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ON ESTIMATING THE COMMON MEAN OF TWO
NORMAL DISTRIBUTIONS

BY ARTHUR COHEN!* AND HAROLD B. SACKROWITZ
Rutgers University

Consider the problem of estimating the common mean of two normal
distributions. Two new unbiased estimators of the common mean are
offered for the equal sample size case. Both are better than the sample
mean based on one population for sample sizes of 5 or more. A slight
modification of one of the estimators is better than either sample mean
simultaneously for sample sizes of 10 or more. This same estimator has
desirable large sample properties and an explicit simple upper bound is
given for its variance. A final result is concerned with confidence estima-
tion. Suppose the variance of the first population, say, is known. Then if
the sample mean of that population, plus and minus a constant, is used as
a confidence interval, it is shown that an improved confidence interval can
be found provided the sample sizes are at least 3.

1. Introduction and summary. Consider random samples of size n from each
of two independent normal distributions. The first distribution has mean ¢ and
variance ¢,’ and the second has mean ¢ and variance ¢,>. Let X’ = (X, X,, - -+,
X,)and Y = (Y, Y,, - .-, Y,) denote these samples. The problem is to estimate
the common mean § when the loss function is (r — #)*/¢,’. This loss function
is chosen for convenience. Squared error loss or squared error divided by a
positive function of (¢,%, ¢,%) could also be taken. This problem of estimating
the common mean and the related problem of recovery of interblock informa-
tion has been studied in several papers. For a brief bibliography and justifica-
tion of some of the results studied here the reader is referred to the introduction
of Brown and Cohen [2].

In this paper two new unbiased estimators for the common mean are suggested
for the equal sample size case. Each estimator is uniformly better than the sample
mean based on only one of the populations for n = 5. A slight modification of
one of the estimators is better than either sample mean for n > 10. This is in
contrast to the estimator studied by Graybill and Deal [3], which has such a
property if and only if n = 11. For this same new estimator, a very simple
expression is derived which represents a bound on its risk.

One final result is concerned with confidence estimation. Suppose the vari-
ance of one of the populations, say ¢,%, is known. Then if the sample mean of
that population, plus and minus a constant, is used as a confidence interval, it is
shown that an improved confidence interval can be found if n > 3. In Sections
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2 and 3 the new estimators are given and discussed. The confidence interval
result is given in Section 4.

2. New unbiased estimator of the common mean. In this section we find an
estimator which is unbiased and minimax for n > 5, and we also compute its
risk. The given estimator is not based only on a sufficient statistic. We are able
to “Rao-Blackwellize” it and thus get an estimator which is better. The result-
ing estimator is thus unbiased and minimax. We have a bound for its risk.
Furthermore, it has sensible monotonicity properties and has desirable large
sample properties.

Define X = 32, X;/n, ¥ = 57, Yy/n, S = Ti (X — X)%, 8,2 = Zr, (Y —
Yy, z=582S2 t=9}0? Leta,i=1,2,...,n— 1ben x 1 vectors which
are a set of orthonormal contrasts. Note that the 2n x 1 vectors [¢,/, 0], i = 1,
2,--,n—r—1,1[a/,a/),i=n—r,---,n—1,[a/, —a/], i=n—r ...,
n — 1, are all orthogonal contrasts. Define U, = a/X,i=1,2, ---,n —r—1;
V,=1a/,a/l[¥], i=n—r,---,n—1. W,=][a’, —a/|§)], i=n—r ...,
n — 1. Clearly U,, V,, W, are independent normal random variables with zero
means and variances ¢,%, (¢,’ + ¢,°) and (¢,’ + ¢°) respectively. Furthermore,
U,, V,;, W, are independent of X and ¥. Finally let S2_, _, = > 7-7-* U} and

§* =yt (Ve + WP, Clearly S%_,_, is distributed as a ¢,’y*(n — r — 1) and

§? is distributed independently of S%_,_,, as a (¢,” 4 ¢,%)x*(2r).
Consider estimators of the form

2.1 (1 — CS:_,_,/SHX + C(S3_,_,/SHT .

n—r—1

"Clearly the estimators in (2.1) are unbiased. It is easy to show that the best value
of Cin (2.1)is C, = 2(r — 2)/(n — r + 1) and that (2.1) is better than X for all
C such that 0 < C < 2C,. In fact for C = C, the estimator in (2.1) has risk
22y A1 =11 + ) —r = 1)(r = 2)/(n — r 4 1)(r = 1)].

