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A NORM REDUCING PROPERTY FOR ISOTONIZED
CAUCHY MEAN VALUE FUNCTIONS!

By TiMm RoBERTSON AND F. T. WRIGHT
The University of Iowa

We consider functions a(+) and &() on a finite set S which correspond
to a function M(+) on the nonempty subsets of S which has the Cauchy
mean value property (i.e., M(A4 + B) is between M(A) and M(B) whenever
A and B are nonempty disjoint subsets of .S). &(e) is isotone with respect to
a partial ordering on S and is equal to a(+) when a(+) is isotone. It is shown
that &a(+) has the following norm reducing property: maxses |a(s) — 6(s)| <
maxses |a(s) — 6(s)| for all isotone #(+). Computation algorithms for a(+)
are discussed and the norm reducing property is shown to give consistency
results in several isotonic regression problems.

Consider a finite set S = {s,, s,, - - -, 5,}. A function M(.) whose domain is
the collection of nonempty subsets of S is said to have the “Cauchy mean value
property” provided M(A + B) is between (not necessarily strictly) M(A4) and
M(B) whenever 4 and B are nonempty disjoint subsets of S. Suppose « is a
partial order on S and define the complete lattice, &, of subsets of § by: Le ¥
if and only if 5, € s5; and 5, € L imply that 5; € L. We shall refer to members of
- as upper layers and, in order to simplify some of the notation we use the
symbol L exclusively to denote upper layers.

Let R(<<") denote the collection of - measurable functions on § (a func-
tion # which maps S into the real numbers is . measurable if and only if
{s;: 0(s;) = a} € & for all real a, or equivalently, ¢ is isotone with respect to
K)- Define the functions @ and @ on S by a(s;) = M({s;}) and a(s,) =
max,,, min;,,, M(L — L'). It is easy to see that @(-) is ~“-measurable.

Several estimates which have been proposed in isotonic regression problems
fall within the framework described above. Generally, S denotes a set indexing
a collection of distributions and we have a random sample from each of these
distributions. Suppose the sample items from the distribution associated with
s; are denoted by X,;; j = 1,2, ---, n,. Typically, we wish to estimate a real-
valued function 6(.) defined on S such that the value of 6(.) at a point s, of S
is a characteristic of the distribution at s5,. If one has no prior knowledge about
6(-) then one might use an a(.) which corresponds to a mean value function
M, which, in turn, would generally be a function of the sample items (recall
that a(s)) = M({s;})). However, if it is known that § ¢ R(-#") then we might
want to modify our estimate to ensure that it is also in R(.%"). @&(.) is one
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CAUCHY MEAN VALUE FUNCTIONS 1303

possible candidate. (M(A) is usually a function of the sample items from distri-
butions associated with points in A.)

The following theorem can be interpreted as saying that isotonizing Cauchy
mean value functions reduces the L, distance to R(.&¥").

THEOREM 1. For each 6 € R(&),
max, <, |&(s;) — 0(s;)| = max, g, |a(s;) — 0(s;)| -

Proor. Fix s; and 6 € R() and let L, = {s;; 6(s;) = 0(s;)} and L, = {s;;
6(s;) > 6(s;)}. Using the mean value property and obvious properties of maxima,
we can write:

a(s;) — 0(s;) < max,,, M(L — L) — 6(s;)
max;,, max, .., . [a(s;) — 0(s;)]
max,,, max, ., [a(s;) — 0(s;)]
max, g |a(s;) — 0(s;)| -

Similarly, @(s;) — 6(s;) = ming, ,, min, ., ;. [a(s;) — 6(s;)] = —max,g; g, |a(s;) —
6(s;)|. Since s, was arbitrary the proof is completed.

It is argued in Robertson and Waltman (1968) that if « is a linear order
then there exists a measure p(+) on 25 such that y({s;}) > 0 for each i and & =
E(a|%). It would be of interest to know if such a result holds when « is
simply a partial order. For if so, Theorem 1 could be obtained by the following,
less direct, approach. If & = E,(a|-2”) then Remark 3.3 of Brunk (1965) gives

(1) [Zila(s) — 0(s)lPesHI? = [Zia la(s) — 0(s:) P (s

and Theorem 1 follows by letting p — oo.

