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FISHER INFORMATION AND THE PITMAN ESTIMATOR
OF A LOCATION PARAMETER!

By SIDNEY C. PORT AND CHARLES J. STONE
University of California, Los Angeles

In this paper we consider estimation of the location parameter # € R?
based on a random sample from (4 + X, Y), where X is a d-dimensional
random vector, Y is a random element of some measure space Z/, and (X, Y)
has a known distribution. We first define the Fisher information _#(§ +
X, Y) and the inverse information .#=(¢ + X, Y) under no regularity con-
ditions. The properties of these quantities are investigated. Supposing that
E|X|? < oo for some 4 > 0 we show that for n sufficiently large the Pitman
estimator 6, of 4 based on a random sample of size n is well defined, un-
biased, and its covariance, which is independent of ¢, satisfies the inequality
nCov én > (0 + X,Y). Moreover, limy_..nCov én =70 +X7Y)
and n(fn — 0) is asymptotically normal with mean zero and covariance
S0+ X, Y).

1. Introduction. In this paper we consider estimation of the location parameter
# € R¢ based on a random sample from (§ 4 X, Y), where X is a d-dimensional
random vector, Y is a random element of some measure space 7/ having distri-
bution y,, and (X, Y) has a known distribution. Such a model arises in the
estimation of regression coefficients of a stochastic process.

In Section 2 we define the Fisher information .#(0 + X, Y) as a nonnegative
function on R?. Todo so we let W be independent of (X, Y)and have the standard
normal distribution on R¢. Fore > 0, (0 + X + oW, Y) is defined classically
as follows: Let f,(x|y) denote the continuous version of the conditional density
of X + oW given that Y = y, let f,’(x| y) denote the derivative of f,(x|y) with
respect to x (that is, the vector of partial derivatives), and let (, ) denote the
usual inner product on R*. Then

A0+ X + oW, Y)(e) = §§ LD O vy (ayy ecRe.
fo(x1y)
After showing that (6 + X + oW, Y) is non-decreasing as ¢ — 0, we define

A0+ X, Y)=1lim,_, (0 + X + oW, Y).

We set (0 + X) = . A(0 + X,0). If d =1then. (6 + X)(e) = e, —c0 <
e < oo, where the positive constant .# agrees with the definition of Huber [3].
There Huber showed that
’ 2
= 52 (LY fx) ax
f(x)
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226 SIDNEY C. PORT AND CHARLES J. STONE

if X has an absolutely continuous density f such that the indicated integral is
finite and .. = 4 oo otherwise.
Set
V={e: /(0 + X, Y)(e) < oo}.

Then V is a subspace of R? and there is a positive definite symmetric linear
transformation 4: ¥V — ¥V such that

A0 + X, Y)(e) = (e, Ae), ecV.

In Section 3 we define the inverse Fisher information . =(0 + X, Y) as the non-
negative definite symmetric linear transformation from R? to itself given by

IO+ X, Y)e= Ale, ecV,
:0, eeVLa

where V* is the orthogonal complement of V. If V= R? we can write the
inverse information as . #~(# 4 X, Y). Various properties of inverse Fisher
information are obtained in Section 3. In particular

lim, ,. /(6 + X + oW, Y)=.5(0 + X, Y).
In Section 4 we study estimators of ¢ based on samples from (¢ 4 X + oW, Y).
These results are used mainly as tools in Section 5 and in Stone [8].

Consider a random sample
@+ X,Y), -, (0 +X,,7Y,)

of size n from (6 4+ X, Y). For ee R set p = (e, §). If T, is an estimator of p
based on this sample, its maximum mean square risk is defined as sup, E,(T,— p)".
Let M, (e) denote the infimum of this quantity as 7', runs over all such estimators.
If M, (e) < oo, the Pitman estimator P, of s exists, is unbiased and invariant (i.e.,
P, — p independent of ¢), and has mean square risk M,(e). If T, is an invariant
estimator of y based on the same sample and having finite mean square risk, then

P, =T, — E[T,|X,— X,, Y, 1 <i<n].

If 4, is an estimator of # based on the sample of size n from (¢ + X, Y), its
maximum total mean square risk is defined as sup, E,|6, — 6. Let M, denote
the infimum of this quantity as 4, runs over all such estimators. If M, < o,
the Pitman estimator #, of 6 exists, is unbiased and invariant (i.e., b, —0is
independent of #), and has total mean square risk M,. If 6, is any invariant
estimator of 6 based on the same sample and having finite total mean square
risk, then

6, =6, — E[6,|X,— X, Y, 1 <i<n].

For discussions of Pitman estimators and their minimax properties in various
levels of generality, see Pitman [6], Girshick and Savage [2], Blackwell and
Girshick [1], Kudd [5], and Kiefer [4].

In Section 5 we show that nM,(e) = (e, . ~(f + X, Y)e) and consequently
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a

that nM, > trace . ~(0 + X, Y). It follows that if M, < co, then nCov f, =
(0 + X, Y). If

(1.1) EIX|” < oo for some ¢ > 0,

then M, < oo and the Pitman estimator 8, exists for n sufficiently large. In

Theorem 5.2 we show that if (1.1) holds, then . (n#(f, — 6)) — N(O,.» (0 +

X,Y)) and nCovf, —.7~(8 + X, Y) as n — co. Observe that the results of

Theorem 5.2 are shown to hold without making any assumptions concerning

existence or smoothness of densities. But the mild assumption (1.1) is necessary.
Further results on these topics are covered in [8].

2. Fisher information. In this section we will define and study the properties
of the Fisher information .#(6 + X, Y) on ¢ contained in (§ + X, Y). Here 6
isan unknown constant in R¢, X is a d-dimensional random vector, Y isa random
element of some measure space /, and (X, Y) has a known distribution. The
Fisher information .(# 4+ X) of 6 contained in § 4+ X is defined by setting
A0 + X) =70 + X,0). Let p, denote the distribution of Y and let F(+|y)
denote the (regular) conditional distribution of X given Y = y.

