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INCOMPLETE INFORMATION IN MARKOVIAN
DECISION MODELS

By DETLEF RHENIUS
Universitidt Hamburg

If a set of states is given in a problem of dynamic programming in
which each state can be observed only partially, the given model is generally
transformed into a new model with completely observed states. In this
article a method is introduced with which Markov models of dynamic pro-
gramming can be transformed and which preserves the Markov property.
The method applies to relatively general sets of states.

0. Introduction. Stochastic decision models in which the state space can be
observed only partially (in the sense of Hinderer [5]: models with incomplete
information) have been examined by several authors. Dynkin [3] gives examples
of such decision models, among which the well-known ‘two-armed-bandit”
problem is also listed (Feldman [4]). Further examples can be taken from
learning theory (Karush and Dear [8]) in which in each of the consecutive
trials a learning state z’ € Z’ is present which cannot be observed. On the other
hand, an event z € Z can be observed which is made up of the behaviour of the
learning subject and the reinforcement which it contains (see Iosifescu and
Theodorescu [7]). The experimenter influences learning by the selection of a
learning-method (action) ae€ 4 in each trial and this selection depends on the
previous course of learning; the action is to be selected in such a way that a
reward function is maximized.

Many decision models which are used in practice (e.g. in learning theory)
are Markovian. In these it is desirable to select an optimal action which depends
only on the present state. This is frequently possible in models with complete
information, but not in models with incomplete information since the present
state can be observed only partially. Dynkin [3]and Sawaragi, Yoshikawa [11]
solve the problem by using a set of probability measures instead of that part of
the state space which cannot be observed.

Thus Dynkin gets a model with observed history and he only works with this
model. He does not mention that there are other strategies in the starting model
than in the modified one. Hence one has to show that both models are equiva-
lent with regard to optimality. This will be done in Section 4 of this article.
In addition the reward functions in Dynkin’s paper are more special and his
results concerning Markov plans are confined to e-optimality.

With respect to the points just listed the approach of Sawaragi, Yoshikawa
is similar to that of the present article. However, the authors limit their

Received April 1973; revised December 1973.
AMS 1970 subject classifications. Primary 49C15; Secondary 49A05.
Key words and phrases. Decision model, concealed state space, standard Borel space.

1327

I3

3

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /2

The Annals of Statistics. NIK®IN
WwWw.jstor.org




1328 DETLEF RHENIUS

considerations to stationarity and to more special transition probabilities.
Moreover, in the present article both state spaces and the action space are
assumed to be more general, namely Borel-spaces. In the papers of Dynkin and
Sawaragi, Yoshikawa, respectively, the spaces are assumed to be denumerable.
In the following we mainly use the notation of Hinderer [5].

1. Definitions. In a Markovian decision model (MDM) with incomplete in-
formation there is an observed state space (Z, 27), a concealed state space
(Z’, ') and an action space (4, .%"). Here (Z, %), (Z', ') and (4, .%7) are
measurable spaces.

Attime n let the system be in the state (z,, z,’) € Z X Z’ and let the actiona, € 4
be selected. Which a, can occur at all, is determined by the correspondence

D,(z,)C A.

D, is a function from Z into the family of all subsets of 4. When z, is observed,
D,(z,) is the set of available actions after the observation. (The function D,(z,)
was introduced into the theory by Dynkin.) We make the assumption that

{z,,a,):a, €D, (z,)}
is measurable. In models with incomplete information the functions D, are
independent of the concealed states.
The transition from a state (z,, z,’) at time n to a state (z,,, z,,,) at timen 4 1
while action a, is being carried out is described by means of the transition
probability (abbreviated t.p.)

qn(zm an’ a,; ')
from Z x Z' x A to Z x Z'. Here the point behind the semicolon stands for

a probability measure (abbreviated p.m.) which depends on (z,, z,/, a,).

The p.m.
qo(+) »

defined on (Z x Z', 2°® %), describes the start of this process at time 1.
The state (z,, z,’) and the action a, give the real reward

rn(z'n’ zn” an) M
The MDM with incomplete information is then written in the form
(1) (Zx 2, ZQRZ"), (4, 7), (D,), (4.), (1))

(see Hinderer {5]). A MDM with complete information is a special case of this
in which Z’ consists of only one element.

AssumpTIONS. Additional to those listed above we assume

(i) The o-algebra %~ possesses a countable basis.
(ii) The o-algebra 2™ is standard Borel (see Mackey [9]).
(iii) The functions r, satisfy one of the two assumptions C* or C- (see below
Section 2).
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2. Optimal plans. A plan II = (IL,) is a sequence of t.p.’s
IL,(z), @y, 2y, gy -+ <5 2,5 %)
from (Z x A)"! x Z to A with the property
I (z, 0y 23,05, +++,2,;C) =1

for every C € % which contains D,(z,).