Malmgren (1972) points out that (1) does not hold for all § € R(<#") when
p = 1 and M({s,}) is the median of the observations from the distribution at s,.

Ubhaya (1971) studied isotonic functions which approximate a given function
and which are closest in the L, distance to the given function. He shows (see
Theorem 2 of Chapter 3) that a particular member of this class of approximating
functions is closer in the L distance to any isotonic function than is the given
function. Theorem 1 is more general in the sense that it applies to all Cauchy
mean value functions. )

Since versions of Cauchy mean value functions arise in estimation problems,
computation algorithms for @ are of interest. We mention three of these which
can be argued in this general setting. Define a(s;) = min,,,, max,,, M(L — L')
and a*(s;) = max,,, ming, ., o, M(L — L) where 27(L) denotes the collection
of proper subsets of L which are upper layers. Let L, = S and choose L, to be
the smallest member of 2(L,) for which M(L, — L;) = ming, ., ,, M(L, — L’).
This can be seen to be possible by considering the argument given for Remark
2.3 of Robertson and Wright (1973) and the comments after the remark. Con-
tinuing, we obtain L, 5 L, D - - - D Ly with M(L; — L;,,) =ming, ., , M(L;— L’)
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1304 TIM ROBERTSON AND F. T. WRIGHT

fori=1,2,...,Hand L,,, = @ (since S is finite and L, , € 7(L,) requires
that L, — L,,, = ¢ this process must terminate). Modifying slightly the argu-
ments given for Theorem 2.4 and Corollary 2.5 of the paper mentioned above,
it can be shown that @ = @ = a*andif s; e L, — L, then a(s;) = M(L, — L, ).

We conclude with some examples to indicate the generality of these results and
some applications of Theorem 1.

ExampPLE 1. Ayer, Brunk, Ewing, Reid and Silverman (1955) and independ-
ently, van Eeden (1956, 1957) considered estimating the function (s;) = p, when
the distribution at s; was taken to be Bernoulli with parameter p, and 6 ¢ R(.%°").
If, in this case, one sets M(A4) = >, 317, X;;/ > 4 n;, Where 3, is interpreted as
Dl tizs;e 4)» it is clear that M is a Cauchy mean value function and the correspond-
ing & is the estimate studied in the above-mentioned papers.

Consistency results are immediate. The Borel strong law of large numbers
and Theorem 1 show that max, ., |@(s;) — p;| converges almost surely to zero
as min,;, n; — oo. In many cases Theorem 1 can be used to obtain rates of
weak convergence for max,_,, |&(s;) — 6(s;)| to zero, that is, one could obtain
rates at which P[max,,, |&(s;) — 0(s;)| = ¢] converges to zero by combining
Theorem 1 with known rates of weak convergence for the estimators a(s;) to
the true 6(s;). Also Theorem 1 would provide almost sure rates of convergence
in situations where such rates are known for the estimators a(s;). We have
chosen to illustrate the latter statement in this example because the results seem

to be nicest here.
THEOREM 2. If 0 <p, <1 fori=1,2,...,k and n,=n,= ... =n,=n
then with @ (n) = (nflog log n)?
P[lim sup, ... @(n) max, ;g [@(s;) — pi| = max,g,g, (2p(1 — p)))*] = 1.
Proor. Kolmogorov’s law of the iterated logarithm and Theorem 1 yield
(2) P[lim sup, ., @(n) max,g;g, |a(s;) — p;| < max,g,g, (2p(1 — p))}l = 1.

Let p be chosen so that (p(1— p))* = max, ,, (p,(1— p,))* and consider the up-
per layers L,(p) = {s;: p; = p}and Ly(p) = {s,: p, > p}. Clearly, {s;: p, = p} =
L,(p) — Ly(p) and it can be shown by induction that there isa point 5, € L,(p) —
Ly(p) and an upper layer L, C L,(p) such that L, n (L,(p) — Ly(p)) = {s;)}. Hence
a(s;,) =z ming,,, M(L, — L"). However, by the strong law of large numbers
there is a set of w’s with probability one such that for n = N(w), a(s;)) > a(s,)
for all i for which s; € Ly(p), and so using the averaging property, a(s;) = a(s;)
for n = N(w) and o in the given sure event. Hence

