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ANALYSI5 OF NONORTHOGONAL n-WAY CLASSIFICATIONS!
By U. B. Paik aAND W. T. FEDERER

Korea University and Cornell University

Four problems associated with the use of Zelen’s calculus of factorials
in the statistical analysis of nonorthogonal n-way classification data are
solved. These are for the situations for which (i) some effect parameters
are equated to zero, (ii) some combinations (subclasses) contain no observa-
tions, (iii) expected values of mean squares under fixed, mixed, and random
models are desired, and (iv) expected values of single degree of freedom
sums of squares are wanted. A unified approach to these problems was
developed. Relationships to previous work, to blocked experiments, to
fractional replication, and to ‘“‘messy data’ situations are discussed. The
various analyses are first described for a nonorthogonal two-way classifi-
cation and then generalized to an #-way classification in the final section
of the paper. Numerical examples are presented to illustrate the various
procedures.

0. Introduction and summary. The calculus of factorials was introduced by
Kurkjian and Zelen [7] and was subsequently extended and applied in a number
of published papers [3], [6], [8], [14], [15]; two of these, [3], [15], dealt with
analyses for nonorthogonal n-way classifications (factorials) with all main effects
and interactions present in the model and with at least one observation associ-
ated with every combination of the factorial, that is, no missing subclasses.
In this paper we consider the following four extensions associated with the use
of the calculus of factorials in the analysis of data from nonotrthogonal n-way
classifications:

(i) analysis when some of the effect parameters are equal to zero,
(if) analysis when some of the combinations (subclasses) contain no obser-
vations,
(iii) the expected values of sums of squares in the analysis of variance, and
(iv) the expected value of the sum of squares for a single degree of freedom
contrast or of several single degree of freedom contrasts.

It should be noted under (i) that one or more factors may relate to blocking
effects and the remaining factor(s) to the treatments; also, from Paik’s [9] results,
one can include the case of nonconnected designs under singular fractional repli-
cates; Kurkjian and Woodall [6] present results on some aspects of nonconnected
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block designs. Some other aspects of (i), (ii), and (iii) have been treated in
previously published literature (see [2], [4], [5], [10], [11], [12], [13]).

In order to obtain a unified approach to the four problems listed above, we
make use of the vector of subclass means and of an orthogonal transformation
of the levels of any given factor into single degree of freedom contrasts. As
illustrated in the next section, use of the vector of subclass means does not always
result in the same estimates of effects and of expected values of sums of squares
as a number of other methods discussed in the literature (see [2] and [4], for
example). Some of these procedures result in the same estimates and expectation
of sums of squares when all subclasses contain one or more observations and/or
all subclasses with observations have the same number of observations. The use
of an orthogonal transformation of levels of effects into single degree of freedom
contrasts allows us to relate the concepts of fractional replication from complete
factorials to any n-way classification with missing subclasses (that is, no obser-
vations), to illustrate the biases in estimates of effect parameters through the
aliasing matrix, and to illustrate the nature of the expected value of the sums
of squares (Sections 3 and 6) when the contrast parameters associated with the
missing subclasses are not zero (Section 5). Since the preceding was not the
concern of previous workers, there was no need for them to utilize the orthogo-
nal transformation matrix (P,'P,)~*P, and associated ideas as used in this paper
(see [6], for example).

1. Preliminaries and a numerical example. Consider a simple asymmetric
factorial experiment with two factors {4,: s = 1, 2} such that the sth factor 4,
has m, levels. The method of analysis of this case is easily extended to the general
asymmetric factorial experiment. For the case of two factors, the number of
treatments is + = m,;m, and the space of treatments, Z, is represented by the
set Z = {(i},4):4,=0,1, ..., m, — 1 forall s = 1, 2} which clearly contains ¢
points. The order of the points in Z is given by the relationship between the
coordinate of the point Z, = (i, i,), v =0, 1, - - -, t — 1, and order subscript

(1.1) v = myi, + i .

Let y,; be the jth observation made on the vth treatment combination (i, i,),
wherej =1,2,...,r,, (r, = 1), and let N be the total number of observations.
Then y,; may be written as '

(1'2) .y'vj = + evj ’
where
(1.3) 7, = ¢+ ay(ly) + ay(ly) + an(iss b)

a,(i,) and ay,(iy, i,) denote the main effect and two-factor interaction parameters,
respectively, E(e,;) = O forall v and j, and E(e,;¢,.;;) = o* if v = ', j = j’, and
zero otherwise.

Using matrix notation,

(1.4) szv‘I's,
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where y and e are the N x 1 observation vector and the corresponding error
vector, respectively, » is a ¢ X 1 treatment vector, i.e., 9 = (9, 915 * - *» P4_y)»
and X is an N X ¢ design matrix. We shall not be concerned about whether or
not the parameters are random or fixed until Section 3.

Let P, = ||p,(i, DI, i,j = 0,1, ---, m, — 1, be an m, X m, matrix such that
p(i,0)=1for i=0,1,..-.,m, — 1, and P/P, = D,, D, is an m, X m, diago-
nal matrix, and P,, = P, ® P,, D,, = P}, P,,, where the symbol ® refers to the
Kronecker product. Consider the following orthogonal transformation of the
parameters in %:

ax* aj
(1.5) [ s :\ = D, P/a, and [ 12] = DjiPLa,,,

as a12
where @, = [«,(0), a,(1), - - -, a,(m, — 1)]', s = 1, 2, @, = [a}4(0, 0), a;4(0, 1), - - -,
ay(my — 1, my — 1), and a,* = 4,(0), a, = [a,(1), 4,2), - - -, a(m, — ], a5 =
[@:2(0, 0), a;5(0, 1), - - -, a;,(0, my — 1), a,,(1,0), - - -, a(m, — 1,0)] and a;, =
[a(1, 1), a1, 2), - - -, apy(m, — 1, my — 1)].

Let W = P, (P, P,)~%; we describe the column vectors W(a;, a,) in the t X ¢
orthogonal matrix W by considering the space of the ¢ points where {(a,, @;):
a,=0,1,...,m — 1, for s = 1, 2}. The correspondence between the column
order 0, 1, - - -,  — 1 and the points (a,, a,) is given by the order relation specified
by order number = m,a; + a,.

