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ON THE MEASURABILITY AND CONSISTENCY OF MAXIMUM
LIKELIHOOD ESTIMATES FOR UNIMODAL DENSITIES

BY RoLF-DIETER REISS
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This paper is concerned with maximum likelihood estimates for a large
class of families of unimodal densities. The existence of measurable maxi-
mum likelihood estimates and the consistency of asymptotic maximum
likelihood estimates are proved. By counterexamples it is shown that the
conditions which are sufficient for consistency cannot be removed without
compensation.

1. Introduction. For unimodal densities maximum likelihood estimates (m.l.
estimates) have been investigated under the assumption that the mode is known
(Grenander [3], Prakasa Rao [6], Robertson [7]) or that the length of the modal
intervals is uniformly bounded from below (Wegman [8]).

This paper is concerned with m.1. estimates for a large class of families of
unimodal densities. The existence of measurable maximum likelihood estimates
and the consistency of asymptotic maximum likelihood estimates (see (1.2)) are
proved.

In Section 2 we introduce a metric d, on a special family of unimodal densities
using the Lévy metric for monotone functions. In (2.6), (2.10), and (2.11) the
topological structure of this metric is studied. In (2.12) we obtain that the con-
vergence with respect to the metric d, is equivalent to the following two condi-
tions: Convergence at each continuity point of the limit function and convergence
of the modes to the mode of the limit function. In (2.17) the convergence with
respect to d, is compared with the convergence in the mean. (2.17) also implies
that the weak topology and the topology of the supremum-metric coincide on the
family of probability measures with unimodal density.

The topological results of Section 2 enable us to provide a method of how to
derive the existence of measurable m.l. estimates. The general method is dis-
cussed in detail (see (3.6) and (3.7)). The special cases of unimodal densities
with the mode known and of unimodal densities which are uniformly bounded
are used to apply these measurability statements for the m.1. estimate (see (3.8)
and (3.9)).

Section 4 gives conditions which imply the consistency of asymptotic maximum
likelihood estimates (a.m.l. estimates). It is shown that none of the conditions
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sufficient for consistency can be omitted without compensation. The proofs in
Sections 3 and 4 are closely related to the proofs given by Landers [4] and
Pfanzagl [5] for families of probability measures equipped with topologies which
have a countable base, and which are either compact metric or locally compact,
and admit “upper semicontinuous” densities.

We shall use the following notation. N(RR) denotes the set of natural (real)
numbers. Let (X, 57, P) be a probability space. The elements of the countable
Cartesian product X~ of X will be denoted by x or (x;),.. By %N we denote
the countable product of ¢-algebras .o/, and by P¥| 9N the countable inde-
pendent product of identical components P|.%7. %" will denote those sets in
7N which are cylindrical with base in X*. Givenasequence of mapsg,: X¥ — T
(where T'is some set) we shall always assume that g,(x) is depending on x;, - - -, x,
only. A denotes the complement of a set 4 in X.

Let 2 be the Lebesgue measure on R. Let d,(f, 9) = § |f — 9] d2 for each f
and g € £, where &7, is the family of all functions which are finitely integrable
with respect to 1. Denote by P,(F ) the appropriate measure (distribution func-
tion) with density f. Let dP/dA be the set of densities of P with respect to 1. |a]
denotes the absolute value of a real number and given a function 2: R — R let
4] = sup {JA)| | x € R}.

For a pseudometric space (X, d) let Uy,(f, ¢) = {9 € X|d(f, 9) < ¢} where fe X.
Denote by <#(d) the os-algebra which is generated by the topology of d.

A function f: R — [0, co] is unimodal iff fis non-decreasing on |— oo, M[ and
non-increasing on M, oo[ for some M e R. Then M is called the mode of f, and
the set of all modes of f is called the modal interval of f. Let S be a family of
unimodal densities equipped with the pseudometric d,. We shall need the fol-
lowing definitions.

(1.1) ¢, RY— 27, neN, is called a sequence of maximum likelihood
estimates (m.l. estimates) for 5#” iff

2 0.(X) (%) = sup {[[7-. f(x) | fe £} forall xeRY and rneN.