Thus for any value of r ranging from 3 to (n — 2) the estimator in (2.1) with
C = C, is unbiased and better than X. For any given n we seek the optimal value
of r and hence of C, by minimizing (2.2). We find that (2.2) is minimized by

choosing r = (n + 1)/2 for n odd and r = n/2 for n even. For these values of
r we come up with the following estimators:

(2.3) 1 —2[(n — 3)/(n + D)(Stu-s,4/SHIX + 2[(n — 3)/(n + DI(St—s)n/SHY
for n odd;
(2.4)  [1 = 2[(n — )/(n + 2))(S3s/SHIX + 2[(n — 4)/(n + 2))(S5,/SY

for n even.
The risk for (2.3) is

(2-5) (A/m1 — /(1 4 ))((n = 3)/(n — 1)(n + 1))] .
The risk for (2.4) is
(2.6) (1/m[1 — /(1 4 2)((n — 4)/(n + 2))] -
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From (2.5) and (2.6) it is clear that improvement over X can be made provided
n=S5.

Now note that a set of sufficient statistics for this problem is (X, ¥, S, S,?).
Since the estimators in (2.3) and (2.4) are not based on the set of sufficient sta-
tistics it follows by a version of the Rao-Blackwell Theorem that the conditional
expectations of (2.3) and (2.4), given (X, ¥, S,%, S,?), are better estimators than
(2.3) or (2.4) and hence, than X.

We derive the estimator which results from taking the conditional expectation
of (2.3) or (2.4). We prove

LeMMA 2.1. The unique unbiased estimate of (1/(1 + t)) based on (S,2, S,?) is
G(S.% S, = G*(z) = F(1, (3 — n)/2, (n — 1)/2; 2) for 0<z<1

(2.7) = [(n — 3)/(n — D](A/2)F(1, (5 — n)/2, (n + 1)/2; 1/2)
for z=1,

where F is the hypergeometric function. (Often this hypergeometric function is
denoted by ,F,.)

Proor. The method of proof is essentially the same as used by Olkin and
Pratt [4].
We are now ready to prove

THEOREM 2.1. The estimators

(2.8) [1 — C,*G*(2)]X + C,*G*(2)Y,
where C,* = (n — 3)*/(n 4 1)(n — 1), for n odd, and
(2.9) Crx=(n—4)/n+2)), for n even,

are unbiased and minimax for all n = 5. Furthermore, these estimators are better
than the estimators in (2.3) and (2.4) and their risks are bounded by (2.5) and (2.6)
respectively.

Proor. The proof is accomplished by showing that the conditional expecta-
tion of (2.3) and (2.4), given the set of sufficient statistics, is (2.8). An appli-
cation of Lemma 2.1 is used to complete the proof of this theorem.

To facilitate computation of the estimator in (2.8) tables can be obtained from
tables in Olkin and Pratt [4]. That is, from (2.7) and Olkin and Pratt’s (3.3) and
(3.5) it can be shown that

(2.10) G*(z) = (1)2) + H(r"))2 for 0<z<1
G*(z) = (1)2) — H(r')2  for z>=1,

where z = (r' + 1)/(1 — r’), our n = N + 1, where N represents the degrees of
freedom in Olkin and Pratt’s Table 2, page 208, and H(r’) is defined on page 208.
We conclude this section with the following remarks:

REMARK 2.1. For n = oo, it is easy to verify, using (3.9) of Olkin and Pratt
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[4], that G*(z) = 1/(1 + z). Since C,* — 1 as n — oo, we see that the weights
given to the sample means in (2.8), are converging strongly to the optimal
weights in the case where the variances are known.

