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MEASURABLE SELECTIONS OF EXTREMA

By L. D. BROWN AND R. PURVES
Cornell University and University of California, Berkeley

Let f: X X Y — R. We prove two theorems concerning the existence of
a measurable function ¢ such that f(x, ¢(x)) = infy f(x, y). The first con-
cerns Borel measurability and the second concerns absolute (or unjversal)
measurability. These results are related to the existence of measurable
projections of sets S © X X Y.

Among other applications these theorems can be applied to the prob-
lem of finding measurable Bayes procedures according to the usual pro-
cedure of minimizing the a posteriori risk. This application is described
here and a counterexample is given in which a Borel measurable Bayes
procedure fails to exist.

1. Introduction. Let f be a bounded real-valued Borel measurable function
defined on the unit square. Suppose that for each x € [0, 1], there is at least one
y for which f(x, y) = inf, f(x, z). Then it has long been known (see Section 5)
that there may be no Borel measurable way of choosing one such y for each x;
that is, no Borel measurable ¢ on [0, 1] for which f(x, ¢(x)) = inf, f{x, 2),
x€[0, 1]. The question of the existence of such measurable ¢ arises naturally in
Statistical Decision Theory, both in the case of Bayes procedures and maximum
likelihood procedures.

In a more general setting than the unit square, Corollary 1 (Section 2) gives
sufficient conditions for the existence of a Borel measurable ¢. Theorem 2 states
that an absolutely measurable ¢ always exists. In either case, the method of
proof amounts to applying a known selection theorem. The first of the selection
theorems is difficult, but the work here is a straightforward utilization of the
methods of Polish Topology.

The relation of these results to the existence of measurable Bayes procedures
is discussed in Section 4. In Section 5, an example is described for which a
Borel measurable Bayes procedure does not exist.

The methods of this paper can also be used to prove measurability of other
types of statistical procedures. One of the authors has used them to prove
measurability of the best invariant estimator in a certain situation (see Brown
(1966) Lemma 2.2.1).

2. Borel measurability. The following conventions will be observed through-
out all sections of the paper. If M is a metric space, <Z(M) the Borel o-field is
the smallest sigma-field containing the closed subsets of M. A Borel measurable
function f is a function whose domain is a metric space, which takes its values
in some metric space M, and which is Borel measurable in the usual sense:
B e ZZ(M) implies f~%(B) e &(domain f).
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If 0 is a set of ordered pairs, the projection of 0, or proj (0), is the set of all
first coordinates of members of 0.

If EC U x V, where U, V are metric spaces, S will be said to be a Borel
selection of E(“ein uniformisierung”) provided

(i) S is a Borel set;
(ii) S < E;

(iii) For each u e U, the section S, = {v € V| (u, v) € S} contains at most one
point;

(iv) proj (S) = proj (E).

Corresponding to each selection S is the function p,, which assigns to each
u € proj (E) the second coordinate of the unique member of S with first coordi-
nate u. Thus, (u, o,(#)) € E, for all u € proj (E).

The first purpose of this section is to state and prove a selection theorem
which is a slight generalization of a theorem due to E. A. Stschegolkow (Arsenin
and Ljapunov (1955) Theorem 39). Stschegolkow, utilizing the separation
principles of P. S. Novikoff, showed that if a Borel set E in the unit square has
the property that each of its vertical sections can be expressed as a countable
union of closed sets, then E has a Borel selection.

THEOREM 1. Let U, V be complete separable metric spaces and E Z U x V be a
Borel set. If, for each u € U, the section E, is g-compact there is a Borel selection,
S, of E. Further proj (E) is a Borel set and p, is a Borel measurable function defined
on proj (E).

Proor. The argument, which takes place in three stages, shows how the
result of Stschegolkov (Arsenin and Ljapunov, 1955, Theorem 39) can be used
to obtain Borel selections for the more general spaces of the theorem.

1. First, let U =[0, 1]and V be the Hilbert cube,
H=1[0,11%x[0,1] % ---.

There is a ¢ continuous from [0, 1] onto H. (See Kuratowski (1958) page 384,
for example.) Let T be the Borel measurable function defined by

T: (4, y) =, 9(3)) (v, )€[0, 1] x [0, 1].