(1.2) ¢, RN — 57, neN, is called a sequence of asymptotic maximum
likelihood estimates (a.m.l. estimates) for S#” iff

limy, ¢y ((IT7=1 @u(®)(x)) ™" — Inf {(II7< X)) [ fe £} = 0
forall xe RY.
Notice that every sequence of m.l. estimates is a sequence of a.m.l. estimates.
(1.3) 0. RY — 57, neN, is said to be strongly consistent for f'e 27 iff
lim, . di(¢,(X), f) = 0 for PN — a.a. x e RN.
We mention the following trivial statement for the sake of reference.

(1.4) Let (X, d) be a metric space. A function f: X — [— o0, oo] is called
lower (upper) semicontinuous iff one of the following two (equivalent) assertions
is valid.
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(@) {xeX|f(x) > r}({xeX|f(x) < r})is an open subset of (X, d) for each
reR.

(b) liminf, . f(x,) = f(x) (limsup,.y f(x,) < f(x)) for each xe X and each
sequence x, € X, n € N, with lim,  d(x,, x) = 0.

We remark that a unimodal function f is upper semicontinuous iff f is right
(left) continuous where it is non-decreasing (non-increasing). Each unimodal
function is continuous 2-almost everywhere.

2. The topological background. First we assume that the mode is zero. We
define

(2.1) F = {f: R—[0, co]|f unimodal, upper semicontinuous,
§fdL < 1, f(0) = oo}

and
(2.2) FLrl={feF | fdr = 1}.

Now we introduce a metric d, on & ° using the Lévy metric L for monotone
functions. For each f'e & ° define

A =flx) x<0
= x=0

and
[¥x) = fl—x) x<0

= oo x=0.

Let & = {f*|fe.# ° and let L be the Lévy metric for right-continuous,
non-decreasing functions. Thus

L(f,9)=inf{e > 0| flx —¢) — e < g(x) < flx + ¢) + ¢ forall xeR}

where fand g € &
In essentially the same way as in [2] (Theorem 1, (IIT) — (I) on page 33 and
Theorem 3 on page 38) we obtain the following two results ((2.3) and (2.4)):

(2.3) * Leth,and ke & wherene N. Thenlim, . L(k,, #) = 0 is equivalent
to lim, . h,(x) = h(x) at all continuity points x of 4.

(2.4) (&, L) is a compact metric space.

Now define for each fand g e & %

(2.5) d,(f, 9) = max {L(f*, g%), L(f**, g**)} .

It is easy to see that for each fand g & "

(2.5 d,(f, g) = inf {e > 0] f{x + sgn (x)e) — ¢ < g(x) and
g(x 4 sgn (x)e) — ¢ < f(x) forall x = 0}.

(2.6) THEOREM. (& ', d,) is a compact metric space.
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PrOOF. Because of (2.4), & x < equipped with the maximum-metric is a
compact metric space. Obviously, the map r: & °— & x & (where 7(f) =
(f*, f**)) is injective. In view of (2.5) the proof will be concluded by showing
that 7(°) is a closed subset of &~ x <. It suffices to show that 7(.%°) contains
all its limit points. Let f,e 5 °. neN, and (k, g)e.< x & such that
lim, o max {L(f,*, k), L(f3*, 9)} = 0. Let f(x) = h(x)1wo (%) + 9(— )]0 u(%)-
We derive from (2.3) that lim,,  f,(x) = f(x) A-a.e. According to Fatou’slemma,
this implies § fdi < 1. Hence fe % *and (k, g) = 7(f) is an element of ¢(.F").

For each unimodal function g denote by M, the center of the modal interval
I, of g. Denote by L, (R,) the left (right) corner of the modal interval of g.

Furthermore, we define

(2.7) “Z ={f: R—[0, co]|f unimodal, upper semicontinuous,

§fda< 1, fiM;) = oo}
and

(2.8) Fi={feF|\fdr=1}.

Now we define a metric d, on . which is an extension of d,|.Z° to 7.
Hence the use of the same symbol is justified. Define

(2.9) 4 (f,9) = max {(d,| F)(flx + M), 9(x + M,)), |M; — M|}
where f and ge. & .

(2.10) THEOREM. (.F,d,) is a locally compact, o-compact metric space (with
countable base).

PROOF. (2.6) implies that the metric space & ° x R (equipped with the maxi-
mum-metric) has the desired properties. And (7, d,) can be identified with
Z 7 x R using the map9: & — 7 ° x R where I(f) = (f(x + M;), M) for
each fe . &.