REMARK 2.2. Recall that the estimator (2.1) is better than X for all C such
that 0 < C < 2C,. This fact, the derivation of (2.8), and symmetry consider-
ations imply that

(2.11) [1 — G*(2)]X + G*(2)¥

is better than both X and ¥ simultaneously if 2C,* = 1, where C,* is given in
(2.9). We see that this is true for n > 10.

REMARK 2.3. If the sample sizes in each population are unequal, modifications
of the ideas in this section could be made to derive similar type results. We do
not pursue this matter here.

REMARK 2.4. How does the estimator (2.8) compare with other estimators
already proposed for the common mean? For large values of n, the estimator
(2.8) is essentially the same as that proposed by Graybill and Deal [3], namely

2.12) [1— 1/(1 + 2)]X + [1/(1 + 2)]¥.

For moderate values of n, say above 5, the estimators are not quite comparable
to (2.12). That is, (2.8) is better than X, for n = 5. The estimator (2.12) is not
better than either X or ¥ for n < 11. Hence the risks of these estimators are
non-comparable. The reason is, that G*(z) is being multiplied by a constant
less than one. If one compares (2.11) with (2.12), (2.11) would be preferred for
n = 10. The function G*(z) = 1/(1 + 2z) for 0 < z < 1, and G*(z) = 1/(1 + 2)
for z > 1. Since G*(z) is the weight given to ¥, and (2.11) is preferable to (2.12)
for n = 10, it appears that the risk of (2.11) would be less than the risk for (2.12)
for small and large values of r when n ranges from 5 upward. The associate
editor noted that the risk for = > 1 for (2.12) is

. w g(m|o, (n — 1)/2)
(2.13)  [(n — D)(n + 1)1 + 7)/4n] T3, (n — 1 + my(n + m)
w g(m|o, (n — 1)/2)m
+ (1/n) Xmzo n—1+m ’

where

g(m| o, (n — 1)2)
= {L([(n — 1)/2] + m)/T((n — /2T (m + 1)}om(1 — @)=,

m=0,1,2, anda):(l —_ 1/2‘).

The method used to compute (2.13) could be used to compute the risk of the
estimator in Theorem 2.2 of Brown and Cohen [2]. This estimator, for values
of n = 6, would be comparable to the estimator in (2.8). For n =5, (2.8) is
preferable to the Brown-Cohen counterpart. The same assessment comparing
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(2.11) and (2.12) would apply to the comparison of (2.8) and the Brown-Cohen
counterpart. For small values of n, perhaps the most reasonable estimators are
those offered in Brown and Cohen, Theorem 2.1. However, this too does not
appear to be easily established.

3. Other unbiased estimators better than the sample mean. In this section,
for samples of size 5 or more, unbiased estimators are given which are uniformly
better than the sample mean based on only one population.

The problem and model are the same as in the previous section.

Now consider the estimator

(G.1) (X + X))+ (1= [(n— HBI(X, — X)°/2||X® — Y*[]])
X (X/m _ )7(2)) + Y@ ,

where X®" = (X, X,, -+ -, X,), X® = 3r. X,/n, Y‘”’, Y are defined similarly;
and || X|]* = 37, X;>. We prove

THEOREM 3.1. The estimator in (3.1) is unbiased, and for n = 5, it is uniformly
better than X.

Proor. Unbiasedness follows by observing that E[Y® + (X, + X,)/n] = 0,
and that the distribution of (X — ¥) is symmetric about zero. The risk of (3.1) is

(1o )E((Xy + X)[n + (1 — [(n — 4)[3][ X, — Xp)*/2[|X® — Y]
X (X — Y®) + Y® — (20/n) — (n — 2)0/n}?
(32) = (2/n*) + [(n — 2)[n*a P]E{(1 — [(n — 4)/3]
X [(X — X2 X — Y®IP]) T (X — Y))/(n — 2)*
+ Zia (Yo — 0)/(n — 2)i).
We can now use results of Stein [5], pages 362-365. That is, in Stein’s equations
(3.3)and (3.4) use Y® for Z, (n — 2) for p, 1 for n, 1 for a, (X; — X,)*/2 for S,
X® for Y, 6 for », where 8’ = (6,0, -..,0), 1/(n — 2)! for y. Thus by the re-
mark on the bottom of page 364 it follows that the expected value of the
bracketed term in (3.2) is less than ¢,>. This proves that the risk of (3.1) is less
than the risk of X provided (n — 2) = 3, or n = 5. This completes the proof
of the theorem. '
We next offer a corollary to Theorem 3.1. If we let § = (X; — X,)’/2, F =
[|X® — Y®|’/S and consider the class of estimators