Then D = T-Y(E) is a Borel subsets of the unit square with D, = ¢~'(E,) always
a countable union of closed sets by the continuity of ¢. The theorem of
Stschegolkow applies to give a Borel selection R for D. Then S = T(R) is a
Borel selection for E. Indeed, it is straightforward to check that S satisfies (ii),
(iii), (iv), and that T is 1-1 restricted to R. In complete separable metric spaces
the 1-1 Borel measurable image of a Borel set is a Borel set (Kuratowski (1958)
page 397), so that S is a Borel set. This proves the first statement of the theorem
for U=1[0,1]and V = H.

2. Let U = [0, 1]and ¥ be an arbitrary complete separable metric space. By



904 L. D. BROWN AND R. PURVES

the well-known metrization theorem of Urysohn, ¥V is homeomorphic to a sub-
space of H. If 1 is one such homeomorphism, let

T: (u,v) —> (u, Av)) (u,v)e[0,1]x V.
Then F = T(E) is a Borel subset of [0, 1] x H (Borel measurable, 1-1 image of
a Borel set) and for each u€[0, 1], F, is a countable union of sets which are
compact in 2(¥). Sets compact in A(¥V) are also compact in H and, from step
one, there is a Borel selection Q for F. Then T-*(Q) is a Borel selection for E.

3. Let U be an arbitrary complete separable metric space. Then U can be
represented as the range of a 1-1 continuous function f defined on a closed sub-
set M of the subspace of the irrational numbers in [0, 1] (Kuratowski (1958)
page 354). Define T by )

T: (x,0) = (f(x),0), (x,v)eMxV
and set D = T-%(E). By embedding M x V in [0, 1] x V and applying step 2,
it follows that D has a Borel selection R. Finally, since T is 1-1 Borel measura-
ble, S = T(R)is a Borel set. It is then easily checked that S is a Borel selection
of E.

This completes the proof of the first statement of the theorem. To show the
second statement, let E satisfy the hypothesis of the theorem and S be a Borel
selection of E. Each section S, of S contains at most one point. It follows that
for any Borel set B C V, the set

{u € proj (E) | p,(u) € B} = proj (S n (U x B))
is a 1-1 Borel measurable image of the Borel set S n (U x B) and hence is Borel.
This implies that proj (E) is a Borel set and that p, is Borel measurable. This
completes the proof of Theorem 1.

In the statement of the following corollary, where D is the domain of a real-
valued function f of two variables, the infimum of the set of reals {f(x, y) |y € D,}
is abbreviated inf f,. The infimum of a set of numbers which is not bounded
below will be taken to be —oo.

CoROLLARY 1. Let X, Y be complete separable metric spaces and f be a real-
valued Borel measurable function defined on a Borel subset D of X x Y.

Suppose that for each x € proj (D), the section D, is g-compact and f(x, «) is lower
semi-continuous with respect to the relative topology on D,. Then:

(i) The sets

G = proj (D),
I = {xeG|for some ye D, f(x,y) =inff},
are Borel.
(ii) For each ¢ > 0, there is a Borel measurable function ¢, satisfying, for x € G,
f(%, 0.(x)) = inff,, if xel,
< e+ inff,, if x¢lI, and inff, #+ —oo
< —et, if x¢lI, and inff, = —co.
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Proor. Set
E={((xv),y)e(X x R) x Y|(x,y) e D, f(x,y) < v}
where R is the set of real numbers. Then E is Borel, and for each (x, v) € X x R,

the section {y e Y|(x, y) e D, f(x, y) < v} is a countable union of sets compact
in Y. By Theorem 1 there is a Borel measurable p defined on the Borel set

A ={(x,v)e X x R|for some yeVY,((x,?),y)ekE},

and ((x, v), o(x, v)) € E for all (x, v) € 4.

The candidate for ¢ (x), if x e I, is p(x, inf f,). For, if x € I, the definition of
I implies that inf f, is a real number and (x, inf f,) belongs to 4, the domain of
o. It follows that

¢ x— p(x,inff)), - xel,

is well defined on /; and from the definition of p, ((x, inff,), ¢(x)) € E there.
This implies that f(x, ¢(x)) = inff, for all xe I. On I then, ¢, will be defined

to be ¢. ,
To establish the Borel measurability of ¢ first note that G and

F ={xeG|inff, +# — oo}

are Borel sets. That G is Borel follows directly from the hypotheses and Theorem
1. The set F is Borel because

G—F =N {xeX|forsome yeV,(x,y)eD and f(x,y) < —n}

and each member of the intersection is the projection of a Borel set of which
every x-section, by the lower semi-continuity of f,, is s-compact.