Let W be independent of (X, Y) and have the standard normal distribution on
R*. For ¢ > 0, ¢W has the density ¢, given by

0u(x) = d(z‘ o SPL 127

y) has the density

fo(xy) = § Fdz| y)po(x — 2) .
This density is differentiable with respect to x and

[ (xy) = Fldz| y)p,'(x — z).
Here

0/(x) = = F o).

(By the derivative of a function on R?, we mean the d-dimensional vector of its

partial derivatives.) The distribution of (¢ + X + oW, Y)isabsolutely continuous

with respect to the product measure dxy, (dy) on R* x .~/ and has the density

fo(xvy; 0) :fu(x - 0|,V) .

We define .7 (6 + X + oW, Y) to be the nonnegative function on R? given by
p 0/00)f (X, Y; ), e)

2.1 A0+ X + oW, YY(e) = E[/(L.* (X, Y5 6), €)'

@.1) (0 + X + oW, Y)(e) X v

Then . 7(0# + X 4 oW, Y) is given independently of # by

0 x oy e[ F4T

o D
5§ Ve dxn (@)
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LEmMA 2.1. (0 + X + oW, Y)(e) < o7%e|".
Proor. By applying Schwarz’s inequality to
(fS(x1y), ) = (§ F(dz] y)o,/(x — 2), e)
= § Fldz| p)(p(x — o) @200

(SD(,(X - z))é
we conclude that

(f/(x]y). e { F(dz|y) (¢ /(x — z), ) .

fa(xly) o SDH(X - Z)

By integrating on x and noting that

§ (9,/(x), € 40 — oel?
@,(X)
we see that the lemma is valid.

LEMMA 2.2. There is a positive definite symmetric linear transformation A(c) from
R? onto itself such that

A0 + X + oW, Y)(e) = (e, A(o)e) .

Proor. The transformation A(c) is given more explicitly by

(€1, A(a)e)) = §§ (f/(x]p)s e)([fo'(x] ), €) dxpy(dy) .
fo(x1)
It is well defined by Lemma 2.1 and Schwarz’s inequality and is easily seen to
be positive definite.

LemMA 2.3, If Z is independent of (X, Y), then
SO+ X+ oW, Y, 2)= A0+ X+ aW,Y).

Proor. By hypotheses F(-|y, z) = F(+|y). Thus f(x|y, z) = f,(x|y), from

which the result follows.
Let <%, be the o-field of events determined by Y.

LemMA 2.4. If Z is a d-dimensional random vector that is =5, measurable, then
SO+ X+ Z+ oW, Y)y= 70+ X+ oW, Y).

Proor. There is a measurable function g: 2 — R?such that z = g(Y). Thus
the conditional density of X 4+ Z + oW given Y = yisjust f,(x — g(y)|y), from
which the result follows.

The next result is close to results found in Section Sa.4 of Rao [7].

LEMMA 2.5. Suppose %, & &,. Then

(2.2 E[f_°’(x 1Y) 1x z] _ 9/(X12)
' LX) 9,.X1Z) "’
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where g,(+|z) is the conditional density of X + oW given Z = z, and
(2.3) SO+ X+ oW, 2)< A0 + X+ oW, Y).

Proor. By assumption Z is a random element of some measure space 7. In
order to prove (2.2) it suffices to show that if A4 is a measurable subset of 2 and
h: R* — R is continuously differentiable and has compact support, then

"(X|Y) 9,(X|Z)
(2.4) E[h(X 1,(Z f_(__] - E[h(X)l (z) 9/ X12) 1
AT X112
The right side of (2.4) equals — E#'(X)1,(Z). Since B, C B, there is a measur-
able subset B of Y such that 1,(Z) = 1,(Y). Using this observation, we conclude

that the left side of (2.4) also equals — EA'(X)1 ,(Z). Thus (2.4) holds and hence
so does (2.2). It follows from (2.2) that

P[@XI2.9T _ p[@X12, ALK, 9]

9,(X12) 9.(X[Z)f(X|Y)
Consequently
0< E[(g/(xlz), e) _ (f(X]Y), e :r
9.(X2) fXTY)

= SO0 +X+oW,2)+ A0 + X+ oW, Y) 270 + X + oW, Z)
=S0+X+oW,Y)— A0 + X+ oW, Z),

which completes the proof of (2.3).
THEOREM 2.1. _A(0 4 X + aW)(e) is a continuous function of the distribution of X.

Proor. Let F denote the distribution of X and let f, denote the density of
X 4+ oW. Then
fo(x) = § o, (x — 2)F(dz) ,
(f'(x), &) = § (¢,/(x — 2), e)F(dz) ,

and

O+ X + oWy = § L
Sao(x)
LEMMA 2.6. For0 < N < oo

j Qeiza (soa’()}(—x;), (A2 v < g-2Yef? §,.0x F(dZ).
ProoF. We can suppose that

§22v F(dz) > 0,
since otherwise the result is trivially true. It follows as in the proof of Lemma
2.1 that for any probability distribution G on R?

§ (§ (p,/(x = 2), e)G(dz)) dx < oYe|?.
§ 0.(x — 2)G(dz) o

The lemma follows easily by setting G(dz) = F(dz)/§,, .~ F(dz).
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LEMMA 2.7. For fixedo > 0, N = 0, and ¢ > 0, we can choose M > N inde-
pendently of F such that

§imima (Sizsv (@, (x — 2), e)F(dz))? < clef*, ec R .
B folx)
Proor. There are positive constants K and ¢ such that
’ Po(x) < Ke=l=, xeR*,
and
I(@,'(x), e)] < Kle||x|g,(x) , xeR*.
For |x| = N
[§11sn (9,/(x — 2), €)F(dz)| < Kle|(|x| + N)f,(x) .
Also
1§22 (0,/(x — 2), e)F(dz)| < K’le| § . cy [x — z|e'°“—z'2F(dz)
é K2|e|(|x| + N)e—c(lxl—N)2 .
Consequently

1§ zsn (@' (x — z), e)F(dz)[* < K?e|X(|x| + N)2e—c(lx|—N)2
[:2) -

from which the lemma follows easily.

LEMMA 2.8. Forg > 0, M >0, and ec R?

SI \<x M dx
o= fl](x)

is a continuous function of F.

Proor. This is a direct consequence of the definition of weak convergence
of distributions.