Let W* be the column order rearranged matrix from the matrix W in the
following way, i.e.,

(1.6)  W* = [W(0,0), W(1,0), ---, W(m, — 1,0), W(0, 1), - - -,
W0, my — 1), W(1, 1), -+ -, W(m, — 1, m, — 1)],

and let
(1.7) A= W*K,
where
(1.8) K = diag ((m, m,)}, mzu(ml—l), ml”(mz—w Ly —1yimg-1)) *
Let
(1.9) b = (bs; by', by, bry)
where ,
by = pr + 2tz m,*a(0) + (mymy)~ta,(0, 0) ,
(1.10) b, = a, 4 myta,(i;, 0),
b, = a, 4+ m;"*a,,(0, i,) ,
b12 = Qpy,

where a,(i;, 0) = [a,(1, 0), - - -, a,(m; — 1,0)] and a,(0, i,) = [a,(0, 1), - - -,
a,5(0, my, — 1)J'.
Then, the vector 7 may be written as

(1.11) n = Ab,
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and from (1.4)
(1.12) y=X4b + €.

We now present two methods for estimating the parameter vector b in equation
(1.12).

Method 1. (Sometimes denoted as F. Yates’s “fitting constants” procedure):
Using the least squares method, from (1.12)

b= (4'SA)'A'X'y,  where S= X'X
(1.13) = A8 X"y, because A4 is a nonsingular matrix,
= K'W* S X'y .
Method 11. (Sometimes denoted as F. Yates’s “weighted squares of means”

procedure or S. N. Roy’s “sum of squares for the hypothesis” method): From
(1.11) we obtain
b= A1y
and from (1.4), by the least squares method, % = S~ X'y, i.e., §, = >}, y,;/Tu>
and consequently
b= A%
(1.14) = K7'W¥5
= KW S Xy .

Numerical example 1.1. A 3 x 4 factorial experiment with unequal numbers
of observations for the combinations of three levels of oven, A,, and four levels
of temperature, A,, was conducted to ascertain the strength of the final product.
The data were selected from Table 12.5 of Graybill [5] with some observations
arbitrarily deleted.

TABLE 1.1
Data for example

Temperature, 42 (4 levels)

0 1 2 3

Observations 7
Oven A; (3 levels) 0 3,3,2 6, 4 3, 4,4 45
1 4,3 6,2,7 6 3,7,9
2 4,6 8,5,9 5,6 7,8,9

s

We shall assume the statistical model to be
yvf:77v+€vj7 'U:O,l,"',t—l; j=l,2,---,r

7, = £+ (i) + ay(iy) + ayy(iys By)
i=0,1,2; i,=0,1,2,3; v = 4i, + i,

where y, ; is the yield of the jth observation for the vth treatment combination,
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¢ is the overall effect, a,(7,) is the effect of i, level of the oven, a,(i,) is the effect
of the i, level of the temperature, and a,,(i,, i,) is the interaction between them.
In this case, using orthogonal polynomials, let

. i

(1.15) =1 0 -2, P, =
L1 1 1 1 —1 -3
1 3 1 1

Then D, = PP, = diag (3,2, 6) and D, = P,/P, = diag (4, 20, 4, 20), and we
obtain the matrix W* using the following table:

TABLE 1.2
W, ir) W, iv) W, i)
i o 1 2 3 o 1 2 3 0 1 2 3
1 -3 1 -1 -1 3 -1 1 1 -3 1 1
1 -1 -1 3 -1 1 1 -3 I -1 -1 3
11 -1 -3 -1 -1 1 1 -1 -3
13 1 1 -1 -3 -1 -1 13 11
-3 1 -1 o 0 0 0 -2 6 -2 2
. 1 -1 -1 3 o 0 0 0 -2 2 2 -6
P Py 11 -1 -3 0 0 0 0 -2 2 2 6
1311 0 0 0 0 -2 —6 -2 -2
1 -3 1 1 -3 1 -1 1 -3 -1
1 -1 -1 3 1 -1 -1 3 I -1 -1 3
11 -1 -3 1 -1 -3 1 -1 -3
31 13 11 o311

diag Dppt: V12 /60 /12 4/60 V8 440

A
>

VA W24 Y120 424 /120

Also, from (1.8)

(1.16) K = diag (12%, 4%, 43,3334 34 1,1,1,1,1,1).
Next, let
b = (b, b/, b,', bly)" ,

where

by = 1 + 474a(0). 4 3-%a,(0) + a0, 0)
(1.17) b, = a, + 47%a,,(i;, 0)

b, = a, + 37%a;(0, i,)

b, =a,,.

In this example,

7 = S7'X'y = vector of class means
(1.18) = (2.6667, 5.0000, 3.6667, 4.5000, 3.5000, 5.0000, 6.0000,
6.3333, 5.0000, 7.3333, 5.5000, 8.0000)' .
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So, from (1.14), we obtain:

(1.19) b = (5.2083, 1.7678, 0.0000, 1.5528, —0.4167, 1.0559, 0.4743,
—0.6999, 0.5893, 0.2041, 0.4216, 1.3389)’ .

Confusion sometimes arises in regard to the method of “fitting constants”
analysis and the “weighted squares of means” analysis which were presented by
Yates[13]. The former terminology is often used in the context of no interactions
between two or more factors while the latter is used when interaction is present
and one or more observations are available on each treatment of the factorial.
Both procedures “fit constants” but for different models. This estimation of
parameters aspect has caused no confusion but the computation of sums of squares
has. For a two-way classification and disproportionate subclass numbers, the
sum of squares for one main effect free of the mean, the other main effect, and
the interaction is different from the sum of squares for the main effect computed
under the assumption of no interaction. Both sums of squares are useful when
used in connection with the correct parametric model. These comments apply
equally well to the n-way classification. Also, it should be noted from the above
that b from either equation (1.13) or (1.14) appears to be the same; these two
methods, however, will not always give the same result as illustrated below.
Suppose that some of the parameters b,, b,,, - - -, by,..., are zero in an n-factor
factorial experiment; then, omitting the zero parameters from the parameter
vector b, deleting the corresponding columns from the matrix 4, and denoting
the new parameter vector and matrix by b* and 4*, we obtain the following
solutions:

Method 1.

(1.20) b* = (A¥'SA*) 1A% X7y
Method 11. 7

(1.21) b* = (A% A*)"1 A7)

= (A¥A*) T A¥ S X'y |
(See Bush and Anderson [2] for a comparison of these two methods.)

2. Analysis of variance. In the present paper, the sums of squares used in
the analysis of variance are similar to those given by the “weighted squares of
means” procedure (see Yates [13] and Zelen and Federer [3, 15]).