Similarly, the set {x e F|inf f, < a}, where a is real, may be expressed as the
intersection of F with the countable union:

U {x e X|for some y,(x,y)eD and f(x,y) < a— i} .
n

Each member of the union is Borel, so that the function x — inff,, x € F, is
Borel measurable. The easily checked equality I = {x e F|(x, inff,) € A} then
implies that 7 is a Borel set. Finally ¢ is Borel measurable, because it is the
composition of p and the function x — (x, inf f,) which are both Borel measura-
ble.

As mentioned above ¢, restricted to 7 will be ¢. To complete the definition
of ¢,, it is slightly more convenient for later arguments, and just as simple for
this one, to forget ¢ temporarily and begin again. Set

E.={((x»v),y)e(X x R) x Y|(x,y)e D, f(x,y) S v + ¢}.

Reasoning exactly as before, there exists a Borel measurable p, defined on the
Borel set

A, = {(x,v) e X x R|for some yeY,((x,v),y)cE}
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for which ((x, v), p.(x, v)) € E, for all (x, v) € 4,. Define g on G by
g(x) =inff,, xeF.
= —(c' 49, xeG—F.

Then, if x e G, (x, g(x)) € 4,. Again, it follows that
Pt X = px, 9(x)) 5 xeG,
is well defined on G; and ((x, g(x)), ¢.(x)) € E, there. Thus, for xe G,

S5 @) S e+ inff,, f inff, # —oo
< —et, if inff,= —oo.

The measurability of ¢, is at hand, so that

Px) = ¢(x), xel,
= ¢(x), xeG—1,
satisfies (ii).
REMARK 1. In Corollary 1 suppose f is permitted to take on the values -+ oo,
— o0, and that for each Borel set B of real numbers, each of the three sets

{zeD|f(z) = +oo}, {zeD|flz) = =0}, {zeD|flz)c B},
is Borel. Take lower semi-continuity of f(x, +) to mean that, for each real a, the
set {y e D, |f(x, y) < a} is a closed subset of D,. The usual ordering conventions
of the extented real line are assumed to hold.
With these qualifications, the conclusions of the corollary remain true. The
proof will not be given here.

REMARK 2. A topological space S is said to be separable absolute Borel if there
is a complete separable metric space Z such that S is homeomorphic to a member
of Z(Z). It is easy to see that the corollary also holds if X, Y are separable
absolute Borel sets.

REMARK 3. Suppose that in Corollary 1, D, is compact for all x e proj (D)
and Y is k—dimensional Euclidean space. Then G = I and a suitable value of y
for which f{(x, y) = inf f, may be described explicitly in the manner sketched
below.

If k = 1, simply take ¢(x) to be the least y in D, such that f(x, y) = inff,.
Then the Borel measurability of ¢ is a consequence of the following result:

(*) Let E be a Borel set in X x R, where X is a com-
plete separable metric space and R is the real line. If E,
is compact in R, for x e X, then proj (E) is a Borel set
and the function x — inf £, x € proj (E) is Borel measur-
able.

Although (*) is an instance of Corollary 1 (by taking f to be 0 on E and 1 on
the complement of E) it is worth noting that it follows via the proof of Theorem
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1 from a special case of the theorem of Stschegolkow: if a Borel set of the unit
square has the property that each of its vertical sections is closed, that Borel
set has a Borel section. This case appears much easier to establish than the
theorem.

To indicate why (*) implies the measurability of ¢, note first that it implies
that proj (D) is Borel. Then the argument given in the fourth paragraph of the
proof of Corollary 1 may be repeated to show that x — inff,, x € proj D, is
Borel measurable. This only uses the projection clause of (*). It follows that
the set E = {(x, y) € D|f(x, y) = inff,} is Borel. Since each x-section of E is
compact (*) implies that ¢: x — inf E,, x € proj (D), is Borel measurable, which
finishes the case k = 1.