Theorem 2.1 follows easily from Lemmas 2.6—2.8.

CoOROLLARY 2.1. Let X,, X be d-dimensional random vectors and suppose that the
conditional distribution of X, given Y = y converges weakly as n — oo to the condi-
tional distribution of X given Y = y for almost all y (w.r.t. pt,). Then

lim, ., (0 + X, + oW, Y)= A0 + X 4 oW, Y).

Proor. This result follows easily from Lemma 2.1 and Theorem 2.1.

LEMMA 2.9. Foreache, #(0 + X + oW, Y)(e) is a continuous and non-increas-
ing function of ¢ (equivalently, it is non-decreasing as o decreases).

Proor. Let W, and W, be independent standard normal random variables on
R? such that (W,, W,) is independent of (X, Y). Let 0 < ¢, < . Then
O+ X+ oW, Y) = A0 + X + oW, + (6* — o)W, Y)
S SO + X 4+ oW, + (62 — o)W, Y, W)
= S0+ X+ oW, Y, W)
= A0 + X + oW, Y).
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This shows that _7(0 + X + oW, Y)(e) is non-increasing in ¢. Now the con-
ditional distribution of X + (¢* — ¢,%)tW, given Y = y is continuous in ¢ for
g > g,. Thus it follows from Corollary 2.1 that

O 4+ X 4 oW, + (6* — a2)tW,, Y(e)

is continuous in ¢ for ¢ > o,. This shows that _~(0 + X + oW, Y)(e) is con-
tinuous in ¢ for ¢ > ¢, and hence for all ¢ > 0.

It follows from Lemma 2.9 that
(2.5) lim,_, (0 + X+ oW+ oW, Y)y= 70+ X+ 0o,W,Y), g, >0.

Thus Lemma 2.9 allows to define in general the Fisher information _#(6 + X, Y)
on # contained in (6 + X, Y) as

(2.6) A0 4+ X, Y) = lim,_, 70 + X + oW, Y).

a—0

We see from (2.5) that the new definition agrees with the definition given in (2.1)
when the latter is applicable. Clearly 0 <.7(6 + X, Y) < oo and, by Lemma 2.2

(2.7 S04 X, Y)e) >0, e+0.
THEOREM 2.2. (i) If Z is independent of (X, Y), then
S0+ X, Y, Z),: SO+ X, Y).
(ii) If Z is a d-dimensional random vector that is <5, measurable, then
SO+X+Z,Y)=0+X,Y).
(iil) If 25, © .5, then
SO+ X, 2y 0+ X, Y).
Proor. These results follow immediately from Lemmas 2.3—2.5.
THEOREM 2.3. The set
V={e: /(0 + X, Y)(e) < oo}
is a subspace of R%, on which #(0 + X, Y) is a positive definite quadratic form.
Proor. Since
SO + X 4 oW, Y)(a,e, + aye,)
<202 700 + X + oW, Y)(e) + 2a2 (0 + X + oW, Y)(ey),
V is a subspace of R?. The remainder of the theorem follows from Lemma 2.2.

THEOREM 2.4. Let X,, X be d-dimensional random vectors and suppose that the
conditional distribution of X, given Y = y converges weakly as n — oo to the con-
ditional distribution of X given Y = y for almost all y (w.r.t. p,). Then

liminf, . .40 + X,, Y) = (0 + X, Y).
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PRrOOF. B); Corollary 2.1
liminf, . .7(0 + X,, Y) = lim

n-—00

wooe (0 + X, + oW, Y)
=700 + X+ oW, Y).
The desired result now follows by letting ¢ — 0.
COROLLARY 2.2. Let W, n = 1, be any sequence of d-dimensional random vectors
such that W, is independent of (X, Y) and W, — 0 in probability as n — co. Then
lim, , A0+ X+ W, Y)=_70+ X,Y).

THEOREM 2.5. Suppose .5, is non-decreasing in n and “8(Y,,Y,, ---) = <4}
Then
lim, . A0 + X, Y,) = A0 + X, Y).
Proor. We start with a special case of the result.

LemMMA 2.10. Suppose <5, is non-decreasing in n and “8(Y,, Yy, - +) = 5.
Then
lim, ., A0+ X+ oW, Y,)= 70+ X+ oW, Y).

Proor. Let F (-] y,) denote the conditional distribution of X given Y, =y,
and set
for(x[ya) = § @o(x — 2)F (dz]y,) -
Now by a standard martingale argument F,(.|Y,) converges weakly to F(-|Y)

as n — oo with probability one. It follows from Theorem 2.1 that with proba-
bility one

lim, ., § SoaC1Ya) e g _ ¢ (LX), € 4
fon(x]Y2) fox]Y)
Thus by Lemma 2.1

lim, . A0 + X + oW, Y,)(e) = lim,_, E § Loal1Ya) O gy

T LY
gy YRy,
fAx1Y)

= A0 + X + oW, Y).

This completes the proof of Lemma 2.10.
It follows from Lemma 2.10 that

liminf, A0 + X, Y,) = lim

n—00

poew F(O 4 X + oW, Y,
= A0+ X+ oW, Y).

By letting ¢ — 0 we conclude that

(2.8) liminf__, A0 + X, Y,) = A0 + X, Y).

By hypothesis <5, < 7, so according to Theorem 2.2 (iii)

(2.9) A0+ X, Y,)< A0+ X, Y).

The conclusion of the theorem follows immediately from (2.8) and (2.9).
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CoROLLARY 2.3. A0+ X, Y, .-, Y)1 A0+ X, Y, Y, ---)asn— .

THEOREM 2.6. Suppose X,, X are d-dimensional random vectors, Z,, Z are k-
dimensional random vectors, and that the conditional distribution of (X,, Z,) given
Y = y converges weakly as n — co to that of (X, Z) given Y =y for almost all y
(w.r.t. o). Then

liminf, .70 4+ X,, Z,, Y)= .7(0 + X, Z, Y) .
Proor. We begin with a special case.

LemMa 2.11. Suppose X,, X are d-dimensional random vectors, Z,, Z are k-
dimensional random vectors and that the distribution of (X,, Z,) converges weakly
as n— oo to that of (X, Z). Then

liminf, ./ (0 + X, + oW, Z)= (0 + X + oW, 2Z).