In the m, X m, factorial experiment, let

W, =[W(1,0), W2,0), ---, Wim, — 1,0)],
(2.1) W, = [W(0, 1), W(0,2), ---, W(0, m, — 1)],  and
W, =[W(1,1), w(1,2), ..., Wim, — 1, my — 1)],

then the matrix W* can be expressed as [ W(0, 0), W,, W,, W,,].
The resulting quadratic forms as sums of squares for main effects, two-factor
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interactions are:
Sums of squares Degrees of freedom
SS(b,) = F'W[W/SW ] W/'T m, — 1
SS(by;) = 7' W[ W, ST W' Wi, 7 (my — 1)(my — 1)
The sums of squares for single degree of freedom contrasts are:

SS[b,(i,)] = 7' W(iy, O)[W(iy, 0) S~ W(iy, 0)]* W(i,, 0)'%

SS[by(i5)] = 7' W(0, i,)[ W(0, i,)'ST*W(0, i,)|* W(0, i,)'}
SS[byy(iys 15)] = 7' Wiy, ) W(iy, iy)' ST Wiy, i) W(iy, i)' % ,

where i, = 1,2, ..., m — 1;i,=1,2, .-, my — 1.
The within subclass sum of squares is given by

SS, = y'(I — XS X"y,

and expected value of SS,, which has (N — f) degrees of freedom, is (N — #)a*.
However, if some of the elements of the parameter vector are zero as in (1.21),

then
SS, = y'[I — XS71A¥(AYST1A*) 1 4¥' S Xy,

and the expected value of SS,, which has (N — number of columns in 4*) degrees
of freedom, is (N — number of columns in 4*)c?.
In the numerical example 1.1, from (1.18) and (2.1),
W% = 4%(1.7678, 0.0000) , W, = 3%(1.5528, —0.4167, 1.0559)',
Wi, % = (0.4743, —0.6999, 0.5893, 0.2041, 0.4216, 1.3389)" .
After calculating the inverse matrices of W,'S™'W,, W,/S™'W,, and W},S7'W,,,
we obtain the following sums of squares:
SS(b,) = SS(A,) = 30.0000 df. =2
SS(b,) = SS(A,) = 26.2185 d.f. =3
SS(by,) = SS(A4;, X A,) = 5.5557 df. =6
and since [ (0, 1)S~'W(0, 1)]7! = 2.3529, [W(0, 2)'S~'W(0, 2)]~* = 2.1818, and
[W(0, 3)’S'W(0, 3)]"* = 2.0339,
SS[by(1)] = (2.3529)(3)(1.5528)* = 17.0207: SS of linear effect of 4, ,
SS[b,(2)] = (2.1818)(3)(—0.4167)* = 1.1364: SS of quadratic effect of 4,,
SS[6,(3)] = (2.0339)(3)(1.0599)? = 6.8032: SS of cubic effect of 4, .

In the next section, we obtain the expectations for the above sums of squares.
3. Expectation of sum of squares.

3.1. Fixed effects case. If all effects in (1.3) are fixed, we may make the
assumption that effects sum to zero over the levels of any factor without loss
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of generality. Then, from (1.5), we obtain 4,(0) = 0 for s = 1, 2; a,(i;, 0) =
a,(0, i,) = 0 and from (1.10)
b(,:‘u, bS:aS, b12:a12.
Hence, from (1.14)
(ﬁ’ ﬁl” fl2', ﬁ{2)’ = K_IW*,ﬁ
and we obtain, from (1.5)
a, :PSDS_%[?J’ aAm:PlzDﬁ%l:AO:I-
a Ay

Also, in the fixed effects model,
E[77'] = E[(S"X'y)(SX'y)']
= A(bb)A" + S7'o*, since 'y = XA4b 4 e.
We now present the expectations of the sums of squares for the model of this
subsection:
E[SS(a,)] = main effect of A4,
— E[§W,(WS™ W) W,'7]
= tr [W,(W/S™ W)W E77)]
= tr [(W,/S™\W,) WA A'W,] + tr [(W,SW,) "W, 'S~ W, ]o>
= m, tr [(W,/S7'W,)"a,a,'] + (m, — 1),
whereu =2 if s=1landwv = 1if s = 2.
Similarly,
E[SS(ay,)] = tr [(W], ST Wy,)ta,al,] + (m, — 1)(m, — 1)d*
E[SS(a,(i))] = my[W(i;, 0)'S™*W(i,, 0)] [a,(i) ] + o7
E[SS(ay(iy))] = m[W(0, i)' ST W0, ip) ]| '[ay(ir) | + o
E[SS(ay(iv, iy))] = [W(i, i) ST Wiy, i) @iy, i) + o -
3.2. Random effects case. If all effects (except mean effect p) in (1.3) are

random, we do not assume that 3, a,(i,) = 0, X, an(iy, i) = 24, an(iy, i) = 0.

In this case, however, we may assume that all expectations of parameters are
zero and that
Ela,a/] =1, o} for s=1,2,

E[ama;z] = ]mlmzafz .
We shall use the notation 0,2,0, 03, 0%, for the variances of b, b,(i,), and by,(i;, i),

respectively; they may be calculated as follows:
Thy = E[b]] — ¢ = X, m, e + (mymy) ol
7, = E[(0,(i))'] = 0} + m, o}y ,
where u =2 if s=1 and u=1 if s=2,
0hy = El(bua(iss i))] = o1y -
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Under this random model, E[y] = g1, = pX1, and variance of y is
V = E[(y — Ey)(y — Ey)']
= XAE[bb'|A'X"12X1,1, X" + Io*,
where 1, is a ¢ X 1 column vector with elements unity. Hence,
E[%7'] = AE(D)A" 4 S~'6*.
Note that
- E[bb'] = diag (¢ + 03 s Iim,—1,9%,> Limy-1,9%0 Limg-1)(my-1)9Ta) -
Then, the expectations of the sums of squares are:
E[SS(b))] = E[#W(W,/S7 W) W,7]
= tr [W(W,/STW) " W/E®#7)]
= tr [(W,S™'W,)'W,/AE(bb)A'W,] + tr [((W,'S7IW,) W,/ ST W ]a*
= m, tr [W)ST'W,] 7o} + (m, — 1)o*,
whereu =2 ifs=1landu =1if s = 2.
Similarly,
E[SS(by)] = tr [W}, S Wy,] e}, + (my — 1)(my — 1)o®.
3.3. Mixed effects case. Suppose that @, is a random effect and that @, is a
fixed effect in equation (1.3). For this case, we do not assume that 33, a,(i;) =0,

but we will assume that 33, ay(i;) = 0, and 33, ay,(iy, i) = 0. Then, 4,(0) = 0,
and