(2.11) THEOREM. A subset 27 of Z is relatively compact iff {M,|fe 2"} is
bounded.

Proor. Let 9: . % — Z° x R be as in the proof of (2.10). Then % is rela-
tively compact iff 9(_2") has this property in % ° x R. This is equivalent to
{M,| fe 22"} bounded because . ° is a compact space.

Now we characterize convergence with respect to the metric d, by pointwise
convergence.

(2.12) THEOREM. Let f, and fe 5, ne N. Then the following two assertions
are equivalent:
(1) limneN du(f'n’f) = 0.
(i) (a) lim,.y|M; — M, =0 and
(b) lim, . f.(x) = f(x) at each continuity point x = M; of f.
Proor. (2.3) together with the definitions (2.5) and (2.9) imply that
lim, . d,(f,,f) = 0 is equivalent to (a) and
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(b') lim, . fu(x + M, ) = fix + M;) for all continuity points (x + M,) of f
whenever x = 0. By the monotony of fand f, we easily derive the equivalence
between (a), (b’) and (a), (b).

Without proof we mention the following corollary.

(2.13) COROLLARY. Leth,andhe & ,ne N, be such thatlim, . d,(h,, h) = 0.
Then

h(x7) < lim inf, . B,(x) < lim sup, e B,(x) < B(x)  (x < M))
and
h(x) = lim sup,  b,(x) Z liminf, . b,(x) = A(x*)  (x < M).
Hereafter we shall always assume in this section that each unimodal density
is right or left continuous at the mode except for the case that we explicitly state
that it is an element of & .

(2.14) ProrosITION. Let f, and e £, ne N, be unimodal functions such that
foz0,neN,f>0,andlim, ||F; — F|| =0. Thenliminf, .y L, = L;and

limsup,.y R; < R;.

PrOOF. Assume, on the contrary, that lim inf, . L o < Ly Then there exists
¢ > 0and a subsequence N, C Nsuchthat L, < L, —eforallne N, We can
find some ¢ > 0 and a number L, — ¢ < a < L,and an interval J with 2(J) > 0
containing L, such that f(a) + 20 < inf {f(x)|xe J}. Let first f,(a) = f(a) + 9,
neN,, then f, — f = 6 on[L, — ¢, a]. Otherwise, if f,(a) < f(a) + J, n e N,,
then f — f, = d on J. These statements imply that limsup, .y ||F; — F/|| =
o min {A(J),a — L; 4 ¢}/2 > 0 in contradiction to the assumption. Hence we
haveliminf,. L, = L, Inasimilar way we canshow thatlimsup,.y R, =< R,.

We remark that (2.14) implies lim, .y M, = M, if the mode of f is uniquely
determined.

(2.15) ProroSITION. Letf,, ne N, and f be unimodal functions such that f,, = 0,
neN, f=z0,and (f,d2 <1, neN, §fdi < 1. Suppose that lim, . ||F; —
F(|| = 0. Then there are versions h, and g, of f, and f respectively which are elements
of F such that lim,  d,(h,, 9,) = 0. And this is valid for all versions h, and g,
with lim, . [M, — M, | = 0.

ProoF. It is easy to check that the assertion is equivalent to the following:

(2.16) There exist 7, >0, neN, and (a,, b,)€I; x I;, neN, such that
lim, 7, = 0 and lim,, . 7, = O (where 7, = b, — a,) and the following condi-
tions are fulfilled. For each ne N

S+ 70 = 2 HTEAEN (X + 70 + 2){2hn, foreach  x{S}a, {3}, -

We shall now verify (2.16). As a consequence of (2.14) we know that there
exist (a,, b,) € I; x I;, ne N, such that lim, 7, = 0 (where 7, = b, — a,).
Since lim, .y f(x + 7,) = f(x) 2-a.e. Scheffé’s lemma implies lim, . ||F; —
Ffiypll = 0. Furthermore, 1Fs, = Frasppll S |1Fys, — Ffll + 11Fp — Fraprpll-
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Thus, there exists a, > 0, ne N, such that lim, 4 a, = co and anllFf” —_—
Friryll < 1 foreachne N. Let ustake 7, = a,~*. We prove that f(x + 7, —
) — W = fu(x) for all x < a, — 5,. The other inequalities of (2.16) follow
similarly. Let x < a, — 7, be fixed. According to the definition of a, and b,,

fo =) = [l =y + 1) — fu(y)  forall ye[x—g,, x].
Hence

= ani’”Ff,,L - f(y+7’n)” = Y-

)
(2.17) THEOREM. Let f,, ne N, and [ be unimodal probability densities. Then
the following three assertions are equivalent:

(1) There are versions h, and g, of f, and f respectively which are elements of &,
Sfor which lim,,_ d,(h,, g,) = 0.
(i) lim, . di(f,,f) = 0.
(ifl) lim, e [[F;, — F]| = 0.