Proor. It is easy to construct functions p,: R* — R* having the following

properties:
(i) each p, takes on only countably many values;

(ii) if i > jand p(z)) = py(2,), then py(z,) = p(z.);

(iiiy lim,_, p,(z) = z for all z;

(iv) P(Zed{z: p(z) = c}) = 0 for all i and c.
It follows from the hypotheses of Lemma 2.11 that if ¢ is a possible value of
0« Z), then the conditional distribution of X, given p,(Z,) = ¢ converges weakly
as n — oo to the conditional distribution of X given p,(Z) = ¢. Thus by Corol-
lary 2.1

lim, . 20 + X, + oW, p(Z,) = S0 + X + oW, p(2)).
Consequently by Lemma 2.5
liminf,__ .20 + X, 4+ oW, Z,) = lim,_, 7 (0 + X + oW, p(Z,))
= A0 + X + oW, p(Z)) .
Since
lim,... 7 (0 + X 4+ oW, 0(Z)) = F(0 + X + oW, Z)

by Theorem 2.5, the lemma is valid.

LeMMA 2.12. Under the hypothesis of Theorem 2.6

liminf, . .70 + X, + oW, Z,, Y) = A0 + X + oW, Z, Y).

Proor. Let.”(# 4+ X 4+ oW, Z|Y = y) denote the information in (f + X +
oW, Z) when (Y, Z) is chosen independently of W according to its conditional
distribution given Y = y. Then by Lemma 2.11

liminf, . 70 + X, + oW, Z,|Y =y) = .50 + X + aW, Z|Y = y)

n-—>00

for almost all y (w.r.t. ). Since

J—((?—I-Xn‘!-O'W,Zm Y):S«j(a+Xn+0'W,Z,”lY:y)/ly(dy)
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and
SO+ X4+ oW, Z,Y)=§ 50 + X + oW, Z|Y = y)p,(dy),

the conclusion of the lemma follows from Fatou’s lemma.
Theorem 2.6 follows easily from Lemma 2.12.

THEOREM 2.7. (i) If ¢ # 0, then ./(8 + cX, Y)(ce) = F(0 + X, Y)(e).
(ii) If Q: R* — R® is an orthogonal linear transformation, then

A0 + QX, Y)(Qe) = . 7(0 + X, Y)(e).

Proor. We will prove (ii), the proof of (i) being similar. It suffices to show
that

(2.10) O + QX + oW, Y)(Qe) = . 7(0 + X + oW, Y)(e).

Let g,(+| y) be the conditional density of QX + oW givenY = y. Then g,(+]|y)
is also the conditional density of Q(X + ¢W) given Y = y. Consequently

9o(x1y) = f(Q7'x]y)
9,/ (x|y) = (@, (Q7xy)

where (Q')’ is the transpose of Q='. Therefore

and

S0 + QX + oW, Y)(Qe) = | (f""';x('xy');)Qf)f dxpry(dy)

(g (@LQN 0F 4y

fAQ7'x1y)
_ @190, 08 4o, g
W e e
— gy U O g (ay
R R
— A0+ X + oW, Y)e).

This verifies (2.10), which completes the proof of the theorem.
Consider a random vector X in R* having a density f which is differentiable
in the sense that there is an R?-valued function f” such that

f'r oo
(2.11) § f(xv) f(x)dx <
and
(2.12) §f/(x)(x)dx = —§ f(x)¢'(x) dx , geCl.

Here C,' denotes the continuously differentiable functions on R? having compact
support. Note that (2.11) implies that |f"| is integrable on R* and hence inte-
grable on compacts. If d = 1, this last fact and (2.12) are together equivalent
to the fact that f is absolutely continuous. For general d, (2.12) certainly holds
if f is continuously differentiable. When (2.11) and (2.12) hold the “classical”
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Fisher information . /(f + X) is defined as
o0 + X)e) = § <(_f'(x)_ve)>2f(x) dx cc R,
f(x)
We will show that. #(6 + X) = .7 (0 + X)in this case. To do so we first show

that in general . # (6 + X) agrees with the definition of Huber [3] for d = 1 and
is a natural extension of Huber’s definition for d > 1.

THEOREM 2.8. For ec R*

P . E'(X), o]
2.13 (0 + X)(e) = sup, [E(¢"(X), e)] ,
( ) ( P EP(X)
where the sup extends over all ¢ € C.* such that EQ*(X) > 0.

ProoF. We observe first that if X has a density f such that (2.11) and (2.12)
hold, then

(2.14) 7 (0 + X)(e) = sup, [E(gé&)f)]? .

That (2.14) holds with equality replaced by “>" follows from Schwarz’s in-
equality. To obtain the desired equality we choose ¢ e C.' to approximate

(f'(+)> &)/f(+) in -/ *(dist X).
It follows from (2.14) that
(2.15) O+ X 4 oW)e) = .70 + X + aW)e)

_ sup, [EG/(X 4 0W), o)
EQNX + oW)
For fixed e and ¢

lim, o E(/(X + oW), &) = E@/(X), )

and
lim,_, EQXX + oW) = E¢¥(X) .
Since
lim, - #(0 + X + aW)(e) = . 7(0 + X)(e) ,
we see that
(2.16) A0 + X)) = sup, LB (X))

EQ*(X)

On the other hand, by a convexity argument as in Huber [3, page 86-7], we
conclude that

LE@(X + aW), OF g [E(X), OF

EQ(X 4+ oW) = E¢Y(X)
Consequently by (2.15)

A0 + X + aW)(e) < sup, [E(%(;;\&)@F :
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By letting ¢ — 0 we conclude that

7 E(¢'(X), )
2.17 A0 + X)) < sup, LB, OF
The conclusion of the theorem follows from (2.16) and (2.17).

COROLLARY 2.4. Suppose that X has a density f such that (2.11) and (2.12) hold.
Then 7 (0 + X) = (0 + X).

Proor. This result follows immediately from (2.13) and (2.14).

