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THE ASYMPTOTIC EXPANSION OF THE DISTRIBUTION
OF THE GOODNESS OF FIT STATISTIC V!

By Urs R. MaaAG
Université de Montréal

The complete asymptotic expansion in powers of N~ for the distri-
bution of the two-sample statistic ¥y is derived under the null hypothesis.
The proof is based on methods developed by Kemperman (1959).

1. Introduction and summary. Consider two independent random samples of
sizes M and N from the same unknown but continuous distribution F(x). Let
F(x) and G(x) be the corresponding empirical distribution functions. Kuiper
(1960) defined

(1) Viw = SUP_wcaco (Fiy(x) — Gy(x)) — Inf_o,coo (Fy(x) — Gy(x))

as a two-sample statistic suitable for tests of homogeneity for distributions on a
circle. Tables and results on the distribution theory of ¥, are given by Kuiper
(1960), Maag and Stephens (1968) and Steck (1969). The following formula for
the exact distribution of ¥V, was derived in Maag and Stephens (1968):

(2)  Pr(Vyy < c/N)
= 20+ (W) S1lel (cos kr/(c 4 1)) — VI (cos kr/c)*)

where ¢ can take the values 2,3, ..., N 4 1 and [x] stands for the greatest
integer not exceeding x.

2. Results. The following notation will be used: Let

= 22»(22» _ 1) Bv
2u(2v)!

where B, > 0 denotes the vth Bernoulli number (B, = i, B, = 44, B, = /4, etc.).

Let
Ay = 25 A - As"a(yl! e ”s!)ﬁl

where the summation is extended over all the sets (v, - - -, v,) of nonnegative
integers which satisfy v, + .-+ 4y, =k and v, 4 2v, 4 .-+ 4 s, = 5, and
finally let

(3) 9.(x) = X, 2xkY)re~k (r=0,1,2,...).
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THEOREM. For any positive integer m we have

(4)  Pr(Vyy <¢/N)=2277¢9)7 {Z::()l (@N)™ Zimo (1) 4,

[nn(255) ~ s (3] 00

where the remainder holds uniformly in c. A more precise estimate of the remainder
in terms of N and ¢ is O(cN~""%),

Proor. Since the proof follows closely the work of Kemperman (1959), only
the principal steps are stated and his notation is used wherever possible. Define
S, = NtV (cos kafe)*¥, B = Nm/*, o= —2/N and <t=1/N,

and let
o(w) = (—logcos wt — w/2yw=* .
Kemperman’s (1959) Lemma 1 says that, for the appropriate branch of
—log cosw? and w real, positive and less than z?/4, ¢(w) = 0, and that the

Taylor expansion
e = 31 2ih=o Aa utwt
holds for arbitrary u and |w| < /4.

Observe that
S. = B e exp[a(Bk) (e BkY)]
and that every term of S, has exp[— jk*] as an upper bound since ¢ < 0 and
o(e8kt) = 0,
Writing S, = S, + S, where S, contains the terms with 1 < k < 2and S.”
the terms with 2 < k < [4(c — 1)] permits us to obtain the following bounds:

(i) For an arbitrarily chosen positive number a, let 1 = atcr~IN-%, Then
Sc” < (%c)eﬂm‘% < (N/2)e“—N* .

(ii) To obtain an approximation for S,’ we shall apply Kemperman’s (1959)
Lemma 4 with x =0, p =2,9g =1 and s = 0. Let

) T, = 05 Lo Aot X0y e PH(BRY)
Choose u, > 2a*, w, real and such that 0 < w, < #*?/4, and finally choose

N > max [a~?, a*w,?]. These choices of'4, u,, w, and N now guarantee that the
conditions of Kemperman’s lemma hold, i.e.

pir=1, lo|(84%)* < u, and [7](BA%) < wy .
Under these conditions
S, — T,| < KB~ e P*(B2) + e ?|a|™(1 4 p"*t) + e ?|z|"(1 + fm*H)].

Since e~#(1 + p*m*}) and e~#(1 4 ™*%) are bounded there exists a constant K’
such that

(6) S, — T, < K[New" 4 eN=m-1]
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for any choice of ¢ < N and N > N,. Rewriting T, in terms of N, c and g,
completes the proof.

LEMMA. For any positive integer g

(7) Gstn <(C—]_\:T;1)2> — Gsin <NC—7:2>

1Ni 1 o . N
= 2id (éi 1’?) i Si_ea(j,vs S 4+ B)Gyins, <‘g§‘>

ol Re)

The coefficients a(j, v, s + h) are independent of ¢ and N; they are given by the
formula

(8) a(j, v, 1) = (O(=1)7727r

where r ., stands for r(r — 1) ... (r — p + 1) with r,, = 1. They can also be
calculated recursively from

) a(j,v,ry=a(j — l,v—1,r) = 2(r+v—j+ Da(j — 1,v,7)
with the initial values a(0,0,r) =1 and a(j,v,r) =0 if v <0 or if v > j. The
first coefficients are a(1,0,r) = —2r,a(2,0,r) = 4r(r — 1), a(2,1,r) = —4rand
a(j, j,r) = 1.

Proor. The functions g,(x) and their derivatives are bounded for positive x
with the Taylor series

" XY/ d\i
0.0¢) — 0.0 = 23t (DY g0 4 0w — 7).
J! dx
Furthermore, they have the property that (2x)/(d/dx)?g,(x) can be written as a
linear combination of g.(x), g,,.(x), -+, 9,,;(x). Here x' = Na*(c + 1)7,

x = Nr?c~? and thus x’ — x = (—2Nz%c?)(c + 3)(c + 1)7%, i.e., X’ — x contains
2x as a factor.

For large N only values of ¢ of the form ¢ = xN* yield probabilities which
are sufficiently different from zero and one. In order to obtain a useable formula
for the distribution of NV, one applies to the Theorem

(i) the Lemma with ¢ = 2m — 2c,
(ii) the expansion
L
[ ST = et + mrae mog e 2706)
with ¢ = xN?, and
(iii) the expansion

2P = 2N+ (BN) o (128N 4 -]
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For example, the case m = 1 yields
Pr (N#Vyy < )
= 2(xN)1 + O(N-Y)[{Ap[x*N-}(1 + O(N-}))][a(1, 0, 0)g,(z*x~2)
+ a(1, 1, 0)g,(x*x%) + O(N-Y] 4 O(N-1)
= 4rix? 3r | K exp[—Kkn?/x*] + O(N~H)

which is the limiting distribution. For m = 2 the result agrees with formula
(11) in Maag and Stephens (1968). The remainder which becomes O(N~-™+%)
holds uniformly in x for bounded values of x.

3. Remark. The method of Kuiper (1960, formula (4.3)), which led to the
correct limiting term but no term in N-* and an incorrect one in N7, can be
adjusted to yield the correct term in N~ and the order of the remainder. Kuiper
approximated

Pr (N, < ¢) = X% [Pyla,c —a + N7} — Py(a, c — a)]

where Py(a, b) = Pr(—b < N¥(Fy(x) — Gy(x)) < a for all x), a = a*N~} and
Cc = C*N—i, by

0
55 2 Po(@, Dyees da
4

but neglected the error terms of order N~ which this approximation introduces.
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