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ON THE ASYMPTOTIC NORMALITY OF THE MAXIMUM-
LIKELIHOOD ESTIMATE WHEN SAMPLING FROM A
STABLE DISTRIBUTION!

By WiLLiaMm H. DuMoUCHEL?
University of California, Berkeley

The large-sample distributions of the maximum-likelihood estimates
for the index, skewness, scale, and location parameters (respectively a, §,
¢, and §) of a stable distribution are studied. It isshown that if both « and
o are unknown, then the likelihood function L will have no maximum
within 0 < a <2, —c0 < § < oo, but that L(a, 6) — o as («, 6) — (0, xx)
where x;, is any one of the n observed sample values. However, it is shown
that the centroid of L is little affected by this behavior and, if the estimate
& is restricted to & = ¢ > 0, then the maximum-likelihood estimates are
consistent and n¥(& — a, ,BA— B, é—c, §—5) has a limiting normal distri-
bution with mean (0,0, 0,0) and covariance matrix I-1, where I is the
Fisher information matrix. There are some exceptional values of « and
for which the argument presented does not hold. The argument consists
in showing that the family of stable distributions satisfies conditions given
in the literature and in doing so it is proven that certain asymptotic
expansions for stable densities can be differentiated arbitrarily with respect

to the parameters.

1. Introduction. Independent, identically distributed variables X, X, X,, -- -
are said to have a stable distribution if for every positive integer n there exist
constants a, > 0, b, such that X, 4 ... + X, has the same distribution as
a,X + b,. Standard references for the theory of stable distributions are Gnedenko
and Kolmogorov (1954; Chapter VII) and Feller (1966; Chapters VI, IX, and
XVII). The coefficients a, above are necessarily of the forma, = n", 0<ag,
and the value « is called the characteristic exponent or index of the stable distri-
bution. A parameterization of all stable distributions in terms of their char-
acteristic functions is well known (see the above references). It may be written

as (for all —co < t < o0)
#(t; a, B, ¢, 0) = E[e**|a, B, ¢, 9]

(1.1) = exp {—]ct[“ exp [—i% B sgn t:l + i&t} s a+£1;

= exp {—|ct| — i(2B/x)ct log |ct| + idt}, a=1;
0<a<2|f|<min(a,2 —a),c>0, —c0o <d < oo,
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(When « + 1, another parameterization, in which the term exp [ —i(x/2)8 sgn ¢]
in (1.1) is replaced by (1 -+ i sgn ¢ tan (ra/2), is also commonly used. Feller
(1966, page 548) and DuMouchel (1971b, page 12-14) discuss relationships be-
tween these and similar parameterizations of stable characteristic functions.)
Besides a, there are three parameters. ¢ is a location parameter and ¢ (some-
times y = ¢* is used) is a scale parameter. The real parameter 8 is an index of
skewness: for 8 = 0 the distribution is symmetric about x = g, and the distri-
butions having skewness parameter — j are the mirror images about ¢ of those
with skewness parameter 4 3. That is if s, ,(x) is the density function (all stable
distributions are absolutely continuous) of a stable distribution having ¢ = 1 and
d = 0, then s, ,(x) = 5, _4(—X). .

The best-known stable distributions are the family of normal distributions
corresponding to @ = 2. The nonnormal stable distributions have ordinarily
been given very little attention in the field of statistical inference and indeed are
surely not so important as the normal distributions. The reason for this is that
the normal distributions are the only stable distributions which have a finite
variance, and infinite variance does séem inappropriate in many statistical
contexts. In fact, it seems to be widely felt that infinite variance is inappropriate
in almost any context, because an empirical distribution with literally infinite
variance seems almost a contradiction in terms. But this does not preclude the
possibility of an infinite-variance distribution being involved in an inference
situation. One can, for example, observe a truncated version of a variable
known by theory to have such a distribution—a waiting time, for instance. Also
a theoretical distribution that has infinite variance may be a good model for an
empirical distribution which admittedly does not.

Mandelbrot (1960; 1962; 1963a; 1963b; 1967a; 1967b; 1969b; 1971) has pio-
neered in developing this idea, first in connection with certain economic phe-
nomena and later in connection with other empirical phenomena. Take for
example, the distribution of changes in stock market prices. Mandelbrot (1963b),
Fama (1965), and others have shown that although these variables are certainly
bounded, the probability of very large deviations is so great that many statistical
techniques which depend for their validity on the asymptotic theory of finite
variance distributions are inapplicable, even for rather large sample sizes. The
sum of a large number of these variables is often dominated by one of the
summands—a theoretical property of infinite variance distributions. In such a
case, a mathematical model assuming such a distribution for the observations
may be very useful.