Let the set of all the plans of the MDM (1) be A. It does not seem sensible
to consider any plans which depend also on the concealed history since one
cannot work with them in practice. For the same reason the functions D, also
depend only on the observed state. The decisive quality of a MDM with
incomplete information lies in this.

According to the theorem of Kolmogoroff the p.m.

Pr.= ¢ ® Qs (I, ® ;)
can now be defined on the measurable space

(Zx Z x HN, (R " Q@ ¥)%N)
for every Il e A.

Now
C+: SUPpes § Dmmi Tt dPp < 00 or
C: SUPpea § 20n=1 7™ dPy < oo

is used as an assumption for the reward functions. These assumptions seem to
be the most general ones found in the literature, containing e.g. the case of
discounting factor 1 if the (stationary) reward is of constant sign (see Hinderer
[6))-

Let the total reward on using a plan II be

Gy.= S Dimea T dPy .
We look for plans for which G will be maximized.

3. Construction of a new model. In MDM'’s with incomplete information it
is not possible to limit oneself to Markovian plans instead of all the plans out of
A. The derivations of e.g. Blackwell [1], [2], Strauch [12] and Hinderer [5] are
not applicable here because they would lead in this case to plans which also
depend on the concealed history.

Instead, a MDM

) (ZxV, ZQ ), (4, ), (Dn)s (Pn)s 51)

can be defined which is now a MDM with complete information because z ¢ Z
can be observed and v € V can be calculated from the observations.

In this Z, %, A, % and (D,) are to be understood as in (1), whereas the
remaining terms are to be defined as follows:
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(a) Visthesetofall the p.m.’s on (Z’, "), and 7 is the smallest g-algebra
on V referring to which all maps ¢, (for Be 2”) from V into [0, 1], defined as

es(p) = wu(B)
are measurable.

(8) For the definition of p, a theorem of Rhenius [10] (Hauptsatz 4.11) is
required. From it follows, namely, that the t.p.

Un(Zys Vs Qs *) o= § G (20> 2,5 G )v,(dz,’)
from Z x V x Ato Z x Z' can be factorized in the form
un(z'/w vn’ an; °) = an(zn’ vn’ an; .) ® wn(zn’ 'vm an’ zn+1; ') 9

with the t.p. @, from Zx ¥V x A to Z and the t.p. w, from Zx V x Ax Z

to Z'. Thus
I ZXVXAXZSTV,
defined by

gn(zm Vs Qs zn+1) « = Wn(zm Vps Ay Zpyrs ‘) ’
is a measurable map (see Hinderer [5], page 85). For this reason

ta(Zps Vs @y Zys W) =1, in the case of ¢,(z,, V,, @,, Z,.1)) €W,
=0, in the case of ¢,(z,, V,,a,,2,.1) ¢ W,

(We 77), defines a t.p. from Zx Vx Ax Zto V.
With this we define

p'n(z'n’ v'n’ a'n; ') = an(zn’ vn’ an; ')®tn(zn’ vn’ an’ zn+1; ') *

This derivation is valid for n > 0. A corresponding one is valid for n = 0.
(y) The reward functions are defined as

5(Z0s U @) .= § 10(2,, 2,5 a,)0,(d2,)) .

As the history in (2) can be observed completely, the plans depend on the whole
history:
IL, (20, V1) @4y Zgy =+ v 5 2y Uy 0)

Let the set of these plans be I'; we then have
AcT.
For every Il e I' we can now define the p.m.
On .= po ® Q71 (I, ® pn)
on((ZxVx AN, (R 7 Q 7)8N).
Lemma 1. Let k(z,, a;, 2,4, 2;,,) be a real-valued measurable function. Then

§ A(zis 55 Zi1s 2040)9(205 25 G5 A(Z4445 2041))0:(d2])

= § h(z;s Q55 23115 2042)0002(A2010)P (205 Vis @35 (23415 Vi)
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is valid according to the terms defined above and on condition that the left side is
defined.
Proor. According to the definition of u, the left side is
§ A(2is @is 2i41s 20 U205 05, G35 A(2345 2144))
= § 12y a5, Zig15 Z000) WilZg Vs Gy, 2y d20,0)0(24, V5 a5 dZ, )
= § 1(z2s @y Zip1s 20 )V(D200) 0205 Vis Gyy Zigs AV)E(Z 0, G55 A24)

and that is the right side of the assertion.
A consequence of Lemma 1 is

LEMMA 2. For the functions r, from (1) and s, from (2), and Il € A,

(a) Ssn+dQII§ Srn+dPII’
(b) S sn_ dQl'I é S rn_ dPrI
are valid.