Suppose that for almost all y (w.r.t. ;) the conditional distribution F(-| y)
of X given that Y = y has a density f(.| y) that satisfies (2.11) and (2.12). Then
the “classical” Fisher information .7 (f + X, Y) is defined as

@18) 0+ X e = 55 (LD ) @)

By conditioning on Y and applying Corollary 2.4, we obtain the next result.

COROLLARY 2.5. If the conditions stated just prior to (2.18) hold, then .7 (0 +
X,Y)= 7.0 + X, Y).

It might appear that our definition of information
SO+ X, Y)=1lim,_, S (0 + X 4+ oW, Y)
is arbitrary in that it depends on W having a standard normal distribution. This
is not really true. For let W, be d-dimensional random vectors which converge
to zero in probability as n — oo and are independent of (X, Y). Suppose that
(X + W,, Y) satisfy the assumptions of Corollary 2.5. We could attempt to
define a “new” measure of information
S0+ X, Y)y=1lim_, 70+ X+ W, Y).
But it follows from Corollary 2.5 that
SO+ X+ W, Y)= 70+ X+ W, Y).
Thus by Corollary 2.2
S0+ X, Yy =1lim,_ S0+ X + W,,Y)
=lim, ., (0 + X + W,, Y)
=0+ X, Y).

We now wish to define the Fisher information /(¢ + X, Y,, ---,0 + Y,, Y,)
of ¢ contained in (¢ + X,, Y, ---,0 + X, Y,). Todosoletu(x;, v, -+, x,,¥,)
be an invariant function i.e. a measurable R¢-valued function such that for all ¢

u(0 + Xps Yo v s 0 + xn’yn) =0 + u(xl’yl’ R} xn’yn)

(for example, u(x,, y,, -+ +, X, ¥,) = X;). Set

U" = ”(Xl’ Yl’ ...’X

nd

Y).
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Then

u@ 4+ X, Y, -, 0+ X, Y =0+ U,.
We define

SO0+ X, Y, 0+ X, YY)
= 0+U,X-U,Y, ---,X,—U,Y,).
This is a reasonable definition since the observations
(0 + Xla Ylv ""0 + Xnv Yn)

and

(0 + Un’ Xl - Un’ Yl’ ""Xn - Un’ Y'n)

are equivalent to each other. Moreover, it follows easily from Theorem 2.2
that the definition is independent of the choice of the invariant function u (for
u(Xl - Vn’ Yl’ R} Xn - Vn’ Yn) = Un - Vn)'

THEOREM 2.9. If (X, Y,), | £ i < n, are independent and each X, is a random

d-dimensional vector, then
"/-(0+X1v Yl""’0+Xn’ Y'n): ?=1J7(0+Xi’ Yi)'

Proor. Let W,, 1 < i < n, be independent standard normal random vectors

on R*such that W,, 1 < i < n, is independent of (X,, ¥;), | < i < n. Then
S0+ X, 4 oW, YL X, — X
(2.19) + oW, — W, Y, - -, X, — X, + oW, —aW,Y)
=20+ X, + oW, Y,
since both sides of (2.19) equal
S0+ X+ WL Y, 0+ X+ oW, YY),

where the last quantity is defined “classically”. It follows from (2.19) and
Corollary 2.5 that

SO+ X+ oW, Y, X, — X,
(2.20) + oW, — W, Y, -, X, — X, + oW, — oW, Y)
=>r, 0+ X, + W, Y).
The desired result follows from (2.20), Theorem 2.2 and Theorem 2.6.
3. Inverse Fisher information. According to Theorem 2.3
V={e: A0 + X, Y)(e) < oo}

is a subspace of R?, on which _#(¢ + X, Y)is a positive definite quadratic form.
Thus there is a positive definite symmetric linear transformation 4: ¥ — ¥V such
that

A0+ X, Y)(e) = (e, de), ecV.

The inverse Fisher information _#~(6 + X, Y) on ¢ contained in (§ + X, Y) is
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defined to be the nonnegative definite symmetric linear transformation defined by
SO0 4 X, Y)e = Ate, ecV,
= 0 ) ec VL ’

where V' is the orthogonal complement of V. Note that if V' = R*, then A4 is
a positive definite symmetric linear transformation from R? to itself,

(0 4 X, Y)(e) = (e, Ae), ec R,
and
S0+ X, Y)= A",

In this case we can write .. ~(¢ + X, Y)as../ "0 + X, Y). If d = 1, we can
think of . ¥ =(f 4+ X, Y) as a nonnegative number.

If A and B are nonnegative definite symmetric linear transformations we write
A < Btosignify that B — A is nonnegative definite. If 4 < Band 4 and B are
invertible, then B~' < 47! (see Exercise 9 on page 56 of Rao [7]).

Let A(o) be as in Lemma 2.2. It follows from Lemma 2.9 that A(s) is non-
increasing in o, i.e. that if ¢, > ¢, then A(s,) < A(s,). Thus

SO+ X 4 oW, Y) = A7V o)
is non-increasing in ¢. This implies that

lim, ,.” =0 + X + oW, Y) = lim,_, 4-Y(0)

a—0

exists as a nonnegative definite symmetric linear transformation.

THEOREM 3.1. ./ (0 + X, Y)=1lim,_,.. ~Y(0 4+ X + oW, Y).

a—0
Proor. Set
A = lim,_, A7(0) .

Let U denote the nullspace of 4~ and U* the orthogonal complement of U. It
is easily seen that A~ maps U* onto itself. Thus, when restricted to U*, A~ is
positive definite and symmetric. Since, for 4 > 0,

(A= + Al)'e = A7%e, ec U,
we see that
3.1) lim,_ (e, (A~ + Al)~'e) = oo, ecU and e # 0.

For 2> 0, (4~ 4 4I) maps U* onto itself. Thus (4~ + 2/)~* maps U' onto
itself. Let B: U+ — U" denote the inverse of the transformation 4-: Ut — U-+.
Then B is positive definite and symmetric. Moreover

lim,_, (A~ 4 Al)~'e = Be, ec U+,
Thus

(3.2) lim,_, (e, (A~ + AI)~'¢) = (e, Be) < oo, ec Ut
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Now (e, (47%(g) + Al)~'e) is monotonic in both ¢ and 4, so that
(0 + X, Y)(e) = lim,_, (e, A(o)e)
= lim,_, [lim,_, (e, (47Y(0) + AI)~'e)]
= lim,_, [lim,_, (e, (A7Y(o) + Al)7'e)]
= lim,_, (e, (A~ + Al)7le).
Therefore (3.1) and (3.2) imply

(3.3) S0+ X, Y)e) = oo, ecU and e+ 0,
and
(3.4) (0 + X, Y)(e) = (e, Be) < o0, ec Ut.