Among infinite-variance distributions, the nonnormal stable distributions play
an important role, not only because of their closure properties under convolution,
but also because only a stable distribution can be the limiting distribution of
sums of independent, identically distributed variables.

Under this impetus, some work in statistical inference in connection with
stable distributions is beginning. The problem is greatly complicated by the
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absence, except for three special cases—the normal distribution, the Cauchy
distribution, and the distribution of X2, where X has a (central) normal distri-
bution—of a known closed form for the density or distribution function of
stable random variables. The only “handles” available for most stable distri-
butions are the characteristic function representation (1.1), the property of
stability, and a few results on the behavior of s, ,(x) as x — co. Mandelbrot
(1963b), and in more detail Fama (1965), proposed a graphical procedure for
estimating the index @. Mandelbrot (1967b) proposed approximating the stable
density function by a mixture of a uniform and a Pareto distribution, and then
estimating a by the method of maximum likelihood. Fama and Roll (1968,
1971) proposed several easily computed estimators of @, ¢, and § for the sym-
metric case where 8 = 0 is known, and measured their bias and mean squared
error using computer simulations. DuMouchel (1971b) described the method
of maximum likelihood for stable distributions and gave a table of the asymptotic
standard deviations and correlations of the maximum likelihood estimators.
This table may be used to compute the asymptotic relative efficiency of any
other estimator whose asymptotic variance is known. DuMouchel (1971b) also
gave tables for computing the loss of information incurred when various parts
of the sample are censored, and presented a small-scale simulation experiment
to compare the actual behavior of the maximum-likelihood estimator with the
predictions of the asymptotic theory.

The main purpose of this paper is to demonstrate the validity of applying the
well-known theory of maximum-likelihood estimation to stable distribution in-
ference, at least if certain exceptional cases are taken into account. A secondary
purpose is to show how “handles” like the characteristic function can sometimes
be used to get a grip on the sampling theory of a distribution when an easy
expression for the density function is not available.

Let§ = (a, f, c, 0) and let 6 = (&, §, ¢, 6) be the maximum-likelihood estimate

of 0 based on x = (x,, - -, x,), a sample of size n, where the likelihood function
is defined by
(1.2) L(6) = TT%- 1saﬁ<x"_5>/c.

2. The behavior of L(0) when « is near 0.

PROPOSITION 1. No matter what values x,, - - -, x, are observed, if both a and 0
need to be estimated, L(a, d) has no maximum for 0 < a <2, —oo < 9 < oo.
Instead, L(a, 6) — oo as (a, 0) — (0, x,); k = 1,2, --,n

ProOF. Use the series representation for s, ,(x) derived by Bergstrom (1952)
and by Feller (1966, page 549). It is absolutely convergent for 0 < a < 1, and
x> 0:

@) s =2t m FEE) (nysin[ S @ )
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Now as a — 0 and for fixed x > 0 it is shown in DuMouchel (1971a) that the
right side of (2.1) is

(2.2) 5,,5(x) = a(l + Bla)/2ex{]l + O(a)} .

(Assume that, as a« — 0, 8 varies so that the requirement 5| < & of (1.1) is
maintained.) For x = 0 and all 0 < a < 1, s, ,(0) is known (see Bergstrom
(1952)):

(2.3) 50.5(0) = %I‘(l + 1/a) sin [% (1 + ﬁ/a)].

Now substitute (2.2) and (2.3) into (1.2) and let 6 = x;, say, (for convenience,

let c = 1):
L) = KT(1 + 1/a) [[f—s—2— {1 + O(a)}.
X, — xi]

The constant K depends only on x and $8/a and is bounded away from 0 if |/«
is bounded away from 1. If |8/a| is allowed to be arbitrarily close to 1, an
adjustment of § from ¢ = x, to = x; — m(a, f) is necessary, where m(a, B) is
the mode of s, ,(x). In either case, for x and |§/a| fixed, one has as « — 0

L(0) oc T(1 + 1/a)am

which approaches co. If we use the Stirling approximation I'(1 4 ) ~ (2xt)tt'e™,
then L(f) is proportional to a®an—sa=2/ae=1/x 50 that a~' » n is necessary before
L(6) becomes large.