P[limsup,_., @(n) max,g,, |&(s;) — pi| = (2p(1 — p))}]
= P[limsup, .. @(n)(a(s,) — pi)) = (2p(1 — p)]
= P[limsup, ... @(n)(a(s;) — pi)) = 2p(1 — p)l]=1.
The proof is completed.
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We comment that results like (2) could be obtained in any situation where M
is a Cauchy mean value function and laws of the iterated logarithm are known
for the estimators a(s;). (i.e., P[limsup, ., @(n)|a(s;) — 6(s;)| = k;] = 1 fori =
1,2, ..., k) However, the argument given to obtain the other inequality re-
quired k; = k; if 0(s;) = 6(s;). We also note that if, instead of assuming com-
mon sample sizes, we assume there is a positive constant 4 for which n, > AN
fori =1,2, ..., kwhere N = Y ¥ n, then we can obtain, reasoning as above,

Plc < lim supy_,, @(N) max,_,;, |&(s;) — p)| £ A7¥c] =1
where ¢ = max,;_, (2p;(1 — p,)*.

ExAMPLE 2. The isotonic regression problem that has received most attention
in the literature is that of estimating an isotonic mean function. (i.e., 0(s;) = g,
is the mean of the distribution at 5, and # € R(=")). For a detailed bibliography
of this and related problems see Barlow and Brunk (1972). The solutions pre-
sented in this situation are @’s corresponding to M(A4) = 3, w, X175, X/ 2 w,-n,
where w, are positive weights and 3], is interpreted as before.

If X;; — p; has the same distribution for j =1, ...,n,and i =1,2, ...,k
and the law of the iterated logarithm holds for each a(s;) then a law of the iter-
ated logarithm like Theorem 2 could be established for max,,, |&(s;) — g, in
this case.

ExaMPLE 3. Robertson and Waltman (1968), Cryer, Robertson, Wright and
Casady (1972) and Robertson and Wright (1973) have considered the problem
of estimating an isotonic regression function with @(.) when M(4) is the median
of the observations at distributions associated with points in 4. For 4  § de-
fine the weighted empirical distribution function F,(x) = ¥, w; 75, 1 _w 1(Xy5)
with I(X;;_,)/ > 4 w; - n, where the w,’s are positive and M(A4) = min {x; F,(x) = 3}.
The argument given for Remark 4.1 of Robertson and Wright (1973) shows that
M{(A) is a Cauchy mean value function and the corresponding & is the estimator
proposed in Section 4 of that paper when the w,’s are all taken to be 1. The
estimator obtained when the weights are not equal is of interest because the
resulting @ minimizes %, w, 3371, |X,; — 0(s;)| among all 6 € R(<). This
would appear to follow from Example 3.8 of Brunk and Johansen (1970) by
choosing ¢(i, a), r and the p,’s properly. Another approach is to observe that
f(6) = X wy 217, |x,; — 6] is minimized by choosing @ to be the M(A) discussed
in this example (this is equivalent to minimizing § |x — 6| dF,(x)); to note that
f(0) is non-increasing for § < M(A) and non-decreasing for § > M(A) and then
to apply the arguments given for Lemma 2.6 and Theorem 2.7 of Robertson and
Wright (1973). Since a(s,) is an ordinary sample median and much is known
about consistency properties for such estimators, Theorem 1 could be used to
obtain consistency results for & in this case.

Percentiles other than the median could be dealt with as above.

ExaMPLE 4. For our last example of a Cauchy mean value function we take
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M(A) to be the midrange of the set {X,;: j = 1,2, - - -, n, with i such that s, € 4}.
(The midrange is the average of the smallest and largest items.) Barlow and
Ubhaya (1972) and Ubhaya (1971) have characterized all § € R(~”) which mini-
mize max, ;g MaX, g, |X;; — 0(s;)| whenn, = 1; however, the arguments given
in Chapter 3 of the latter reference for Lemma 2 and Theorem 3 of Section 4
show that the & corresponding to the Cauchy mean value function considered
in this example minimizes the above objective function when the n,’s are not
necessarily one. The solution to this minimization problem need not be unique,
but the solution presented in this example would seem to be of interest because
Theorem 1 can be combined with known consistency properties of the midrange
to obtain consistency results for @ Consistency results for the midrange are
immediate if the underlying distribution is symmetric and bounded. Other cases
are discussed in Barndorff-Nielsen (1963).