It follows easily from (3.3) and (3.4) that V' = U* and hence that 4 = B. Con-
sequently A-! is the restriction of A~ to V. Thus ./ ~(6 + X, Y) = A, which
completes the proof of the theorem.

CoRroOLLARY 3.1. (i) ./ ~(0 + cX,Y)=c2r ~(0 + X, Y). (ii) If Q: R%isan
orthogonal linear transformation, then

(Qe, . »~(0 + QX, Y)Qe) = (e, .7 (6 + X, Y)e).

THEOREM 3.2. ./ (0 + X, Y)) = /(0 + X,, Y, ifandonlyif ./ ~(0 + X,, Y)) <
S0 + X, ).

PROOF. Set A, =.7~(0 + X,, Y,). If A~ < A, then A~ + AU < A, + Al
for 4 > Oand hence (4, + 4/)"' = (A4,~ + AI)7%; thus (see the proof of Theorem
3.1)

O + X, Yi)(e) = lim, (e, (A, + A)7le)
= lim,_y (e, (4, + 1))
= A0 + X, Yy)e) .
Suppose conversely that .7 (0 + X,, Y)) = .7(0 + X,, ¥;). Set
V,={e: /(0 + X,, Y,)(e) < oo} .

Then V, € V, and hence V' 2 V,". Clearly ./ (0 + X,, Y)) = .7 (0 +
X,, Y,) = Oon V,', so it suffices to show that. . (0 + X, Y}) < ./ (0 + X,, Y,)
on V,. In doing so we can, with no loss of generality, assume that V, = R*.

Let B,: V, — V, be the positive definite symmetric linear transformation such
that

/(0 + X, Yl)(el) = (e, Biey), e, eV,
Let B,: R* — R? be the positive definite symmetric linear transformation such
that
O + X, Y,)(€) = (e,B,e) ecR.
We know that
(ev Blel) Z (el’ B2el) ’ €€ Vl *
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To complete the proof of the theorem we need to show that
(3.5) (e, Bi7'e)) < (e, + e,, B,7Y(e, + e,)), e,eV, and e, e V',
But (3.5) follows immediately from the following result on matrices.

LeMMA 3.1. Consider the partitioned positive definite symmetric matrix

32 — <Bll Bl2> A
B21 B22

If B, = B,,, then

' 0 0
3.6 ( )gB-l.
(3-6) 0 B~/ =

Proor. Let C = B,™! be partitioned as is B,. Then 0 < Bj;! — B! = C,, —
B — C,C;C,. Thus

0£< I 0)<C11 0 )(1 CI‘BCm):(Cu Ch >
o C21C1_11 1 0 C22_Bl_l_C21Cﬁ1C12 0 1 C21 C22_Bl—l

from which (3.6) follows.

For 0 < d, < d, let §, denote the first d, coordinates of #, #, the last d — 4,
coordinates of #, and write ¢ = (¢,, ¢,). Similarly we write X = (X,, X,) and
e = (e, e,). It is straightforward to show that

(3.7) S0, + X, Xy, Y)e) = (0 + X, Y)(e, 0)
and consequently that
(3.8) S0, + Xy, Y)(e) £ (0 + X, Ve, 0).

The next theorem gives the corresponding inequality for inverse Fisher inform-
ation.

THEOREM 3.3. For e € R“

3.9) (er, S (0, + X, Ye) < ((e, 0), (0 + X, Y)(ey, 0)) .
Proor. It follows from (iv) (b) of page 270 Rao [7] that

(3.10) HO,+ X, + oW, Y)e) < (0 + X+ oW, Y)(e,e,).

Let A(o) and B(s) denote the positive definite transformations corresponding to
A0 + X + oW, Y)yand #(0, + X, + oW, Y)respectively. Then (3.10) canbe
rewritten as
(3.11) .<B(0) 0> < <A(U)11 A(”)lz) .

0 0 A(0)y A(9)ny
It follows from (3.11) that B(s) < A(0),, and hence that B~'(¢) = A7'(0),,. Let-
ting ¢ — 0 we see that B~! > (A7), as desired.

THEOREM 3.4, If

liminf, , A0 + X, + oW, Y,) = A(0 + X 4 oW, Y)

n—oo
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forall 0 > 0, then
lim sup,_, (e, 7 ~(0 + X,, Y,)e) < (e, 7 ~(0 + X, Y)e), ec R.
Proor. Let o > 0 be fixed. Choose 4 > Osuchthat. /(¢ + X 4 oW, Y)(e) =

24e|* for all e.
For n sufficiently large

(3.12) SO+ X, + oW, Y,)(e)= .70 + X + oW, Y)(e) — Ae[*, eecR?.

(Here Lemma 2.1 is used to reduce (3.12) to an inequality involving only finite
many e’s.) It follows from (3.12) that for n sufficiently large

(e, /X0 + X, + oW, Y)e) < (e, (A(o) — A)7le), ec R,
Thus
(3.13) limsup, .. (e,./ Y0 + X, + oW, Y,)e) < (e, (A(s) — Al)7te),
ec R,
Since

lim,_, (A(o) — At = AW o) = ./ Y0 + X + oW, Y),
we can let 2 — 0 in (3.13) to conclude that
limsup, ... (e,. 7 Y + X, + oW, Y )e) < (e,. /(0 + X + élV, Y)e) .
Since
SO+ X, Y,) S S0+ X, 4 oW YY)
it follows that
limsup,_. (e, /(0 + X,, Y,)e) < (e, .7 (0 + X + oW, Y)e) .
The desired conclusion now follows from Theorem 3.1.
CorOLLARY 3.2. ./~ (0 4+ X, Y, ---,Y)| .7 (0 +X,Y,Y,,---)asn— oo.
It is not true in general that if
liminf, , .7 (0 + X,,Y,) = (0 + X, Y),

then
limsup, .. (e, 7 (0 + X,, Y,)e) < (e, .7 (0 + X, Y)e), ec R,

A counterexample can easily be constructed by letting . # (0 + X,,, Y,) correspond
to the 2 x 2 matrix
n* + 1 n>
< n 1/

One can show, however, by the argument used in proving Theorem 3.1 that if
SO+ X,,Y,)1.#(0 + X, Y)then /(0 + X,, Y,) | ./ ~(0 + X, Y).
For ee R? set £ = (e, #). An estimator T, of u based on the sample
(0 + Xl’ Yl)’ Sty (0 + Xn’ Yn)

of size n from (6 + X, Y) is said to be invariant if T, —  is independent of 6.