PROOE. (i) — (ii). It suffices to show that each subsequence ( Sadweny Of (fu)wen
contains a subsequence which converges to f with respect to d,. Since J = {M,|g
version of f and ge &} is a compact interval there exists a subsequence
(M, )nex, Of (M, ), ., which converges to some a ¢ J. Denote by g, the version
of f which is an element of .7 and has the mode at a. By (2.12) we obtain that
lim, . d,(9., 9,) = 0 and this implies that lim, ., d,(h,, 9;) = 0. Hence by
(2.12) and Scheffé’s lemma: lim, . di(fo. f) = 0.

(if) — (iii) is well known.

(iil) — (i). See (2.15).

As a consequence of (2.15) and (2.17) we obtain

(2.18) COROLLARY. Let b, and he 5, ne N, have the same mode. Then the
following three assertions are equivalent:

(i) lim,,d,(k,, k) = 0.
(i) lim, .y dy(k,, k) = 0.
(iif) lim, ||F, — F|| = 0.

3. Measurability. First we shall give some auxiliary lemmas which will also
be used for the consistency arguments in Section 4. Let .% be as in (2.7).

(3.1) PROPOSITION. A(x, r) = {9 € .F |g(x) = r} is a compact subset of (7,
d,) for each x ¢ R and r > 0. And the function g — g(x) is upper semicontinuous on
F for each x ¢ R.

Proor. Let xe R and r > 0 be fixed. According to (2.11), we have to show
that (a) A(x, r) is a closed subset of .& and (b) {M, | g € A(x, r)} is bounded. We
show that A(x, r) contains all its limit points. Let g, € A(x, r), ne N, and g ¢ F~
be such that lim, .y d,(9,, 9) = 0. We show that g(x) = rand hence g € A(x, r).
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First suppose that x = M,. Then g(x) = co = r. Otherwise x = M,. Then

Corollary (2.13) implies g(x) = r. Next we verify (b). Let ge A(x, r) then

g(x) = r > 0. Because of § gdi < 1 we have |x — M,| < r~'. Thus(b)is proved.
The second part of the assertion follows from (1.4).

(3.2) PROPOSITION. The function x — sup,. , g(x) is &-measurable for all
compact subsets .5 of F .

Proor. By (3.1) and [5], Corollary (3.6), it suffices to show that x —
sup,. ,, 9(x) is “-measurable for each open set 72 C 5. We even show that
{xe R|sup,., 9(x) > r}is open for each r > 0. Let r > 0 be fixed and xe R
such thatsup,.,, g(x) >r. Then there exists f € Z such that f(x) > rand x = M.
Choose a 6 > O such that U, (f,0) € 7. Let0 <y < dbesuchthat M, 4+ 7 < x
(M; — 7 > x). Thenwe have f(y + 1/2) € Uy, (f, 9) (f(y — 7/2) € Uy (f )) and
f 4+ 7/2) > 7 (AAy — 7/2) > r) on Jx — 7/2, x + 7/2[. Thus sup,.., g(y) > r
for each y e ]x — 7/2, x 4 7/2[ and the assertion follows.

Let 27 be a closed subset % and let ¢ : R — R be <#-measurable. Suppose
that g(x) < ¢(x) for all x = M, and g € . Define

[ =9(x) x#M,
= ¢(x) x=M,

and sup f,(x) = sup,. ., f,(x) for &7~ c &#. From (3.1) and (3.2) we derive two
corollaries for (f,),c, and supf,.. The proofs are trivial.

(3.3) COROLLARY. {g €7 |f,(x) = r}is a compact subset of & forall xe R
andr > 0.

(3.4) COROLLARY. x —supf,(x) is <#-measurable for each compact set
FC

(3.5) PROPOSITION. & is the countable intersection of open sets (with respect
to (&,d,)).