alz(iu 0) = [dl(il)d2(0)]_l[Pl(O7 il)’ Pl(l’ il)’ e ’Pl(ml -1, il)]
® [pa(1, 0), py(2, 0), - - -, py(m, — 1, 0)]ay,
= [dy(i)dx(0)] [ p:(0, &), pi(1, iy)s + -+ pu(my — 1, 44)]
® [13 13 AR ) 1]alz
= [dy(i1)dy(0)]* Z7so* palks i) Lo ang(k, ) = 0,
since 25, an(k, i) =0,
where d,(i)) is the i, + 1th diagonal element of D,, d,(0) is the first diagonal
element of D,. However, in this model, 4,(0) # 0, 4,,(0, i,) # 0. So, using
(1.10) ‘
3.1 by = p + m~%a,(0), b, = a,,
b, = a, + m,"%a;,(0, i) , b, = a;,.
Also, in this mixed model, we may assume that:
(3.2) Ea) =0 and E(@a,) =0, so
E(a) =0 and E(a,) = 0.
Further, we assume that E[a, '] = I,, ¢)%; that is, E[a,a,'] = I, _;,0,". Define
oy = (my — 1)7 X7t Var (a,(i, 1)) and assume that Var (a,(i,, i,)) are identical
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fori, =0,1, ..., my, — 1, then

E[ay(iy, e’y i) = ™= Lot if i =i/ and =i,
2
(3.3) = Lo it i=if and iy
m2
=0 otherwise,
and then
(3.4) Ele,,a;,] = [m2—11m1m2 — my,~' diag (sz, sz, ceey sz)]o'fz

where J,, is an m, X m, matrix with all elements unity. So, we obtain
(3.5) E[a,5(0, i5)a,5(0, i,)'] = Ly 1y0h
Efa;,a},] = I(ml—l)(mz—l)"fz >

and using (3.1) and (3.2)

0'%1 = 0.12 . 0'%2 = m1_10f2 N i.e.,
"N — ’ -1 2
(3.6) Efb,b,'] = a,a,” + m, I(mz—l)o'lz s and
2 _ 2
0}, = 0k -

We now present the expectation of the sums of sqiiares for the mixed model:
E[SS(b))] = E[4' W,(W,'S- W) Wy'7]
= tr [W,(W,S W) W E47))
where
E[%97)'] = AE(bb')A’ + S~'g?;
then
E[SS(by)] = tr [(W)/STW) "W/ AE(bY ) A' W] 4 (m, — 1)o?
(3.7) = mytr [W/ST W]}, 4 (m, — 1)0?
= mytr [W/S'W ] %0* 4 (m, — 1)a®.
Similarly,
E[SS(by)] = m, tr [(W;/ST'W;) 7 E(b,b,")] + (my — 1)0?
= my tr [(Wy'STIWy)"'aa,] + tr [W,/ST'W,] 0%, + (my, — 1)o?,
E[SS8(by(1))] = m[W(0, iy)"'ST W0, i) 7 (ay(is))?
+ [0, £)ST W0, ip)] ™o}, + o,
E[SS(by;)] = tr [W], ST W]}, + (my — 1)(m, — 1)a*.
In numerical example 1.1, we may assume that «, is a random effect associated
with ovens, and a, is a fixed effect associated with temperature. We summarize

the analysis of variance from the results in Section 2 and expectations of mean
squares calculated by the above formulas in the following table:
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TABLE 1.3
Analysis of variance
Source of variation d.f. SS EMS
Total 29 922.0000
CFM 1 796.6897
Error 17 50.1667 o?
A; 2 30.0000 8.80012 + o2
As 3 26.2185 *flag) + 2.240% + o
Ao(L) 1 17.0207 #+7.06(ax(1))2 + 2.350% + o2
AxQ) 1 1.1364 6.54(ax(2))? + 2.186%, + o2
Ay(C) 1 6.8032 6.10(ax(3))2 + 2.035%, + o2
Ay X As 6 5.5557 2.300%, + o

* flag) = tr [(Wy'S-1Wa)1azay’].
o tr [Wa(1)'S-1W(1)]! = 3(2.3529) = 7.0587.

RemARK. Gaylor, Lucas and Anderson [4] present a computational procedure
to obtain the “fitting constants” analysis of variance and expectations of mean
squares for fixed, mixed, and random models, using the same convention as ours
for nonrandom effects. Using their method, we obtain §S(4,, adj. 4,) = 32.2002,
SS(A,, adj. A,) =27.5331, SS(Ay(L)) = 17.5485, S5(A,(Q)) = 0.8375, S5(A4,(C)) =
9.1471, §8(A, X A,) = 5.5557, where the linear effect is not adjusted, quadratic
is adjusted for linear, and cubic is adjusted for linear and quadratic. The expec-
tation of the A,(adj.) mean square was determined for this method to be f(a,) +
2.4643, + o as compared with f(a,) + 2.240}, + ¢* for our method. Note the
large difference in the sum of squares for the cubic by the two methods.

4. Some of the effect parameters equal to zero. In Section 1, we described
the following procedure if some of the parameters b, b,,, - - -, by,...,, are zero in
an n-factor factorial experiment: omit the zero parameters from the parameter
vector b, delete the corresponding columns from the matrix 4 and obtain the
solution. Now suppose, in the mixed model, that there are no interactions be-
tween a specified random effect (possibly blocking effect) and other effects which
have all main effects and interactions among them. For example, suppose y,;,
is the jth observation made on the treatment combination (i}, i,) in the gth block
in an m, x m, factorial experiment, wherev =0, 1, ---, ¢t —1;j=1,2,...,r,,
(r,, # 0 for some g); g = 1,2, - - -, h and v is defined in (1.1). In this case, we
may apply a procedure combining Methods I and II as described in Section 1.
Using the notation in (1.2) and (1.3), let

(41) yvjy:lBg+77v+evjy’
where 8, is a random effect. E[§,] = 0, Var (8,) = o for g =1,2, ..., h, all

effects in 7, are fixed, and N is the total number of observations.
Using matrix notation,

y=X[B.%9] +¢; E[ee'] = 1, 0*,
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then
4.2) Ely] = X[0', '], Vy) = X\ X/og + I 0*,

where X = [X], X,], X, isan N X h matrix and X, is an N X ¢ matrix. By the
least squares procedure, we obtain

(4.3) 7 = GXJ[I — X(X/X)'Xly + [H — ]z,

where G is a g-inverse of X;/[I — X (X' X)) X)']1X,, H = GX,/[] — X,(X/' X)) X/']X,,
and z is an arbitrary ¢ X 1 vector of components z,, z,, - - -, z,_;.