If 6 were known and did not have to be estimated, this phenomenon would
not occur, since there is 0 probability that any x-value would be exactly d. In
practice, of course, x-values are only measured with some finite precision, so
that the stable likelihood (1.2) should be replaced by a multinomial model,
thereby avoiding the present difficulty completely.

Although the stable likelihood is unbounded near a = 0, estimates similar to
the maximum likelihood estimate, such as the centroid of the likelihood function,
or the maximum probability estimators of Weiss and Wolfowitz (1967), will be
little affected by this behavior. Put another way, if the prior distribution of ¢
is relatively well-behaved as a — 0, then the posterior distribution of @ will be
well-behaved in the neighborhood of @ = 0. The following statement will be
proved:

PROPOSITION 2. With probability one, the quantity
Py = §§ L(a,0)doda
-—-°°a<<5$<°°

becomes proportional to " as e — 0.

Proor. Let A(a) = §*2 [ s.(x, — 0)dd. (Assume for convenience that the
parameters ¢ and f/a are fixed.) With probability 1 no two x’s will be exactly
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identical. Suppose they are labeled so that —oo = x, < x < -+ <X, <

X,41 = oo. Then, as @ — 0, using (2.2) one has

(2.4) A(a) ~ a* Try ¢ SR s, (x, — 0)dD

where ¢, = ] ;.. [(1 + B/a)/2e|x; — x,[].
The coefficient of a”~* in (2.4) is bounded by >} C,, and it can be shown (see
DuMouchel (1971a)) that as « — 0 it tends to

C=e'372C, + (1 — eM)[C(1 — Bla) + C,(1 + Bla)] .

The proof is completed by noting that P(e) = SOA(a)da, so that P(¢) ~ Ce"/n
as ¢ — 0.

3. The asymptotic distribution of the restricted maximum-likelihood estimate. If
the maximum-likelihood estimate  is defined to be the value of ¢ at which L(0)
is a maximum, subject to the restriction @ > ¢ > 0, ¢ arbitrarily small, then 4
is consistent and asymptotically normal. The proof of this statement consists
of showing that the family of probability densities whose characteristic functions
are given by (1.1) satisfies conditions given in the literature for the consistency
and asymptotic normality of the maximum likelihood estimate. Several sets of
such conditions are available, including those of Cramér (1946), LeCam (1952)
and Wald (1941; 1949). Within the qualifications of the following theorem, the
family of stable distributions satisfies the conditions given in each of the above
references; only one such set of conditions will be verified here. The following
lemma is a restatement of LeCam (1952; pages 76-78) adapted somewhat to the
present case.

LEMMA. Denote the permissible values of 0 = (a, B, ¢, 0) by O, let C be an open
subset of ©, and assume C C ©. Then, if Conditions 1—6 of the next section are
satisfied, and if 0, € C is the true value of 0; (1) 8., the maximum-likelihood estimate
based on the first n observations, is consistent and asymptotically normal, and the
limiting covariance matrix of ni(, — 0,) is I7%(6,), where I is the Fisher information
matrix defined below; and (2) there exists a positive number p, independent 0y, having
the following property: with probability 1 the sequence (x,, X,, - - +) is such that, for
n sufficiently large, G, is the unique solution of the likelihood equation dL(0))26 = 0
also satisfying |0, — 0, < p.

Using this lemma, the verification of Conditions 1—6 of the next section
proves the following theorem.

THEOREM. When sampling from a stable distribution, 8,, the maximum likelihood
estimate for 0 = (a, B, c, 6) based on the first n observations, restricted so that &,,
the estimate for a, satisfies &, > ¢, ¢ arbitrarily small and positive, is consistent and
asymptotically normal as long as 0,, the true value of 0, is in the interior of the
parameter space (that is, the cases ay < ¢, ay = 2, and f, = & min (a,, 2 — «a,) are
excluded) and the additional case (ay = 1, B, # 0) is excluded.
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The permissible set of values of ¢ is
O={(a,8,¢,0:0<esa<] or 1<a<2,
|8l < min (a,2 — a),0 < ¢ < 00, —00 < 0 < o0} .

Then C is an arbitrary open subset of ® whose closure, C, is also contained in ©.
4. Statement and verification of the conditions.

ConpiTioN 1. For every x, —oo < x < 00, fy(x), defined as s, ,((x — 9)/c)/c,
is a continuous function of ¢ for every 6 € ©, and admits continuous partial
derivatives of first and second order with respect to @ for every 6 ¢ C.

