) u*(s, x"y = ¢ 4+ h*(s, x')

where x' = (x/, x;/, - - -, x,,) is a generic point of R,. Since exp[—Kz%2] de-
creases strictly as |Z] increases, we obtain from (5), by transforming the varia-
bles to x,, - - -, x,,, for each s and using (6), that

(7) BeesP@Ben S (5 ) Vo, LrF v {1, oxp (X7 as

+ 2exp (=K 5105 p(9p(s, 21} -
The Bayes intervals satisfy the restriction on expected length, viz.
Diees P(u(s, x) < ¢ forall xeR,.

Hence taking expectations, and then transforming variables for each s to x,, - - -,
X,,, We obtain

$ry L Fr* dx' {3,c5 p(s)u(s, X')} < ¢,
so that by (6),

(8) S oy L' Fr* dx" {3 ,e5 p()R*(s, x")} < 0.

Also in (7), the strict inequality holds unless h*(s, x’) = 0 for all se S. From
(7) and (8), it follows that the inclusion probability is maximized by taking for
all se §, k*(s, x) = 0, which by (6) implies u(s, x) = ¢ for all se S. The Bayes
intervals are thus centered at %,g/g, and are of fixed length 2c. The Bayes im-
provement is now worked out as in the M.P. and is bounded by 1/2z% by (48)*.

Using this upper bound we next show by an argument similar to that in Section
3-IT of the M.P. that the set of confidence intervals in (1) is ‘almost strongly
admissible’, which is a stronger version of the weak admissibility proved in
Section 3-II of the M.P. The main change in the argument is that we cannot
now introduce the set of confidence intervals [e,”(s, x), e,”’(s, x)] defined in (9)*.
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Hence in place of U'(s, x) in (54)*, we put
©)] Us, x) = S, , fodXy_ier -

But we introduce two functions w(s, x) i = 1, 2, by putting

(10) e'(s,x) =%, — ¢ — wys, x),
e)/(s, x) = %, + ¢ + wy(s, x) .

Let

(11) K=N-—-m)y.-m-N71,

Here K, is the constant in the expression for f, in (53)*. Then again since
exp(—K, z*/2) decreases strictly as |z| increases, we have

(12) U'(s, x) < U(s, x) + (f_;)* exp <_ Klzc2

> [wi(s, X) + wy(s, x)] .

In (12) the strict inequality holds unless w,(s, x) = wy(s, x) = 0.
Summing up (12) over all samples s after multiplying both sides by p(s), and
noting that by (i) in Definition 2.1

(13) ZseEP(s)[wl(sa X) + WZ(S, X)] <0,
we obtain that
13y 2ises PU'(8, X) = 255 P(U(s, x)

where the strict inequality holds at any point x, at which wy(s, x) %= 0 or wy(s,
x) # 0. Hence in place of (59)*, we now have

(14) Zioes PS) Sz, Ly dx, [U(s, x) — U'(s, X)] = k.

The argument now proceeds as in Section 3-II of the M.P., leading to the ‘almost
strong admissibility’ of the set of confidence intervals in (1). Corresponding to
Corollary 3.1 in the M.P. we obtain the following. Let E be the subset of R,
consisting of all points x at which at least one of the functions w,(s, x), i = 1, 2,
se S, does not vanish. Then

(15) E is a null set.

4. Almost strong admissibility under restraints. We next prove a result cor-
responding to that in Section 4 of the M.P. The estimates e,'(s, x), &,/(s. x) are
assumed to satisfy (77)*, and in addition the following,

(16) o5 pONe(5, %) — &/(5, )] S 2¢ foraa. (uy_)re Qg
In place of (78)*, we define E%_, by,
(17) X € E}zv_k ) if x € Q‘sz'—k )

and w,(s, x) # O for at least one i, i = 1, 2, for at least one s¢ S.
The slight change in the argument is that we do not introduce the new set of
confidence intervals [e,*(s, x), e,*(s, x)] but work with the original set in (1). The
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values of e/(s, x), i = 1, 2 are defined by for x' € Q%_,, se S,
(18) ei'(s’ X’) = ei'(s’ X) ) i= la 2’ cee

and for s¢ S,, xe R,
e/(s, x) = ey(s, x), i=1,2,....

If the set E%_, in (17) is non-null (¢y_,), we obtain for the confidence intervals
defined by (18), a non-null (p,) set E of R, which contradicts (15). This proves
that the set E%_, in (17) is a null (p,_,) set.

5. Strong admissibility. The proof is completed by an argument similar to
that in Section 5 of the M.P. In place of (104)*, the set E is now defined as in
(15). Suppose the set E is not empty. Then it contains a point a = (a;, a,, - - -,
ay) and there exists an s,¢ S, such that at least one of w(s,, a) i = 1, 2 is non-
vanishing. As in the M.P., without loss of generality, we take s, to consist of
the first m units. Then two alternatives arise, viz. (A,) at least one of the values
wi(Sg, @), Wo(Sy, @) is negative; (B,) w,(sy, @), wy(sy, a) are both nonnegative, so that
one of them is positive.

Suppose (A,) holds. Suppose w,(s,, @) < 0. Then in place of (109)*, we define
the set T%_,, by

(19) 50(1 — L"_> SN < ao(1 — ﬂ) — ¢ — wy(sy a) .
n n

The set of T%_,, is of infinite measure (¢, _,,) and because of (ii) in Definition
2.1, for every x e T%_,, for at least one, s + s,, s€ S, at least one of the func-
tions w,(s, x) is non-vanishing.

If (B,) holds, then because of (i) in Definition 2.1, for every x e P%_,,, at least
one of the functions w(s, x), i = 1,2, se S, s+ s, is non-vanishing. Thus,
under this alternative, we put

a — a
TN-—m - PN—m .

Thus, under either alternative, we obtain a set T%_,, of infinite measure (py_,,).
The rest of the argument proceeds as in the M.P. Note that alternative (A) [page
1201 of M.P.] cannot arise, as all samples are of the same size.

The process can end either with the alternative (A’) or with alternative (B'),
in the M.P., substituting in them, the definition of £, in (15) and a definition
of E,_; corresponding to (17). (A’) thus contradicts (15), and (B’) contradicts
(19). Hence the set E must be empty, thus proving the strong admissibility of
the set of intervals in (1).
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