Now, we may apply Method II as described in Section 1 to obtain b and
analysis of variance using the procedures in Section 2. A theorem related to
this case will be proved in Section 6.3.

5. Some of the subclasses empty. In the event that some of the subclass
numbers are zero, a fractional replicate results with respect to all of the combi-
nations. In model (1.2), suppose that @ = t — f, f < t, subclasses have no obser-
vations, i.e., some of r,’s are zero; then using the notation defined in Section 1:

(5.1) y=2X9,+ ¢, Elee'l = I,0*,

where y and € are N X 1 column vectors, %, is an f x 1 parameter vector, and
Xisan N X f design matrix.

Let A, be an f X t submatrix of A, as defined in (1.7), and let 4, be con-
structed by deleting some of the d rows from the matrix A4 such that

(5.2) 9, = Ab

is satisfied; let A, = W *K,, where W * and K, are f X tand f X f submatrices
of W* and K, respectively.

Suppose that after rearranging the column order in W, *, the partitioned
matrix [W,, ;, W}, ;] results and is obtained such that W, . is an f X f non-
singular matrix and W, , is an f X d matrix. For convenience we shall assume
that the matrix W, , is constructed from the first f columns in W * and d <
(my, — 1)(m, — 1). Then, the matrix 4, may be partitioned as:

Ay =45 Wi ]
Now, rewrite (5.2) as:
(5-3) 7, = [A/% Wa /JIb/s b1
and note that the matrix 4,* and vector b, will be dependent upon the choice

of the matrix W, ,.
Let

(5.4) Z'=Wg,.
For the column vector of Z = (Wp!,)’, we shall use the following notation:
Z =2, Z,(1), ---, Z,(my — 1), Z\(1), - -+, Zy(m, — 1),
le(l)’ e Zy((my — 1)(m2 - 1) - d)] ’
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and let Z, =[Z1), -+, Z(m — )], Z,=[Zy1), -+, Zy(my—1)], Z, =
[Zm(l)’ 212(2)’ Tt Z12((m1 - 1)(m2 - 1) - d)] Then,

(5.5) Z'A* = diag [(m,m,)}, mzil(ml_l), ml’«fl(mz_l), L, 1y mg-1-a] -
Next, let
(5.6) bf* — bf + (ZlAf*)—lZl W12,fbd — (bof’ blf/) bzf', bwf')' ,

then, from (5.3)
b * = (Z'A*)'Z'y; .

Since the least squares estimate of 9 is § = S X"y,
(5.7) b * = (Z'4%)7'Z'%, .

We shall use the following quadratic forms as sums of squares for main effects,
two-factor interactions, and so on.

Sums of squares Degrees of freedom
SS(b)) = 7/ Z[Z/STZ] 2%, m, — 1
Ssow,”) = 4/2,[Z2,S7Z,]7'Z,'%); (my — 1)(m, — 1)

The sums of squares for single degree of freedom contrasts are:

SS(bxf(is)) = ﬁf,Zs(ia)[Zs(is),S_IZs(ix) ]_IZa(ia),ﬁf ’
SS(bﬁ(il’ iz)) = ﬁf’le(il’ iz)[le(il’ iz),S_Ile(il’ iZ)]_IZIZ(il’ iz),ﬁf M

In this case, the expected values for the sums of squares in the above analysis
of variance for fixed, mixed, and random models may be obtained in the same
manner as described in Section 3. This will become evident from the numerical
example given below.

In example 1.1, suppose that there were no observations for the combination
(2,2), i.e., g1 = 5, yi, = 6 in Table 1.1; then § = X'X = diag (3,2, 3,2, 2,
3,1,3,2,3,3), #%,=(2.6667,5.0000, 3.6667, 4.5000, 3.5000, 5.0000, 6.0000,
6.3333, 5.0000, 7.3333, 8.0000)’. Consider the following orthogonal matrix
which is constructed by rearranging the rows and columns of W*,

l;Wu,f s le,f:l .
W21,f W22,f
In this example,

Wi, = (—1,3,-3,1,2, —6,6, —2, —1, 3, 1)/2(30)¢,
Wy = (1/2(3)%, 1/2(15)}, —1/2(3)t, —3/2(15)%, 1/2(2)%, 1/2(10)4,
—1/2(2)¢, —3/2(10)* 1/2(6)}, 1/2(30)t, —1/2(S)"Y
ane War = —3/2(30)¢,
then
Z' = Wil
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may be obtained by the following formula (see Banerjee and Federer [1]):

— -1
Z = Wll,f - Wl2,fW22ny21,f

—10 4 0 1 -5 2 0 1 =5 2
0 —6 0 3 0 -3 0 3 0 -3
10 2 0 2 5 1 0 2 5 1]
= [Z(0), Z,(1), Zy(2), Zy(3), Z\(1), Z\(2), Z\x(1, 1), Z}i(1, 2), Z,i(1, 3),
Zy(2, 1), Z4(2,2)],

r 2 —10 4 0o -2 4 —1 1 1 -5 27
6 0 —6 0 0 3 0o -3 3 0o -3
0 0 0 0o -3 -3 3 3 0 0 0
4 10 2 o —1 —4 -2 1 2 5 1
5 —7 1 -3 1 1 -1 —1 =2 10 —4

= -3 -9 3 9 -3 -3 3 3 —6 0 6! D1,
9 9 —9 _—9 3 3 -3 -3 0 0 0
1 7 5 3 -1 —1 1 1 —4 —10 -2
2
6
4

where D = diag (6(3)%, 6(15)%, 6(3)%, 2(15)%, 3(2)%, 3(10)%, 3(2)%, 10¢, 3(6)t, 3(30)t
3(6)). Therefore, for example.