The explicit definition of ¢ in the case k = 2 is accomphshed by two itera-
tions of the argument given in the preceding paragraph. First, let

D' = {((x,7), 2)| (%, (¥, 2)) € D}

and fY((x, ), z) = f(x, (y, 2)) for all ((x,y),z)eD'. Then f* satisfies the
hypothesis of Corollary 1 and the first paragraph of this remark. Thus, by the
preceding paragraph, the set D* = proj (D"), the function f* defined on D* by

fiw) = inf{f(u, 2)[ze D/},
and the function ¢! defined on D? by ¢*(u) = least z in D,! such that

i, 2) = f(u),

are all Borel measurable. In addition, for x e proj(D?) D, is compact and
f*(x, ) is lower semi-continuous on D,’, so that f? satisfies all the hypotheses
of Corollary 1 and the first paragraph of this remark. Again, from the case
k — 1, proj (D?) is Borel and the function ¢?, defined on proj (D?) by ¢*(x) = least
y in D, such that f(x, y) = inf f,? is Borel measurable. Then the Borel measura-
ble ¢: x — (¢*(x), *(x, ¢*(x))) will serve to pick a minimizing (y, z) for each
x € proj (D*)(= proj (D)); that is, f(x, ¢(x)) = inf {f(x, v)|v € D,}. The inclusion
of domains required for- the definition of the composition ¢ is easily checked, as
is the fact that ¢(x) is a minimizing (y, z) for each x.

Although omitted here, an inductive argument, similar to the above step from
k = 1to k = 2, will establish a recipe for an explicitly defined ¢ for each posi-
tive integer k.

3. Absolute measurability. Before proceeding to the result of this section
certain properties of analytic sets and absolutely measurable sets must be intro-
duced. A non-empty subset of a complete separable metric space U is analytic
if it is the range of a continuous function defined on the subspace of irrational
numbers in [0, 1]. The empty set is taken to be analytic. The sigma-field
generated by the collection of analytic sets in U will be denoted Z(U). A subset
of a metric space M is absolutely measurable in M if it belongs to the domain of.
the completion of every finite measure on Z2(M).
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The following two results will be required. Let U, ¥ be complete, separable
metric spaces.

I. If B is a Borel subset of U x V, proj (B) is analytic (Kuratowski (1958)
page 353).

II. If A4 is an analytic set in U, A4 is absolutely measurable in U (Kuratowski
(1958) page 391).

Throughout the remainder of this section, the following (somewhat anomal-
ous) definitions will be used. Let 4 be a function whose domain is a subset of a
metric space M and which takes its values in some metric space N. Then A will
be said to be absolutely measurable in M if h=*(B) is an absolutely measurable set
in M for all B e <#(N). Similarly, & will be said to be measurable with respect to
Z(M) if h~Y(B) e Z(M) for all Be ZZ(N). In the case that the domain of % coin-
cides with M, these definitions are the usual ones.

LEMMA. Let M, N be metric spaces and h be a function with domain h — M and
range h & N. Suppose that h is absolutely measurable in M. Then if L is an
absolutely measurable set in N, h=*(L) is an absolutely measurable set in M.

Proor. The proof is easy and is omitted.

THEOREM 2. Let X, Y be complete separable metric spaces and f be a real-valued
Borel measurable function defined on a Borel subset D of X x Y. Then
(i) The sets
G = proj (D),
I ={xeG|for some yeD, f(x,y)=inff},
are absolutely measurable.
(ii) For each ¢ > 0, there is an absolutely measurable function ¢, satisfying, for
xegG,

flx, o (x)) = inf f,, if xel,
< e+ inff, if x¢lI, and inff, + —oo,
< —et, if x¢lI, and inff, = —oo.

Proor. Excluding considerations of measurability, the proof is the same as
the proof of Corollary 1. All that will be done here is to show the absolute
measurability of the various sets and functions defined in the proof of Corollary
1.

The set E is Borel and the set A is analytic, being the projection of E. Then
the following selection theorem applies to show that p may be taken to be
measurable with respect to Z(X x R): If E is any Borel (or even analytic) set
in U x V, where U, V are complete separable metric, there is a set S satisfying
(ii), (iii), (iv) of the definition of Borel selection given in Section 2 of this paper,
such that p, is measurable with respect to Z(U). In the case that U is the real
line, this selection theorem follows from a lemma of Von Neumann (Von
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Neumann (1949) Lemma 5). The lemma is easily extended to an arbitrary
(uncountable) complete separable U by using the Borel isomorphism of U and
the real line. (The countable case is trivial.) The selection theorem is also a
special case of a theorem of Sion (Sion (1960) Corollary 4.4).