Proor. First we show that 2 — { 2 dZ is a lower semicontinuous function
on & (see (1.4)). Let h, and e .. . =N, and let lim, . d,(k,, &) = 0. By
(2.12) we have lim, . &,(x) = k(x) Z-a.e., and according to Fatou’s lemma,
liminf,  § A,(x)dx = § k(x) dx. By (1.4) we know that {he & |§ hdA > r}is
an open subset of & for each re R. Since .7 = N,.n{he F |{hdA > 1 —
1/n} the proposition follows.

Next we explain a method for proving the existence of a sequence of measur-
able m.l. estimates for families of unimodal probability densities. Let ¢: R —
[0, oo] be upper semicontinuous, and let 5" be a measurable subset of (57,
#(d,)) such that g(x) < ¢(x) for each x = M, and g € Z#. Denote by Z#° the
closure of 5% in (&, d,).

(3.6) LEMMA. Foreachn e N there existsa map ¢, : RN — 5Z7° which is <™,
B(d, | FZ°)-measurable and fulfills the condition

I3 fopo0(x:) = sup {I1i=1 fo(x)) | 9 € 227} for each xeRN.
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Proor. Using the upper semicontinuity of ¢ we easily derive from (2.13) that
9(x) < ¢(x) for each x = M, and g e #°. According to (2.10), (5£°,d,) is a
locally compact metric space with countable base. We derive from (3.3) that
{geZ°| —logf,(x) < r} is compact for all x and reR. (3.4) implies that
x —inf ., (—logf,(x)) is <#-measurable for each compact set 57" 5Z°. Be-
cause of these statements [4], (Theorem (1.9) and Corollary (1.11)) are applicable
and imply the assertion.

Now we use the map ¢,': RY — 57 for constructing a <", Z(d,|2¢)-
measurable m.l. estimate for 57

Let ¢,/, ne N, be given as in (3.6). Let B, be a <#"-measurable subset of R¥
such that for each x ¢ B, and g € 57 the relation

I3 fo(x:) = sup {IIiz fu(x:) [k e 227}
implies g € 22 Furthermore, let there bea <2*| B,, <Z(d, | 5¢)-measurable map
7, B, — 7 suchthatforeachx e B,: [[i. f; (%) = sup{I[i_. fi(x) |k e £}
Define ¢, : RN — 2 by
Pu(X) = ¢,/(X) - x€B,
= 7,(X) xeB,.
3.7 THEOREM. ¢,: RN — 57, neN, is a sequence of %", <& (d,|F)-
measurable (and hence <B", B (d,| FZ)-measurable) m.l. estimates for SF.

Proor. (3.6) combined with (3.5) implies the first part of the assertion.
Since id : (57, d,) — (57, d,) is continuous (see (2.17)) the second part follows
immediately.

Let us now consider the case when the mode is known to be zero. Prakasa
Rao [6] describes the m.1. estimate as the slope of the greatest convex minorant
on ]—oo, 0] and the smallest concave majorant on [0, cof of the empirical dis-
tribution function. (As the referee pointed out this characterization is due to
Reid [1].) The m.l. estimate ¢,(x) is uniquely determined (except for the value
at the mode) and upper semicontinuous for each x e RN with x, = 0 where
i=1,...,n If x, =0 for some ie{l, - -, n} define ¢,(x) = g, where g, is an
arbitrary but then fixed unimodal probability density with g,(0) = co.

(3.8) COROLLARY. The m.l. estimate ¢, for the sample size n for the family of
all unimodal probability densities with mode at zero is B", <&(d,)-measurable.
Furthermore, for x # 0 fixed X — ¢,(X)(x) is <& -measurable.

PrOOF. Let 57 = & %in (3.7) (where %" is defined in (2.2)). & *isa closed
subset of &, with respect to d,. Let ¢(x) = 1/|x]. B, ={xeR¥|x,#0, i=
1, ..., n} and ¢,(x) = g, for xe B, where g,e . is fixed. (3.7) implies that
0.t RN — 0 is &, F(d,| 7 ,°)-measurable. In view of the remarks made
above we easily see that an “arbitrary” m.l. estimate (for the family of all uni-
modal probability densities with mode equal to zero) is <&, <#(d,)-measurable.
This proves the first part of the assertion.