ProoF. Represent f,(x) using the Fourier inversion formula, as

4.1) fox) = §=. e ™= (t; a, B, ¢, 0) dt

where ¢ is defined by (1.1). It is readily seen that differentiations with respect
to the parameters through the integral sign in (4.1) are permitted. Assumption
1 holds, then, except for the discontinuity of f,(x) with respect to a« at @ = 1
and 8 = 0. If « must be estimated, the points 6 having a« = 1, 8 = 0 must be
omitted from @ for the proof to apply. See DuMouchel (1971b; pages 11-14)
for a discussion of a slightly different parameterization of stable distributions in
which f,(x) is continuous with respect to @ at « = 1. The « = 1 case will not
be considered further here.

ConpitioN 2. For some fixed integer K sufficiently large, let g,(x,, - - -, xz) =
[T fo(xx). Then for all 6, € C, E,[sup,.o_¢ 10g (95/9,,)] < oo.

Proor. If O is allowed to include points where a becomes arbitrarily close to
0, this condition is violated, as was seen in Section 2. If « is restricted away
from 0, then fy(x) = s, ,((x — 0)/c)/c is bounded uniformly for all x, a, g, ¢, and
0 except for x — ¢ and either ¢ — 0 or (a, 8) — (1,1). In these cases the distri-
bution associated with ¢ tends toward a 1-point distribution concentrated at 4.

If x + 0, c— 0, by (2.1)
N2 e
s ¢ o coccr,
c c
while s(0)/c o< ¢7*. Thusif K > 1 4 (1/a) thenas ¢ — 0
go(x)zl'[{‘s(x"_a)/c—»O.
c

A similar proof holds for the case (a, §) — (1,1), completing the proof of con-
dition 2.

ConDITION 3. Let A(x; ) be the vector of first derivatives [(d log f,(x))/06] and
let B(x; 0) be the matrix of second derivatives (9 log f,(x))/062. Then there exists
a function C(x) such that, for all §eC, §C(x)f,(x)dx < M < oo, and each
element of B(x; ¢) is bounded in absolute value by C(x).
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Proor. For x fixed and 6 in the closed set C, the elements of |B(x, 0)| will
have a maximum C(x), which is itself bounded in any closed x-interval. It is
only necessary to study the behavior of C(x) as x — 4 oco. Consider the infinite
series representation of s, ,(x) given by (2.1). It is an absolutely convergent
series for 0 < a < 1, and Bergstrom (1952) further showed that, even ifl <
a < 2, it is an asymptotic expansion of s, ,(x) as x — co. That is, if one ap-
proximates s, 4(x) by the first J terms of (2.1), then the error will be of the order
of the first neglected term, as x — co. In the next section it will be shown that
the asymptotic expansion (2.1) may be formally differentiated an arbitrary
number of times with respect to a, 8, or x, to yield an asymptotic expansion
for the corresponding derivative of s, ,(x). Using this result, simple but rather
tedious calculations show that C(x) = O(log |x|)? as x — = oo, finishing the proof
of Assumption 3. Notice that for a =2 or = —a (a <l)or f=2 —«
(a > 1) every term in the expansion (2.1) becomes 0. This reflects the fact that
the right tails of these distributions decrease faster than any power of x~*.
Assumption 3 fails in this case and so, in the above lemma, C must be restricted
so as not to include the end points of the parameter space, namely a = 2 or
|8| = min (a, 2 — a).

ConpITION 4. For every 0¢ C, E,(A(x, 0)) = 0 and E,(A(x, 0)A"(x, 0)) =
—E,(B(x, 0)) = I(9), say, where I(f) is the Fisher information matrix at the
point 4.

Proor. It is sufficient to show that {*= f,(x)dx = 0, where f,(x) is a derivative
of f,(x) with respect to §. Using the asymptotic expansions referred to above,
it is easy to show that | f;| is integrable. This in turn implies that {* 2 fy(x)dx =
$(0; 0) where ¢ is the corresponding derivative of (1.1). Since ¢(0; #) = 1, then
$(0; 6) = 0.

ConpiTION 5. Forall 6 ¢ ©, and forall 6, C, 8, 0, §| f5(x) — fy,(x)|dx > 0.

Proor. This is an obvious consequence of the fact that the family of char-
acteristic functions (1.1) are all distinct.