b

Z(1)'%, = (—26.667 + 45 — 24.5 — 45 4 54 + 44.3331 — 50 -+ 80)/6(15)t
and
[Z,(1) S Z,(1)]™* = 1.7116 ;
S0 we obtain
(i) SS(6,/(1)) = %,/ Z,(N[Z,(1) ST Z,(1)] Z,(1) %,
= [(77.1661)/6(15)}]*(1.7116) = 18.8738 .
E[SS(b/(1)] = m[Zy(1)'S7Zy(1)](ay(1))* + ([Z(1)'S7Z,(1)]
+ Wi Z(DIZ(1) ST Z( )7 Zy(1) Way Yot + o .
Similarly,
(ii) SS(b,7(2)) = 3.5233, and
E[SS(b,/(2))] = 3(0.7742)(ay(2))*, + (0.7742 + 0.9602)0%, + o* .
(iii) SS(6,7(3)) = 0.0022 ;
E[SS(b,(3))] = 3(0.5195)(ay(3))* + (0.5195 + 1.0390)02, + o* .
(iv) SS(by/) = 27.2308 ;
E[SS(b,)] = m, tr [(Z,/S7'Z,)"a,a,] + tr [(Z,/S1Z,)!
+ Wi 1 Z(Z)/ ST Z,) P Z) W, flod, + (my — I)o?
= 3tr[(Z,/S7'Z;)"a,a,] + (5.2569 + 1.1174)¢%, + o,
where Z, = [Z,(1), Z,(2), Z,(3)].
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(v) SS(b/) = 22.3308 ;
E[SS(b/)] = mytr (Z,)S7'Z)) 0 + tr [W1, [ Z(Z)/STZ,)) 7 Z)/ W), (o3,
+ (m, — 1)a*
= 4(2.9197)0* 4 1.70444%, + 2%,
where Z, = [Z,(1), Z,(2)].
(vi) SS(b}) = 3.6832;
E[SS(bly)] = tr [(Z,'S7Z,) " + Wi ; Z,(Z,/S7T2,)7 2, Wy sl
+ ((m, = 1(m, — 1) — d)o?
= (11.5510)0%, + So?,
where Z,, = [Z,(1, 1), Z,,(1, 2), Z,y(1, 3), Z,x(2, 1), Z,y(2, 2)].

We now obtain the following analysis of variance table.

TABLE 14
Analysis of variance
Source of variation d.f. SS EMS
Total 27 861.00
CFM 1 736.3333
Error 16 49.6687 a?
Ay 2 22.3308 5.84012 + 0.85¢3, + o2
A 3 27.2308 *f(asf) + 2.1203, + o2
Ax(L) 1 18.8738 5.13(ax(1))? + 2.0903, + o2
AxQ) 1 3.5233 2.33(ax(2))% + 1.6363, + o®
Ax(C) 1 0.0022 1.56(ax(3))% + 1.566%, + o2
A1 x Az 5 3.6832 2.3163, + o2

* _f(az) =tr [(Zzls_122)_lazaz’].

6. Generalization to an n-way classification. Consider an asymmetric facto-
rial experiment with n factors {4,: s =1,2, .- -, n} such that the sth factor 4,
has m, levels. The space of treatments, Z, is represented by the set Z =
{Gy iy - -+50): 8, =0,1, ...,m, — 1 foralls =1,2,...,n} which contains
t = ]]i-, m, points. The order of the points in Z is given by the relationship
between the coordinate of a point z, = (i, iy, - - -, i,),v=0,1,...,¢t— 1, and
the order subscript

(6‘1) V= [Z:;ll (HZ=3+1 mk)is] + in *
Let y,; be the jth observation made on the wth treatment combination,
(> By + -+, 0,), where j = 1,2, ..., 7, (r, = 1), and let N be the total number

of observations; then y,; is expressed as:

(6'2) yv:i - % + 8v:i >
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where

(6.3) N = ¢+ 2 al(iy) + Z Z poiys B) 4 oo+ @iy By 05 By)
Using matrix notation, i

(6.4) vy=Xg+e¢,

where X is an N X ¢ design matrix.
Using the matrix defined in Section 1, let P,...,, = P, P, ® --- Q P,, W =
P...o(Pls..uPrs...,)", and we describe the column vectors W(a,, a,, - - -, a,) of
the ¢t X ¢ orthogonal matrix W by considering the space of the ¢ points where
{(ay, a5, -+, )i 0, =0,1,...,m;,— 1 forall s = 1,2, ..., n}. Let W* be the
column order rearranged matrix from the matrix W in the following way, i.e.,
w(o,0, -..,0), W(1,0,...,0), ..., W(m, — 1,0, ---,0), W(0,1,0,...,0), - -,
wm, —1,m,—1,...,m, — 1). For simplicity, we may use the following nota-
tion: W, = W(O 0, ---,0), Wy(i,) = W(i,0, - O) Wy(iy) = W(0,i,0, ---,0),
Wl i 0, -, 0) etc.. and W, = [Wy(1)s Wi(2),. - Wiom, — D), W, = [W(1),
Wi2)s oo Wity — D) -y Wagoy = [W(L, 1, oy 1), W1, 1, 00,0 2), s
Wm,—1,m—1,...,m, — 1)].

Let
(6.5) A = W*K,
where
(6.6) K = diag (IT}- m.}b, ITia mt i _ays < -5 ”’1”11;;2(%-1), Iy my-1y) -

Consider the orthogonal transformed parameter vector (a*’, a’)’ from the pa-
rameters &’s, as in Section 1, and let
6.7) b = (by, b/, by, -+, b, Blyy -y bl s bla ) s

where
by = p + 21 m,"*a,0) + 2 (m, m,)"*a, (0, 0) + -

1S1‘<s$n

+ 17 m,"ta,,...,(0, 0, - -+, 0),
b, = a, + 332 m, 7, (0, ) + Xio,n m, (0, 0),
b = B T 0+ 2 0,1)
(6.8) + 2limen My, rsu(lr’ iy 0) + -+
+ Ilisim, I m ™ Tl my ™t
X 8y5.0(0, -y iy 0, cny iy 0, e -, 0)

bys..cn = Ay, + ml_éau--.n(O, A in) s
bu---n = A5...p -

Then, the vector % in (6.4) can be written as:

v:Ab,
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and from (1.14)
(6.9) b= A% = KW¥S'X"y .

6.1. Fixed effects case. 1If all effects in (6.3) are fixed b = ¢, b, = a,, b,, =
a,, ---, by, ., =a,., from(6.8); then, from (6.9), we obtain &, = Q,4,, a,, =
0,%0,4,, -, @y..., = ([[~, ® Q,)4,,...,, where Q, is obtained by partitioning
the matrix P, such that P, = [1, P,*] and letting Q, = [P,*'P,*]"*P*.

We assume that y is a vector of random variables following a multivariate
normal distribution with mean % and covariance Is*. With the above notation,
we now state and prove a theorem on the distribution of quadratic forms.