ExaMPLE 5. In our last example we consider a function M which does not
have the Cauchy mean value property to give some indication of the importance
of this property to the results discussed here. Let M(A) be the mode of the set
of observations X,;;j = 1,2, ---, n, and i with 5, € 4.

Let S consist of two distinct points s, € s, and suppose we have observations
Xij = 0; i,j = 1, 2, le = l;j = 3,4, 5, and ij = 2;] = 3,4, 5, thena(s,.) = 1,
a(s;) = 2, &(s;) = 0and a(s,) = 2. Taking § = a, we have an example to show
that Theorem 1 does not hold for this choice of M. Furthermore, examples can
be constructed on a linearly ordered set S = {s,, s,, 5;} to show that & # & and
a + a*.

With S as above let the distributions at s, and s, both be discrete; let X,; be
independent random variables for i = 1, 2 and j = 1,2, -..; for each i, let X,
have the distribution at s, say P[X,, = —4] = P[X;, = —3] = % and P[X,, =
0] = 2; and for each i let X,, have the distribution at s, which we determine by
letting X,, — 1 and X, have the same distribution. The function 6(s,) equal to
the mode of the distribution at s, is isotone and X;; — 6(s,) are independent and
identically distributed. However, using the strong law of large numbers one can
show that for “almost all” » points in the underlying probability space a&(s,) =
—1 = 0(s,) for n sufficiently large where & is based on X;;j=1,2, ---,nand
i=1,2.

REFERENCES

[1] Aver, M., BrRunk, H. D., EwING, G. M., Reip, W. T. and SILVERMAN, E. (1955). An
empirical distribution function for sampling with incomplete information. Ann.
Math. Statist. 26 641-647.

[2] BaRLOw, R. E. and BRUNK, H. D. (1972). The isotonic regression problem and its dual. J.
Amer. Statist. Assoc. 67 140-147.

[3] BarLow, R. E. and UBHAYA, VASANT A. Isotonic approximation. Proceedings of the
Symposium on Optimizing Methods in Statistics, Academic Press Inc., New York. To
appear.

[4] BARNDORFF-NIELSON, OLE (1963). On the limit behaviour of extreme order statistics. Ann.
Math. Statist. 34 992-1002.



(5

—

[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]

[14]

CAUCHY MEAN VALUE FUNCTIONS 1307

BrUNK, H. D. (1965). Conditional expectations given a ¢-lattice and applications. Ann.
Math. Statist. 5 1339-1349.

BrUNK, H. D. and JOHANSEN, S. (1970). A generalized Radon-Nikodym derivative. Paci-
fic J. Math. 34 585-617.

Casapy, ROBERT J. (1972). Monotone percentile regression estimation: large sample and
other properties. Ph. D. thesis, Univ. of Iowa.

CRYER, J. D., ROBERTSON, TiM, WRIGHT, F. T. and CasADpy, R. J. (1972). Monotone median
regression. Ann. Math. Statist. 43 1459-1469.

MALMGREN, EDWARD (1972). Contributions to the estimation of ordered parameters. Ph. D.
thesis, Univ. of Iowa.

ROBERTSON, TiM and WALTMAN, PAuL (1968). On estimating monotone parameters. Ann.
Math. Statist. 39 1030-1039.

RoBERTSON, TiM and WRIGHT, F. T. (1973). Multiple isotonic median regression. Ann.
Statist. 1 422-432.

UBHAYA, VASANT A. (1971). Isotonic and convex optimization. Technical Report, Opera-
tions Research Center, University of California, Berkeley.

vaN EepeN, C. (1956). Maximum likelihood estimation of ordered probabilities. Indag.
Math. 18 444-445.

VAN EEDEN, C. (1957). Maximum likelihood estimation of partially or completely ordered
parameters, I and II. Indag. Math. 19 201-211.

DEPARTMENT OF STATISTICS
UNIVERSITY OF IowaA
Iowa City, Iowa 52242