(3.3) (X, + X)/n + (1 — r(F, S)|F)(X® — ¥y 4 7
we can PI‘OVC

CoroLLARY 3.1. If (i) r(F, S) is, for each fixed S, monotone non-decreasing in
F, (ii) for each fixed F, monotone nonincreasing in S, and (iii) 0 < r < 2(n — 4)/3,
then the estimator in (3.3) is unbiased and minimax.

Proor. The proof follows the same argument as given in Theorem 3.1. The
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final step, to show that the expectation of the analogue of the bracketed term in
(3.2) is less than or equal to ¢,% is accomplished by referring to a theorem of
Strawderman [6], page 3 and using the same reasoning as in the Stein paper.

We observe that the estimators in (3.3) can be improved on in two different
ways. First, note that the risk of (3.3) can be rewritten as

E{(X, + X, — 20)/n + (1 — r(F, S)|F)( Sy (X, — 0)]n
(3.4) + (1(F, S)[F)(Xis (Yy — 0)/m)}[o.?
= 2/n? + [(n — 2)[wa (1 — #(F, S)|F)'a,* + ((F, S)[FYa,’} .

It is clear from (3.4) that by replacing r(F, S)/F with min (1, 7(F, S)/F), we get
a similar risk. To illustrate a second method of improvement we refer back to
the estimate (3.1). The method would apply to (3.3) and even to the estimators
above which improve on (3.3). Call (3.1) t,,. For i < j, let t;; be the same as
(3.1) except X, replaces X, X; replaces X,, replace X' by X©“?, where X“9 is
the (n — 2) vector X with X, and X; missing. Similarly define Y“?. Since ¢,
i,j=1,2,...,n,i <j, are C,” estimators, all with the same risk it follows that
the randomized estimator which chooses ¢,; with probability 1/C,* has the same
risk as any ¢,;. Hence by a well-known theorem it follows that >7,_; ., t,;/C;"
is a better estimator than any ¢,;.

4. Improved confidence interval. In this section we assume that ¢,? is known.
For this case we show that the confidence interval X + &, for 4 a positive con-
stant, can be improved on, provided the sample sizes are at least 3. The improved
confidence interval will have length equal to 24, and will have probability of
coverage uniformly greater than a = [®(nth) — ®(—nth)] where @ is the cdf of
the standard normal distribution.

To faciiitate the proof of the result we need a pair of lemmas. In the first
lemma we paraphrase a theorem of L. D. Brown [1] on inadmissibility of esti-
mators for non-continuous loss functions. We apply Brown’s theorem in the
second lemma which is concerned with a loss which is a sum of non-continuous
losses. The lemmas will be used in the proof of the result.

In order to state the first lemma we let Z be an n x 1 random vector which is
normally distributed with mean vector x and covariance pl, where p is a known
constant. Let p(Z) denote the density of Z when ¢ = 0, let p’ denote the 1 x n
row vector whose ith component is the derivative of p(z) with respect to Z;, and
let p}’(Z) denote the second partial derivative of p(Z) with respect to Z, and then
Z;. Clearly, for the case here where p is the normal density, all such partial
derivatives exist and are continuous. Now let W(t, 1) = W(t — p)represent the
loss function for the problem of estimating x. Hence W(Z) would represent the
loss if 2 were estimated by Z and y = 0. Finally let R, denote the risk of the
procedure where y is estimated by Z. We are now ready to state

LemMMA 4.1. Letn = 3 and Ry < oo. Suppose
(4.1) i) §WIZIMp'(2)1dZ < oo 5
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ii) there isay > 0 and a C > 0 such that
)
(4.2) § W) Z|"|pi(Z + G(Z2)|dZ < C

forall G(Z) such that ||G(2)|| <7y, 1 £i,j < n
(iii) the n X n matrix

(4.3) M = § W(Z2){Zp'(2)}dZ + (§ W(Z)p(Z)L, ,

is nonsingular.
Define ¢ by the n x 1 vector point estimator

(4-4) «(2) = [(I + B)/(a + ||Z]H]Z ,

where B = (1/b)M~'. Then there exist constants a, b such that the risk of the pro-
cedure ¢ is less than R, for all p.