The second part follows immediately from (2.13) and (3.7).



896 ROLF-DIETER REISS

Notice that the assertion of Corollary (3.8) may also be derived from the
description of the m.l. estimate given above.

(3.9) COROLLARY. There exists a sequence of <Z", <Z(d,)-measurable m.l.
estimates for the family of all unimodal probability densities which are uniformly
bounded by some S > 0.

Proor. Let 7 = {ge . ,|g(x) < S forall x = M} and ¢(x) = S in (3.7).
Let B, = {xe RY|max {x,, -- -, x,} —min{x,, ---,x,} = 1/S},and r,,: B, » 57
is defined in the following way

T,(X)(x) = oo x = min {x, ---, Xx,}
=S x € Jmin {x,, - -, x,}, min {x,, - -, x,} + 1/5]
=0 otherwise .

It is easy to see that r, is continuous. By (3.7) there exists a &&*, ZZ(d,| 2¢)-
measurable estimate ¢, for &7 and then f, isa <", Z(d;)-measurable m.l.
estimate for the family of all unimodal probability densities which are uniformly
bounded by S. '

4. Consistency. Concerning consistency it makes no sense to define a sequence
of m.1. estimates for the family of all unimodal probability densities since every
density with mode at one of the observations x;, i {1, - - -, n} and value + co at
x, may be taken as image of (x,),. under the m.1. estimate. Therefore we shall
always assume that the given family &#” of unimodal densities is bounded by a
function ¢b. Let all f € £ have a mode in the closed set 4 — R. If the mode is
known to be a ¢ R we take 4 = {a}, and if the mode is unknown we take 4 = R.

4.1 Hereafter we shall always assume in this section that for each f e &7 all
versions f” of f, where f” is upper semicontinuous, M, € 4, and f"(M) = ¢(M.),
are elements of 57, Then each m.l. estimate (if existent) for the sample (x,, - - -, x,)
has mode at one of the observations x;, ie{l, - .-, n}.

(4.2) THEOREM. Let 57 be a family of unimodal probability densities which are
bounded by ¢ (equipped with the pseudometric d,). Suppose that ¢ is upper semi-
continuous. Then any sequence of a.m.l. estimates is strongly consistent for each
[ €S fulfilling

(@) §flog¢di < co and

(b) §flogfdi> —co.

We prove Theorem (4.2) with the help of Lemma (4.3) which is a modification
of results of Pfanzagl ([5], Theorem (1.12) and Corollary (1.16)).

(4.3) LemMA. Let (T, d) be a locally compact metric space with countable base,
denote by _#7 the power set of T, let &°|.57 be a family of probability measures
on the measurable space (X, 57) and let §: & — _# be a map such that 9(P,) N
9Y(P,) = @ for all P, Pye Fwith P+ P,. Letf,: X —[—oco, o], teT, be such
that
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(@) {teT|f(x) < r}isacompact setir T for all x and r ¢ R,
(b) x —inf f (x) is -measurable for all compact sets C C T.
Let P, e S be such that, in addition,
(c) P(inf f) > —oco for any closed set H _ T with H n 9(P)) = &,
(d) Py(f,) > Py(f) for all t e T\Y(P,) and I € J(P),
() Py(fy) = Po(fy) for all 1,1 € Y(Py).
Let ¢,: XN — T, ne N, be such that,

(f) lim, ey (exp(n™ i1 fp,m0(%:)
— inf {exp (n™* D fu(x)) 1€ Upea 9(P)}) = 0.

Then there exists a sequence t,(X)€ I(Py)), ne N, such that lim, . d(¢,(X),
t,(x)) = 0 for P)N-a.a. x € XN,

Proor. We shall only sketch the proof as it is closely related to that of
Pfanzagl’s theorems cited above.

Let P, e & be such that (c), (d), and (e) are fulfilled. Let (T*, 77*) be the
one-point-compactification of (7, d) and ¢* the point at infinity. Let fi. = co.
The conditions (c), (d), and (e) still hold for P, if we put T* and (f;),.,+ in place
of T and (f;),., respectively.

As in [S5], Theorem (1.12), (1.13), the strong law of large numbers together
with (f) implies that

limsup, . 77" Z;;lf%(x,(xi) < Py(f) (P,N-a.e.) forall led(Py). @)

Let me N be fixed. Let U, = Useory Ua(t, 1/m). U, is an open set in T*
and 9(P)) c U,,.