ProoF. It is easy to see that
5. (Zns Vs 4,) < Y 1,7 (2,5 2,5 4,)0,(d2,))
Therefore we get, employing Lemma 1:
§ 5.%(205 s> @,) dQy

<\t 2/, a,)0,dz )L, (2, ay, - - -, 2,5 da,)
X Put(Zy1s Vpys @u_yy Az )L, _ (21, ay5 + -+, 2,5 da,_,)
X d(p, ® Q7= (II; ® py))

=\r*(z., 2z, a)l,(z,a, ---, 2z, da,)
X Guers(Zness Zno1s uoys A2, 2,"))0,_1(d2,_y)
X I, (25 @y + v 5 23 uy) d(py @ Q72 (IL; @ 1)) -

In the same way, with repeated use of Lemma 1, we continue until we have

S s'n,+(zn’ vn’ an) dQII
g s rn+(zn’ Z’n,’ an)nn(zl’ Qys o0 5 Zys dan) d(‘]o ® ®:‘L=—11 (Hz ® qt))
=\r*(,, 2,/ a,)dPy.
Part (b) follows analogously if

(x=)"=y (x,y 2 0)

is taken into consideration.
If we limit ourselves to the plans out of A, then according to Lemma 2 C*
and C- are valid for (s,) and Qy if the same qualities are valid for (r,) and Py.

Thus we can define
Fp.=1§ 2005 dQy ,

for I € A, as the total reward of the plan I € A in model (2).
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THEOREM 3. If the MDM (2) is derived from (1) with the help of the described
transformation, then for Il € A we have
Fp =Gy
Proor. On account of C* and C~ and Lemma 2

Gp= Yo, \rdPy
and

Fp = Z:=1 S s, dQp

are valid. Therefore the theorem has been proved if it can be shown that
§r,dPy = §s,dQy

for each n. This succeeds, however, immediately with Lemma 1.

4. Equivalence of the models. In order to prove that the models (1) and (2)
correspond completely it must be shown that C* or C- respectively are valid
for 5,, Qp and T instead of for r,, Py and A, and that with any plan from I" we
cannot obtain a greater reward than with the plans out of A. The total reward
must also be defined first for plans out of I' which do not lie in A. For this
we need Lemma 4 which applies the following notations:

hy o= (2, ay, -+, 2y) for iz 1,
vl(hl) «— 90(21) )
fl(hl) « = (zp v, (21)) )
and for n > 1:
/vn+1(hm a,, zn+1) « = gn(zm vn(hn)’ a,, Zn+1) ’
Sos1(Pas @us Zoy1) o= (fu(Ba)s Qus Zuyos Vpys(Pns Qps 2,41)) -
LemMa 4. Let Il = (II,) e I'. If one defines 0 = (0,) € A by
G'n(h,n; ') «— Hn(fn(hn)’ ')

then each function e,(z,, V,, a,) which is integrable referring to Q, is also integrable
referring to Qy, and

S en(zn’ /vn’ a’n) an = S en(zn’ /Un’ an) dQl'[
is valid.

The conclusion of Lemma 4 follows from the preceding definitions and from
the definition of Q, and Qy respectively.
One of the immediate consequences of Lemma 2 and 4 is

THEOREM 5. If the functions (r,) satisfy the conditions C* or C~, respectively,
then the functions (s,) satisfy the conditions

Cs+: Supllel‘ s 220:1 sn+ dQII < o,
C, :supyer § 2oy 5,”dQp < o0, respectively.
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With this we can define the total reward
Fy=1§ 25-15,d0y
for each plan Il e I". Likewise Theorem 6 follows immediately from Lemma 4:
THEOREM 6. With the above assumptions for every Il € I there is a g € A so that

FH —3 FG p—y Gd
is valid.

In this-case ¢ is defined as in Lemma 4.

5. Concluding remarks. Theorems 3 and 4 show that the models (1) and (2)
are the same with respect to their criterion of optimality. (2) has the advantage
over (1) in that (2) is a MDM with a completely observed history. Thus we
can apply to (2) the theorems which are known about the existence of optimal
Markovian plans. See here e.g. the publications of Blackwell [1], [2], Strauch
[12] and Hinderer [5], [6], for which it is important to note that (V, 27) is
standard Borel if (Z’, ") is too (see Hinderer [5], Theorem 12.13).

A special case of model (2) arises if D,,, ¢, and r, in model (1) are independent
of z, (i.e. D, constant, ¢,(z,’ a,; *), r,(z,’, a,)). This assumption is sensible in
learning models, and with it one can derive the following theorem (using only
the notion of a sufficient statistic; see Hinderer [5], Chapter 18):

THEOREM 7. If the functions D,, q, and r, in (1) are independent of z, and if C*
is valid, then there is a deterministic plan g = (g,) € I' for each plan Il € I" 50 that

9, V— A
and
Fg ; FH
are valid.
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