Proor. Brown [1], page 1132.
Now consider the region [Z, + k], i=1,2, ---,n, for n = 3. Also let

4.5) Wit —p) =211 — I[ti—h,ti+h](/")) = 2t (I = Tyt — 1)

where I, ;,(¢) is the indicator function. (Note that for this loss function we use
the terminology “region” and “point estimate” interchangeably.) We prove

LEMMA 4.2. Let n = 3 and let W be as in (4.5). Then the region ¢(Z) + h,
i=1,2,...,n, where ¢(Z) is defined in (4.4), is a better region than Z, + h, i =
L,2,...,n

Proor. The proof follows from Lemma 3.1 by verifying (4.1), (4.2), and
showing that M, defined in (4.3), is nonsingular. We omit the details.

Now we return to the model of this section. That is, we observe a random
sample of size n from a normal distribution with mean § and known variance,
which without loss of generality is taken to be 1. The sample is represented by
then x 1 vector X which is said to be multivariate normal with mean vector 8
and covariance I,. The vector @ has all its components equal to #. We also
observe an n x 1 random vector Y which is assumed to be multivariate normal
with mean vector # and covariance matrix ¢,,. Let X + & be a confidence
interval for . The coverage probability for such an interval is & = [D(nth) —
@®(—nth)]. We prove '

THEOREM 4.1. Let n = 3. Then if 0 < a < 1, there exist constants a* and b*,
0 < b* < a* < oo, such that the confidence interval

4.6) [(1_a*+“”;_Y”2>()?—Y)+Yih],

has coverage probability greater than «, for all (9, ¢ 7).

Proor. Let P be an n X n orthogonal matrix whose first row has all its com-
ponents equal to 1/n}. Let ¥V = (1/n})PX, so that V is multivariate normal with
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mean vector v and covariance matrix //n. Note that v/ = (v, v,, - -+, v,) =

4,0, -..,0), and that V,, the first component of V, is equal to X. Now let

W = (1/n%)PY so that W, = Y and EW, = 0, EW,=0,i =2, ---,n. Suppose

that the problem is to observe (¥, W) and find a region for v with loss function
71 (1 — Iy 1y(v;)). Consider the region

(4.7) [V, + k], i=1,2,--,n
with risk (n — na). Now consider a region of the form
b .
(4.8 <1_M>(Vi_wi)+wiih, i=1,2,---,n.
) T

For each fixed value W = w, there exists an a and b, independent of w, such that

b
(4.9) (1 T w”2> (Vi—w) +w, = h,
has risk less than n — na. This follows from Lemma 4.2 since (V' — W) given
W = w, is multivariate normal with mean vector v — w and convariance I/n.
Since a and b are found independently of the mean vector in the above lemma,
it follows that the region in (4.8) has risk smaller than (n — na). But the risk
of (4.8) is

(4.10) n — ;;11){)(1 — TIWVI):WyVi — W)+ (W, — )| < h}
- n<1 — P{Kl — WQ:WW/‘_ W) + (W, —v)| < h})

To get (4.10) we used the fact that the random variables

[<l“a—Hl—Vb‘“_7HE>(Vi— Wi)+(Wi—v,~)] i=1,2,..,n

are identically distributed. Since the quantity on the right-hand side of (4.10)
is less than n(1 — «) it follows that the confidence interval

(@.11) [(1- &—ﬂVi;W)m — W)+ W2 h]

has coverage probability greater than a. If we rewrite (4.11) in terms of X and
Y, we get

(4.12) RI_W;—YHZ)(X_YH Wlih].

By letting 6* = nb and a* = na, (4.12) coincides with (4.6) and this completes
the proof of the theorem.
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