As in [5], Theorem (1.12), (1.14), the conditions (a) through (e) (with 7* and
(f2)ie o~ instead of T and (f}),., respectively) imply

Py(f)) < infzeﬁm Py(fy) =< liminf, . infteﬁ,,, nt 3t ful(x)
(PN-a.e.) forall led(Py). **)
By (*) and (*¥)

limsup, ey 17 2y fo o0(X:) < lim inf, . inf, 7 n~! 2%, f(x,)
(PN-a.e.). **

Let Z, ¢ X~ with PN(Z,) = 0 such that (**+) holds forallxe Z,. Let Z =
Unen Zne Let xe Z and m e N be fixed. Then (**+) implies that ¢,(x) € U,, for
sufficiently large n € N. Define (n,,),, . € N~ such that ¢,(x) e U, for all n = n,,.
Without loss of generality we may assume that n, < n, <n; < -... Choose
t,™(x) € 9(P,) such that d(¢,(x), t,"(x)) < 1/m for each n > n,,. Define #,(x) =
t,"(x) for ne{n,, ---,n,,, — 1}. It follows immediately that lim, .y d(¢,(X),
t,(x)) = 0 where 7,(x) € 9(P,) for each n e N.

Please note that (4.3) implies essentially the result of [5], Corollary (1.16) if
9(P) contains only one element for each P ¢ & Later we shall indicate why this
corollary is not applicable for our purpose.
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Proor oF THEOREM (4.2). Let 7 = {ge F,|g(x) < ¢(x) for x =+ M,
min {g(x), ¢(x)} € 2#°}. Denote by .2 the closure of .5 in & Let ¢,, n€N,
be a sequence of a.m.l. estimates for ©#. Define a map ¢,’: RN — %™ such
that ¢,/(X) = ¢,(x) A-a.e. foreachx e R¥and ne N. Let f, = —log (min {g, ¢}),
F ={P,|9g e %"} and 9(P) = (dP[d2) n ¢ for P e . Next weshow that the
assumptions of Lemma (4.3) are fulfilled for (¢, d,) (in place of (T, d)).

As a consequence of (2.10) we have that (2™, d,) is a locally compact metric
space with countable base. It trivially holds that 9(P;) n 9(P;) = @ for P, + P,.
Now we verify the conditions (a) through (b) of (4.3).

(a) and (b) follow immediately from (3.3) and (3.4). Let g € %" be such that
conditions (a) and (b) of the theorem are fulfilled and put P, in place of P, in
(4.3).

For (c): We derive that k(x) < ¢(x) for each x == M, and ke 2. Hence
P,(inff,,) > —oo.

(d) follows immediately as an application of [5], Example (1.3).

(e) is trivial. ‘

For (f): In view of the general assumption (4.1) and since ¢, is an a.m.l
estimate for 57, we easily conclude that ¢,’ fulfills (f).

Lemma (4.3) implies that there exists g,(x) € (dP,/d) n " such that

lim, . d,(¢4'(X), 9a(X)) = 0 P,N-a.e.
By (2.17) this is equivalent to lim, . d,(¢,(X), 9) = 0 P,N-a.e.

We have proved the assertion of the theorem for each g € %%, and hence the
assertion is valid for each f € 57, as we can find a version g € 2 for each f € 57

Now we discuss the method of the proof. As a consequence of Theorem (4.2)
we know already that we have to consider d;-convergence or convergence in
some stronger sense. If the mode is known we may apply Pfanzagl’s results (that
is Lemma (4.3) with the one-to-one parametrization 9: .&° — (&', d,)) to obtain
the consistency statement. In other words, we have the following interdependence:
Z is a family of probability measures equipped with the supremum-metric.
Choose a version f, € dP/d2 for each P e & such that the function P — f,(x) is
upper semicontinuous for each x € R. @)

If the mode is not known the following example shows that it is not generally
possible to choose versions f, € dP/d4, P € &, such that (*) is fulfilled.