242 SIDNEY C. PORT AND CHARLES J. STONE

If so, we can write
U, =T, —p=(EX)+ oY, X,— X, Y,, -, X, — X, V).
THEOREM 3.5. Let T, be an invariant estimator of y1 = (e, ) based on a sample
of size n from (0 + X, Y)and set U, = T, — p. Then
nS=(p+ U, = (e, 7(0 + X, Ye).
Proor. By using Theorem 2.9 we can reduce the general case to the case

n = 1. By using Corollary 3.1 we can assume thate = (1,0, - - -,0). Then, letting
¢, and X, denote the first coordinates of § and X respectively,

SO X4 oY) Z IO+ X V) Z (e (0 4 X, V)e)
the last inequality following from Theorem 3.3.

4. Approximate maximum likelihood estimators. In this section we study
estimators of 6 based on samples from (6 + X + oW, Y) for fixed ¢ > 0. These
results are mainly tools for the proofs in Section 5 and in [8]. By definition

[oxy) = § @u(x — 2)F(dz] y),

where

#u0) = iy NP T2

It follows easily that f,(x|y) > 0 for all x and y and that, for each y, f, (x| y) is

infinitely differentiable in x. Each such derivative is uniformly bounded in x
and y and, for fixed y, vanishes as |x| — co.

THEOREM 4.1. Suppose that E|X|* < oo and let O(c) be an unbiased estimator of
0 based on (6 + X + oW, Y). Then Covl(c) = .7 ~(0 + X + oW, Y).

Proor. By the Cramér-Rao inequality (see page 265 of Rao [7]) it suffices to
verify that

max, <, |f,'(x — 0 [ )\ o
(4.1) §§ < : 1.(x| ) )f"(xly) dxqty(dy) < oo .

Since E|X|* < oo, it is immediate that
(4.2) E|X + oW < oo
Note also that

(4.3) §

dx
T <o
(14 )
By using (4.2) and (4.3) respectively for the cases
fox]y) = (1 + |x])~+® and fo(x]y) < (1 + |x|)-+

we conclude that

(4.4) §§ (fo(x [ )™ 0 (x| y) dxpy(dy) < oo
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Now
If(x =01 =I§ ¢,/(x — z — O)F(dz] y)]

<=2z 0, 2 )Rz y)

0.2

s]x~—z—(9[

2

<

g e==0% (x — 2)F(dz] y) .

By straightforward computations we can find an L, > 1 such that

(4.5) max s, |f'(x — O y)| < Lf(x]y) + L7, LzL,.
It follows from (4.5) that

(4.6)  max, |f,/(x — 0]yl = 2(/(x| »)TV S o(x ] y)

it (f(x|y) Ve z L.

Since f,’(x| y) is uniformly bounded in x and y, we conclude from (4.6) that for
some N

(4.7) max, g |f,'(x = 0] y)| < N(fo(x[y) 7 f(x|y)  forall x,y.
Equation (4.1) follows from (4.4) and (4.7).
Set
! d
Lxly) = 105D = Liogrx) ).
folxly)  dx
Then
(4.8) E(L(X + oW|Y),e)* =.7(8 + X + oW, Y)(e), ecRe.
Thus by Lemma 2.1.
E(L(X + oW |Y), e} < o-%e*, ec R,
and hence
(4.9) E|IL(X + oW|Y)* < do™? < o0,
We conclude from (4.9) that
(4.10) EIL(X 4+ oW |Y) £ dlo' < 0.
Since f,(x| y) — 0 as |x| — oo, it follows from (4.10) that
(4.11) EL(X + oW|Y)=0.

Let A(o) be the positive definite symmetric linear transformation from R* to itself
defined by Lemma 2.2. Then
(4.12) (ey, A(0)e)) = E(L(X + oW |Y), e ) (L(X + oW |Y), e,).

Let C.® denote the real-valued functions on R* which are twice continuously
differentiable and have compact support. Forge C.®set L, ,(x|y) = g(x)L,(x]|y).
Then for each y, L, (+|y)e C,™. Also L, , and its first two derivatives are uni-
formly bounded in x and y. Set

A(0) = —EL) (X + oW |Y),
B,(s) = Cov L, (X + aW|Y),
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and
Cu0) = EL, (X + oW |Y).

THEOREM 4.2. Let g, € C,'¥ be such that sup, ,|9,%(x)] < oo for k =0, 1,2,
lim, ., g,(x) = 1 for all x, and lim,_,, 9, (x) = 0 for k = 1,2 and all x. Then

limy_m Agy(o‘) = limy_,m Bgy((f) = A(O‘) .
Proor. It is easily seen that
(€15 Ag(0)ey) = §§ (Lo(x] 1), e)(Lo(x | y), e)g(x)f o(x | y) dxpe(dy)
and hence by (4.9) and (4.12) that lim,_, 4, (¢) = A(¢). Similarly one proves
that lim,__ B, (¢) = A(0).
Consider a random sample
@+ X +aW,Y), - -, (0+X,+ W, Y,)

of size n from (6 + X + oW, Y). Let 8, (o) be the estimator of # defined as
follows: the ith coordinate of 8,(o) is the sample median of the ith coordinate of

0+ X, 4+ oW, ---,0 + X, + W,
minus the median of the distribution of the ith coordinate of X 4 oW.
THEOREM 4.3. (i) Let 0 < ¢ < oo. Then
lim sup, ., n"* E min (c, |0,(d) — 0]") < oo, r>o0,
and for some ¢ > 0, _
lim,_, e"P(|0,(0) — 0| = ¢) = 0.
(ii) If (1.1) holds, then
lim sup,_.,, n"*E|0 () — 0| < oo, r>0.