THEOREM 6.1. In the case of fixed effects, the quadratic forms #'W (WS~ X
W) WS o™ R, f'W (W STW, ) W]o7 G, ,and ' Wiy (Wi WS Wiy )Tt X

Wi,....07%%) subject to restrictions a(0) = a,(1) = --- = a,(m, — 1), ,,(0,0) =
ars(o’ 1) == ars(mr -1, m, — 1)5 v+, and a12~~~n(0’ 0,---, 0) = a12-~~n(0’
0,---, )= =ay,. . (m—1,m—1,...,m,—1)aredistributed as y* with m,—1,

(m, — 1)(m, — 1), ..., and T[r_, (m, — 1) degrees of freedom, respectively, and
the quadratic forms 7/ W (i,)(W (i, S W (1)) WY 0=, & W lis 1) s 1) X
STUW iy L)) Wiy )07, -+, and Wiy iy - -y i) (Wiiys iy -+ 1,7 X
Wiy, iyy «++5 0,)) Wiy, @y, + -+, 1) 0729 subject to ayi,) =0, a,(,i)=0,.--,
and a,... (i, iy, - -, 1,) = O are distributed as y* with one degree of freedom,
respectively.

Proor. We shall prove one case, e.g., #'W, (W,/S7'W,)"'W '¢~*7: The other
cases may be proved similarly.

Since # = S X"y, Cov (4) = S~%¢?, then V(W,%) = W,/S7'W,6’, and a,(0) =
a(l)=-.. =a,(m,— 1)impliesa, = 0, i.e., W/p = 0,0 E[W/7] = W,/ = 0.
Furthermore, the rank of the matrix W,/S~'W, is clearly m, — 1. Hence, the
quadratic form #'W (W,/S7'W,)7'W/67*% subject to a,(0) = a(l) = .-+ =
a,(m, — 1) is distributed as y* with m, — 1 degrees of freedom.

6.2. Random effects case. If all effects (except mean effect z) in (6.3) are
random, we may assume that all expectations of parameters are zero and that

Ela,a/l =1, 0. for s=1,2,---,n,
Ele,a.] =1, . 0}, for r=1,2,...,n—1;

s:2’3"",”; r<s,
’ — 2
Ela,... .a...,] = ]nz‘=1m30'12mn .

The variances ¢ ,0%, ..., g} for the by, b(i,), - - -, by . u(iyy gy -5 1),
0 8 12 'n
respectively, may be calculated as follows:

o3, = E[b] — ¢ = JiaamTler + 2 3 (mam) oy, + -
lérr<ss§n

+ (II:‘=1 ms)—lo‘fz-nn ’
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o}, = E[(b,(i,))'] = o + Ziim, 0%, + Licenm,Tog, + -
+ Hq_l —1 n s+1m 0'%2 o9
0'% = E[(bﬂ(lr’ i )) ] = 0'" + Zr im —lgin + Zu =r+1 m —10-31“

1 - -1 —1,2
+ Zu o1 My, 7100, -+ IIizim? H]—r+l m; k=1 My 015 s

Oy, = E[(b23 n(l2’ Igy ooy 0y))'] = Oy + M7 00

O gon = Olyrin
Under this random model, E[y] = 1, = #X1,and variance V' = XAE[bb']4' X" —
©#*X1,1,/X" + Is*. Hence,

V(%) = ST X'VXS™
= AE[bb']A" + 11" 4 S7'¢*.
Note that
E[bb'] = diag (¢* + Uioa L1055« IH” _g(mg 1Ty Inz‘zl(m,—l)afzmn) .
Hence we have
V(W) = (1322 1, T ain M) 0,02, + W/STIW, 0%,

since W*'4 = K. Similarly,

( 57}) (H H j=r+1 mj HZ:;H ’nlc)l(m,‘—l)(m,—l)o.?},.u + W;s S_IWM()‘? ’

V(Wéanﬁ) = ml H:L=2(ma—l)o23...n + W;a...nS—IW23...n02 )

V(W{Znﬁ) = Il'[:;l(ms—l)a?%--n + WionS7 Wi 0°

Therefore, for the random effects case, if we assume that y has a multivariate
normal distribution with mean 1, and variance V, then Theorem 6.1 may be restated

with the restrictions that 65 = 0,07 =0, ..., o} = 0 in the place of those
B brs bygeeem P
used in the theorem.

The expectations of sums of squares are:
E[SS(b,)] = T1174 m, T[}eera m; tr [W/STW,] 70, + (m, — 1)o?
E[SS(b,)] = TLiz m, 152 m; Tliss my tr [W,S7W, |0
+ (m, — 1)(m, — 1)a*,

E[SS(bss...n)] = mytr [Wy,. nS_1W2/3 n]_l"%% + IIi-. (m, — 1)o®,
E[SS(bys...n)] = tr [Wa. n ST Wy 0] 7000 + 1o (1, — 1)a™.

6.3. Mixed effects case. Suppose that @,, @,, and a,, are random effects and
that other effects are fixed in (6.3). For this case, we do not assume that
Zil (i) = Ziz ay(iy) = 0, Zil (i 1) = Ziz ay(iy, i) = 0, but we will assume
that ¥rstay (i) =0 for s=3, Xrelta(i,i,) =0 for k=1,2, s=3;
Z;{':;_ol alZa(il’ iz, is) = 0 for N g 3; .. '; Z;”;s:_ol am...n(ip ig, M) ln) = Zv’,{’;@_ol alZ-un(il’
Iy » v+, i) = 0.

Then, a,,(i;,0) =0 for s = 3, a,(i,,0) =0 for s = 3, a,,,(i,0,0) =0 for
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r>3,s=4, a,,i,0=0for r=3,s=4,..-, Qi 0,0, -+, 0) =
0, -y Gugeniss fas Bgs =+ 5 En_yy 0) = 05 a,,,(i,0,0) =0 for r =3, s =4,
Qyga...nliys 35 By + + + 5 In_y, 0) = 05 @y, (iy, 1, 0) = Ofors > 3,---, Q. (i1, 05,0, -+,
0) = 0, ayy...,(iy, By Igy * + +» i,y 0) = 0, but a,(0) # 0, a,(0) # 0, a,,(0,0) + 0;
a,(i;, 0) # 05 a,,(0,i) + 0 for s = 3 and i, #0, a4..,(0, 6y, i, -+, 1,) #0,
Q. (0, 03y By ++ -5 0,) =0 for iy = ... =i, 3 0; a,,,(0,0,i,) + 0 for s = 3,
i, # 0 and a;..,(0,0,4, ---,i,) #0 for iy = -.- =i, # 0. Also, since the
other effects are fixed, we make the assumption that the effects sum to zero over
the levels of any factor of the fixed effects.
In the above mixed model case, then, we have

by = ¢ + m,"%a,(0) + m,~ta,(0) + (m,m;)2a,(0,0),

b, = a, + my,7a (i}, 0),

b, = a, + m,7%a,x(0, i) ,

b, = a;,,

b, = a, + i ma,(0,4) + Do Zicen (Mum W) H,(0, 4, 0)
+ (mymy)~*a, (0,0, 1) + -+ + (mym, [1555m; 1501 m;)~*
X 4.0, --+,i,0,--.,0) for s>=3,