To establish the absolute measurability of ¢ first note that both G and F belong
to Z(X). The set G is analytic, being the projection of the Borel set D, and so
belongs to Z(X). The set F belongs to X(X) because

G — F = Ny, {xeX|for some y, (x,y)eD and f(x,y) < —n}

and each member of the intersection is the projection of a Borel set. Similarly,
the equality

{xeF|inff, < a} = {xe X|for some y,(x,y)eD and f(x,y) <a}n F

where a is real, shows that the set on the left belongs to (X). Thus the function
x—inff,, xeF, is measurable with respect to Z(X), and by a standard argu-
ment, so is the function

T: x— (x,inff,), xeF.
Observe that, for x e I, ¢(x) = p(T(x)). Then the equality
I ={xeF|(x,inff,) e A}

implies that ¢=}(B) = T-*4 n p~(B)) for every subset B of Y. If B is a Borel
set in Y, p"(B)eZ(X x R) and 4 n p"Y(B)e (X x R). Thus to show ¢ is
absolutely measurable in X, it is sufficient to show that for L e Z(X x R), TY(L)
is absolutely measurable in x. The function T has already been shown to be
measurable with respect to Z(X). The statement II implies that all members of
Z(X) are absolutely measurable in X, so that T is absolutely measurable in X.
Again by II, all members of Z(X x R) are absolutely measurable in X x R. The
lemma then applies to show that, for L e (X x R), T-'(L) is absolutely measur-
able in X. Thus ¢ is absolutely measurable in X. This implies that I, the domain
of ¢, is absolutely measurable. Also G is absolutely measurable by II.

The arguments just given may be applied to show that the function ¢, of the
last paragraph of the proof of Corollary 1 is also absolutely measurable in X.
This completes the proof of Theorem 2.

REMARK 1. Suppose f is permitted to take on the values 4-co, —oo and is
Borel measurable in the sense of the first remark in Section 2. Then the conclu-
sions of Theorem 2 remain true. The proof will be omitted.

REMARK 2. Theorem 2 also holds if X, Y are separable, absolute Borel sets
and D is only assumed to belong to <Z(X x Y). The proof is straightforward
and is omitted.

4. Measurability of Bayes procedures. In the statement of the next theorem,
certain assumptions will be required concerning the elements of the statistical
problem at hand. These are presented as Assumptions 1-3. Only the fixed
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sample size problem is considered here, although the results have some relevance
to the sequential case.

AssuMPTION 1. The sample space -2~ and the space of possible decisions &
are non-empty Borel sets (in complete separable metric spaces).

AssuMPTION 2. Let (0, &, G) be a probability space, where G is considered
to be the prior distribution on the parameter space ©. Suppose that, for each
6 c©, P, is a probability distribution defined on £Z(2"), such that, for each
Be ZB(Z), the function 6 — P,(B), 6 € ©, is measurable with respect to <.
Suppose further that there is a conditional distribution P(- | x), x € 227, satisfying:

(i) For each x e .27, P(-|x) is a probability on (€; &).
(ii) For Ce &, P(C|+) is a Borel measurable function on 7",
(iii) If P is defined on the Borel subsets of 27 by the equation

P(-) = § Py(+)G(d0) ,
then
§5 P(C| X)P(dx) = {; Py(B)G(d0)
for all Ce & and Be ZZ(2).
AssUMPTION 3. The loss function L, defined on ©® x %" and taking nonnega-

tive reals as values, is measurable with respect to the product of the sigma-field
& and the Borel sigma-field in .97,

REMARK. In Assumption 2, the existence of the family P(|x) is assured if ©
is a Borel set and & is the class of Borel subsets of ©. This follows from

standard conditional probability theorems (such as Doob (1953) Theorem 1.9.5).
In the statement of Theorem 3 below define r, the conditional risk function
on 27 x %7, by
r(x, a) = §¢ L(0, a)P(d0 | x) ,
and set
I = {xe Z|for some be 7, r(x, b) = inf,. , r(x,a)}.
THEOREM 3. SupposeAssumptions 1-3 are satisfied.
(i) For each ¢ > 0, there is an absolutely measurable decision procedure d.,
satisfying, for x € .27,
r(x, d(x)) = inf,. , r(x, a) , if xel,
r(x, d(x)) < ¢ + inf,. , r(x, a), if xez—1.
(ii) If .7 is a countable union of compact sets and L(0, «) is lower semi-continu-

ous on .7 for each 6 ¢ ©, the d, of (i) may be taken to be Borel measurable.