Proor. This result follows easily from the formula for the density of the
sample median.

Let g be such that 4 (o) is invertible (such g’s exist by Theorem 4.2). Let
6,(s, g) be the “approximate maximum likelihood estimator” of ¢ defined by

0.(0,9) = 0.00) = A,7(0) - Tt [Loyll + X+ W, = G,(0)| Y) = C,(0)].
We will determine the asymptotic behavior §,(s, g) — 0 by first comparing it to
— A0 Bt Loy (X + oW, | V) = (0],

which is asymptotically normal by the central limit theorem.

THEOREM 4.4. (i) Let 0 < ¢ < co. Then

lim. _ nE min <c,

d (o, g)——ﬁ—i—Ag“‘(a)% "Ly (X4 oW, | Y)—C ()]

-

n—oo

and, for some ¢ > 0,

lim,_, eP(|6,(s,9) — 0| = ¢) = 0.

n—o0
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(ii) If (1.1) holds, then
~ 2
lim, .. nE |0,(3, 9) — 0 + A, (o) X0, [L,,(X, + aW,| V) — C(0)]| = 0.
. n
Proor. We start with the Taylor expansion

0.(0.9) = 0 = 0,(0) = 0 = A4,7(0) - T [Lo(X, + W] Y) = C(0)]

4,70) - Rty L (X, + oW, | Y(O,(0) — 0)
+ 0(d,(0) — 0P

- —Ag—‘(a)% " [Ly (X, + oW, [ Y,) = C,(0)]

A4,7(0) - T [L (X + oW | V) + A)]u(o) — 0)

+ 010 (o) — 0P) -

Observe that [L, (X, + oW,|Y,) — C (0)]arei.i.d. and that each is bounded and
has mean zero. The same is true of [L, (X; + oW,|Y,) 4+ A,(0)]. Recall that if
Z, have these properties, then for every ¢ > 0 there is an ¢ > 0 such that
lim,_, e”‘P(lL " Zi‘ = c> =0;
n
also for r > 0
lim "< oo,

=1 &1

oo nr/2E li n Z
n

Theorem 4.4 follows from these observations together with Theorem 4.3 and
Schwarz’s inequality.

COROLLARY 4.1. (i) Asn— o
A(n¥(B,(a, 9) — ) > MO, 4,7(0)B,(0)(4,7(9))") ;
also for every ¢ > 0
lim, ., nE min (c, |0,(a, g) — 0*) = trace 4,7'(0)B,(a)(A, (a))" .
(ii) If (1.1) holds, then lim,_,, n|E@ (a, g) — 0)* = 0 and
lim,_,, nCov 0,(a, g) = A, %(0)B,(a)(A,(0))" .

5. Asymptotic behavior of the Pitman estimator. In this section we study the
Pitman estimators of § and 2 = (e, ) and their respective minimax risks M, and
M, (e), all defined in the introduction.

THEOREM 5.1. nM,(e) = (e, 7 ~(0 + X, Y)e).

Proor. We can suppose that M,(e) < co. Let P, be the Pitman estimator of
p=(e,0)andset U, = P, — p. Then EU, = Oand Var U, = M,(e). Let W be
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independent of U, and have the standard normal distribution on R. We conclude
from Theorem 4.1 that

M, (e) + ¢ = Var (U, + oW) = (¢ + U, + oW).

By letting ¢ — 0, and using Theorem 3.1, we conclude that M, (e) = ./ ~(;« + U,).
The desired result now follows from Theorem 3.5.

CoroLLARY 5.1. nM, > trace.” (6 + X, Y).
COROLLARY 5.2. Suppose M, < oo. Then the Pitman estimator g, satisfies
(5.1 nCovl,>. -0+ X,Y).

THEOREM 5.2. Suppose that (1.1) holds. Then the Pitman etimator 8, exists for
n sufficiently large,

(5.2) lim, . .~ (n}0, — 0)) = NO, .7 ~(0 + X, Y)),
and
(5.3) lim, .nCovf,=.-~(0 + X, Y).

Proor. It follows from (1.1) that for some n, the median of the first n, samples
of # + X is an invariant estimator of # having finite total risk. Thus M, < oo
forn = n,. Foro > 0let (¢ + X, + oW, Y,), 1 <i < n, beasample of size n
from (0 + X + oW, Y). Set X(s) = X, + oW,. The estimator 6 (s, g) from
Theorem 4.4 is invariant and has finite covariance for n sufficiently large. Now
0, is the Pitman estimator of # based on observations of (¢ + X(0), W,, Y)),
1 <i<n Thus

0, =0,(0,9) = E[0,(0,9)| X(0) = Xi(0), W, Y, L S i = n].
Consequently
(5.4) Cov (0,(a,9) — 6,) = Covd,(s,g) — Covd,.
According to Corollary 4.1

< lim,__ n Var (e, 0 (g, g))
(e, A,7(0)B,(0)(A,7}(a))"%e) -

lim sup,_., n Var (e, ,) < lim

Thus by Theorem 4.2
limsup,_., nVar (e, 0,) < (e,. 7 (0 + X + aW, Y)e).
By letting ¢ — 0 we conclude that
limsup, .. nVar (e, 0,) < (e, > (0 + X, Y)e).
It now follows from Theorem 5.1 that
lim,_, n Var (e, 9") = (e, ./ (0 + X, Y)e),
which is equivalent to (5.3). From (5.3), (5.4) and Corollary 4.1 we see that
lim,_., n Cov (0,(a, 9) — 0,) = A, (0)B,(0)(4,7(9))'" — /(0 + X, Y).
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Let g, be as in Theorem 4.2. Then by that theorem

lim,_, lim,_,, lim,_, n Cov ( (s,9,) — 0,) = 0.

Equation (5.2) now follows easily from Theorem 4.2 and Corollary 4.1.
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