1,2, and s=3,

o

[

b,, = a,, for k

Il

bk34~~n = Q3.0 for =1,2,

k
blzs = alZs fOI' s Z 3 ’

Digs..cn = Aigs0m 5
b,, = a,, + 2= mk_%aksu(o i, 1,) + (mymy)~*a,,,(0,0,4,10,) + - --
+ (mym, ym [14ha my Thieu M) ™
X a,.. n(OO B T A | P ) for s=3, u>s,

by.., = wt Zk R TR (LA A AN i)
(m1m2) ta, (0,0, 05,0, ---,10,).

Also, in the above mixed model case, we may assume that E[a,] = 0, E[a,] = 0,
E[a,] = 0, E[a,] = 0, E[a,] = O, - - -, E[a,;.,] = 0. Further, we assume the
effects @,, @, and a, are mutually independent random vectors such that
Ea,a,) =1, 0, for k= 1,2, and E[@,a}] = 1,00, then Ela,a,’] =
Li,—1,04 for k = 1,2, and E[a,,a},] = 1(1"1_1)(1"2_1)012-

Define ¢, = (m, — 1)~' Y1™s3! Var (a,(i,, i;)) and assume that Var (a,,(i;, i;)) are

ig=0
identical for i, = 0, 1, ..., my — 1, then we have E[a;aj;] = I(ml_l)(mrl)a%. By
similarly defining 0%, 6y, - - -, and o},,...,, We obtain E[a,a%] = {im,—1)(my-1,92
’
Efa;aiy] = I(ml—l)(mz—l)(m3—1)0123’ ooy Elag. aah. ] = 1115:1(1"8_1)012.-. . Further-

more, we assume that @, @, @, - - -, and &,,..., are independent of each
other.
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In this case, we have
Oby = E[b] — p* = m;~o” + my~le,t 4 (mymy)Tloh,
Ty, = o' + my"'el,,

2 o2 —152
Gy, = 0y + Moy,

‘7%12 = 0%,
(6'10) 0.%3 = Z?s:l mk-la%ﬁi + Z?s:l ZZ=3+1 (mkmu)—loixu

+ (mymy)Tlaly + - A (mymy [[2imy [T my) ™
X 0n s for s>3,
a}, = di, for s=3,

_ —1,2 1.2
0. = L M 00 + o - (Mymy) 0%,
34 n

Now, let
V* = E[(y — Ey)(y — Ey)']
= XA[E(bY') — E(b)ED)]|A'X + Is*;
then

V(%) = ST'X'V*XS™!
= A[E(bb') — E(b)E(D’)]A’ 4 S~'0*.
Using (6.10)
Viw'g) = (1120 mi 1 =ss M), —0,05, + W/ST'W,0?,
VW %) = (I1iz m; T2 my [li-en mk)I('m,,—l)(ms—l)airs + W STW, 0%,

V(Wi..n®) = m, In;;z(ms—l)ogsmn + Wi ST Wy 0%,
V(Wia.n®) = H§‘=1<ms—1)”122...n + Wh ST Wy 0.
Thus, for this case also Theorem 6.1 can be restated subject to proper restrictions.
The expectations of the various sums of squares are given below:
E[SS(b))] = E[7'W(W/ST W) W/'7]]
= tr [W(W/ST W) WY EG7)]
where
E[77)'] = AE(b)A" + S~1o*;
then
E[SS(b,)] = tr [(WY'ST W) (T L= mo)t Wi Wi(bi by )T 13-, m,) Wi Wi + (my — 1)
= ([Tiee m,) tr [WY ST W ] 70}, 4 (my, — 1)a*.
Similarly,
E[SS(b,)] = (m, [Tios m,) tr [W)/ST'W,] 70}, + (my, — 1)a*,
E[SS(by,)] = (I1=5 m,) tr [W, ST W] 70, + (my — 1)(m, — 1)a*,
E[SS(b,), s = 3] = (mym, [[iZ5 m; 15-ea mp){tr [(W/STIW)a,a,]
+ tr [W/ST'W,]7e} } 4 (m, — 1)d*,
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E[Ss(bls)’ s % 3] = (mz H:;(}! mi H?=s+1 mi) tr [W{ss_lufls]_logs
+ (my — 1)(m, — 1)o*,

E[SS(b:”n)] == (mlmz){tr [(Wle“nS—l 34...7,,)_1334...”3;;4...”]
+ tr [W:,uns_l 34__%]_10'%34“_”} + H:b=3 (ms - 1)02 ’

E[SS(b,s...,)] = mytr [Why...n ST Wy ] 20%.... + T12s (M, — 1)a?,
E[SS(by,....)] = tr [Why. S Wiy 705 + T12s (my — 1)0*.

In the mixed model (4.1), suppose that » has an n-factor factorial structure
and y is a vector of random variables following a multivariate normal distribu-
tion with mean X[0’, ']’ and variance V = X,'X,0, + I;0% we now state the
following lemma without proof (see Graybill [5]).

Lemma 6.1. If y is distributed N(m, V), then y'By is distributed as y* with k

degrees of freedom if and only if m'Bm = 0 and BV is an idempotent matrix of
rank k.

THEOREM 6.2. In the case of equation (4.1), Theorem 6.1 can be restated by re-
placing S7' by G.

Proor. For example, in the case of #'W (W,/GW,)"'W /a7,

B = [I — X(X'X)X/1X, = GW(W/GW) " W/GX/[] — X,(X,/ X)X, ]o~*
(see Searle (1966)), then
BV = [I — X(X/X)X/1X,GW,(W,GW) " W,GX/[] — X,(X/X)"X/].
It may be easily verified that
(BV)(BV) = BV,
(Ey)B(Ey) =0 if a=Wm%=0,

and the rank of BV is m, — 1. Then, by Lemma 6.1 #'W (W /GW )'W, o7}

subject to restriction W'y = 0 is distributed as 3’ with m, — 1 degrees of freedom.
The other cases may be proved similarly.
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