Proor. The sets {d € domain r|r(d) = + oo}, {d € domain r|r(d) € B} where B
is a linear Borel set, are Borel. This follows from the three assumptions by the
usual measure—theoretic arguments. Thus the first remark of Section 3 implies

(0)-
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In (ii), Fatou’s lemma shows that for each xe .27 r(x, «) is lower semi-
continuous on .%7. Thus the first remark of Section 2 implies (ii).

ReMARKS. If 227, 97 are only assumed to be separable, absolute Borel sets,
Theorem 3 is also true according to Remarks 2.2, 3.2.

5. A counterexample. If the sections E, in Theorem 1 are merely closed sets,
rather than compact sets, the conclusion of the theorem may not hold. As is
shown in the example to follow, this is an obvious consequence of the (not
obvious) fact that an analytic set exists which is not Borel (Kuratowski (1958)
page 368).

Let J be the subspace of the irrationals in [0, 1] metrized so that it becomes a
complete separable metric space. Set U =[0, 1], ¥ = J. Let 4 be an analytic
set in [0, 1] which is not Borel and let f be a continuous function from J onto
A. Let E = {(u,v)e U x V|f(v) = u}. Since E is the graph in (¥ x U) of the
Borel measurable function f, E is a Borel set (see e.g. Halmos (1950) page 143).
Also E, = {ve V|f(v) = u} is closed, ue U. However, proj(E) = A4 is not
Borel, so that the second conclusion of Theorem 1 fails. Nor does E admit a
Borel selection. For if it did, proj (E) would be Borel as shown in the proof of
Theorem 1.

This example may be modified to show that part (ii) of Theorem 3 will fail if
7 is only assumed to be closed. Set .2”= 0 = [0, 1], &% = J G = Lebesgue
measure on [0, 1], P, = point mass at ¢, and

L(@,a) =0, if (0,a)ekE,
=1, if (0,a)¢E.

Note that L(6, +) is lower semi-continuous.

A version of the posterior P(. | x) is point mass at x, and for it » = L. Suppose
a Borel measurable d exists on .27 such that r(x, d(x)) = inf, r(x, a). Then, the
set on the left, and so the set on the right of the equality

{x € 27| r(x, d(x)) = 0} = {x e 2" |inf, r(x, a) = 0}

would be Borel. But the set on the right is proj (E), which is not Borel. A
similar argument shows that, for ¢ < 1, no Borel measurable d exists on .2~ for
which r(x, d(x)) < inf, r(x, a) + ¢, xe 2.

A natural question to ask of this example is whether or not it would be possi-
ble to choose another version of the posterior for which the r so obtained admits
of a Borel measurable d. The answer is yes, for the general reasons outlined in
the next paragraph.

Suppose Assumptions 1, 2, 3 of the preceding section are in force. Let ¢ > 0.
Applying (i) of Theorem 3, there is an absolutely measurable d, satisfying the
conditions stated there. Then there is a Borel set N in .2” with P(N) = 0 and
a Borel measurable function h:.27— % such that d(x) = h(x) for all
xecZ — N. Fix a point ue N and set P(+|x) = P(+|x) for xe 2%N and
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B(+|x) = P(+|u) for xe N. Then B(.|x), x € 2, satisfies (i)-(iii) of Assumption
2. Let 7 be the conditional risk function associated with B(. | x), x e 2, and
be the set of x € 227 for which a b ¢ .97 exists such that #(x, b) = inf,,  #(x, u).
Then, as is easily verified, the decision function defined by
d(x) = h(x), xeZ — N,
=d(u), xeN,

is Borel measurable, and satisfies the equality and inequality of Theorem 3(i)
(with 7, I substituted for r, I resp.).

Acknowledgment. We wish to thank D. Freedman and R. Rarrell for several
helpful discussions concerning the contents of this papér.
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