(4.4)  ExampLE. Let f(x) = I, () and let J,, n € N, be subintervals of [0, 1]
such thatlimsup, . J, = 10, I[ andlim, . (J,) = 0. Define f,(x) = I3z ), u(X) +
I, (x). Then we have d(f,,f) =< 24(J,) and hence lim, . d(f,,f) = 0. But
lim sup, .y f.(x) = 2f(x). In order to obtain (*) it is easy to see that lim, . &\(f,,
/) = 0 has to imply lim sup, . f,(x) < f(x) 2-a.e. (see also (1.4)).

If the mode is not known d;-convergence implies only convergence at continuity
points outside of the modal interval of the limit function (see (2.17), (2.12), and
also (4.4)). Given the family of all unimodal probability densities with mode at
zero, we can prove that for any @ > 0 the m.1. estimate exceeds a near the mode
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for infinitely many n € N (with probability one). This “peaking” near the mode
indicates that we have to consider d,-convergence and not convergence in some
stronger sense.

(4.5) COROLLARY. Let SZ°® be the family of all unimodal probability densities
with mode at a € R. Any sequence of a.m.l. estimates for 27 is strongly consistent
for each [ € S fulfilling

(@) §f(x)log|x — a|dx > —co and

(b) §/f(x)log f(x) dx > —co.

Proor. We have f(x) < 1/|x — a| for each fe é‘f ¢, Hence the assertion
follows from (4.2) with ¢(x) = 1/|x — a|.

It is well known that the m.l. estimate is strongly consistent for each f ¢ 77
(without assumptions (a) and (b)). Robertson [7] uses the representation of the
m.l. estimate as a conditional expectation given a g-lattice for proving consistency.

In examples (4.7) and (4.8) we shall find special families of unimodal proba-
bility densities such that the assumptions of Theorem (4.2) are fulfilled except for
condition (4.2)(a) or (4.2)(b) and such that any sequence of m.l. estimates may
fail to be consistent.

(4.6) COROLLARY. Let 575 be the family of all unimodal probability densities
which are uniformly bounded by S > 0. Then any sequence of a.m.l. estimates for
SF is strongly consistent for each [ € 57 fulfilling § flog fdA > —co.

Proor. Apply (4.2) for ¢(x) = S. (4.2)(a) is trivially fulfilled.
We do not know whether the condition § flog fd2 > — oo can be removed in
Corollary (4.6).

4.7 ExAMPLE. Let

94(x) = (—xlog x(log log x~*)*)~! 0 < xZ exp(—e)
= oo (x=0)
=0 (otherwise) .
For 0 < a < exp(—e)
9a(x) = 9u(%)/2 (@ < x = exp(—e))
= —log a((loglog a=*)* 4 log log a™")g(a)/2 O<x=Za)
= oo (x=0)
=0 (otherwise) .

., ac[0, exp(—e)] are unimodal probability densities with mode at zero.
Let ¢(x) = 1/|x|. By (3.7) we know that a sequence of m.l. estimates exists.
We show that any sequence of m.l. estimates is not consistent for g, (for which
(4.2)(a) is not fulfilled).

Let B, = {xe RY|x, < exp(—expn)}. We obtain

ZneN PE)(B”) = ZneN l/n = 00 .
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According to the 2nd Lemma of Borel-Cantelli, this implies
PY(limsup,.x B,) = 1.

Let x € limsup, . B, be such that x, = 0 for all i e N. There exists a subsequence
(i(n))ne 5 € NN such that 0 < min {x;, - -+, X;,)} < eXp(—exp i(n)).

It can be easily checked that

U2} Imtntaywrion)(X5) > TI5E 9o(%5) -

This implies that every m.1. estimate for the sample (x;, - - -, X;(,,) is an element
of & = {g,| @ €10, exp(—e)]}. Since g, is no d,-limit point of ¥ any sequence
of m.l. estimates cannot be consistent for g,.

(4.8) ExaMpPLE. Let

94(x) = (xlog x(log log x)?)~* (x > exp(e))
= o0 (x = exp(e))
=0 ‘ (otherwise) .

For exp(e) < a < oo let
9.(%) = (9u(x) + 9(a)a(log a)
X ((loglog a)® + loglog a)/(a — exp(e)))/2 (x> exp(e))
o (x = exp(e))
0 (otherwise) .

g, @ € [exp(e), oo[ U {0} are unimodal probability densities with mode exp (e).
The assumptions of (4.2) are fulfilled except for condition (b) for g,. In a similar
way as in (4.7) we can show that every sequence of m.l. estimates is not con-
sistent for g,.
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