ConpiTION 6. For every 6eC, the Fisher information matrix /(f) =
7= —B(x; 0) f,(x)dx is nonsingular.

Proor. If # were a 1-dimensional parameter, this assumption is equivalent to
assuming that {*% ((3f,)/00)*1/f,dx > 0 or, equivalently, that 9f,/df is not an
identically O function of x. In the present case it is equivalent to prove:

ConpITION 6’. For every 0 ¢ C, and for every a = (a,, a,, a;, a,), then g(a, x)
is identically O for all x only if ¢, = @, = a, = a, = 0, where

9(a, x) = a gj;o +a a{; + a; —— afo +a aaf;
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Now g(a, x) is of the form {13 e~%¢(a, t)dt, where ¢ is a linear combination of
derivatives of the stable characteristic function (1.1), and g(a, x) = 0 for all
x iff ¢(a, 1) = 0 for all . The derivatives of (1.1) (evaluated at ¢ = 1 and
0 = 0) are

b= 20 — —exp| —i % fsgne | log g
¢y = %% = i_gsgntexp[—i%ﬁsgn t] 7]°¢ ,
¢y = _aaiﬁ_ = —exp[—i% B sgn tj\ alt*¢ ,

¢, = % =it .

Since the ¢,, k =1, ..., 4 are separate multiples of |7]*log [¢|, t*, and ¢, it is
impossible for 3} a, ¢, = 0, as long as a =+ 1, except, perhaps, for a sum of the
form a,¢, + a,¢,, since ¢, and ¢, are multiples of exp[—i(7/2)8 sgn 1]|¢|*¢. But
that would imply a,(i(w/2) sgn (¢)) — a;a = 0 for both positive and negative ¢,
which is impossible unless a, = a; = 0.

This completes the proof that §, converges to 6, with probability 1 and is
asymptotically normal. For the exceptional cases involving the normal dis-
tribution (@, = 2), or the maximally skewed distributions (8, = 4 min («,,
2 — a,)), the rate of convergence of &, or f, respectively to the true value will
be faster than n~%, since it can be shown that the Fisher information about «
or f approaches co as @, — 2 or 8, — =+ min (a,, 2 — a,). Further investigation
of the properties of &, and f, is needed for these cases.

5. Asymptotic expansions for the derivatives of s, ,(x). Consider (2.1) to be of
the form

sa,ﬂ(x) = Z;‘o=l aj(a’ AB’ x) .
For arbitrary nonnegative integers m,, m,, m, let
84, 5(%) = (O™1F™2*™3[9a™10 f"20X™3)5,, o(X)

and let d,(a, B, x) be the corresponding derivative of a;(a, 8, x). With the help
of asymptotic formulas for the derivatives of I'(1 + k«) it can be shown that for
Jj sufficiently large (i.e., j = J(¢)), |d;| < 277 for all a, B, x satisfying

0<axgl —e¢, —a<Bf=La, and x=e>0.

Therefore the series )] d,; converges, uniformly with respect to the above values
of a, B, and x, to the derivative s.

Bergstrom (1952) shows that the series (2.1) is a divergent asymptotic ex-
pansion, as x — oo, for s, ,(x), if I < a < 2. Similarly it is true that the series
2. d; is a divergent asymptotic expansion, as x — oo, for s, if 1 < a < 2. To
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prove this, notice that each d,(a, 8, x) is
dj(a, B, x) = x~iet=ms 31 b, (a, B)(log x),

(5.0) bl py = (S )

my [ m,
L IR G+ ) (™) (o -
% T +ja)sin1271(a + ).

Since
S05(X) = §EZ e (—iny™sd(1, a, B) dt,

where ¢ = (9™*™2/da™dp™2)¢, then, by the same method which Bergstrom (1952)
used for s (see also DuMouchel (1971b) where the method is used to derive on
expansion for s, ,(x)), it can be shown that § will have an expansion in powers
of x~« and log x as x — co. The coefficients of the expansion are tedious to
compute for the high-order derivatives, but, since the coefficients of asymptotic
expansions are unique, when a < 1 they must coincide with the coefficients of
the convergent series, namely the b, of (5.1). Now since the aforementioned
tedious computation of the coefficients of the asymptotic expansion is identical
for @« > 1 as for a < 1, it follows that the 4,, defined by (5.1) work for a > 1
also. Therefore the asymptotic expansion (2.1) may be differentiated arbitrarily
with respect to a, 8, and x.
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