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ON A MULTIPLE DECISION RULE!

By KHURSHEED ALAM
Clemson University

Let X = (X3, - -+, Xi) be a random vector whose distribution depends
on a parameter vector § = (6, ---, 6x). A standard procedure ¢* is con-
sidered for selecting a set of m < k coordinate values corresponding to the
m largest components of §. ¢* is given as follows: Select the m coordinates
corresponding to the m largest components of x, the observed value of X.
Break ties, if any, with randomization. Some optimal properties of ¢* are
known, given that the loss function and the distribution of X have certain
invariance and monotonicity properties. It is shown in this paper that ¢*
is a Bayes decision rule if X is ‘‘stochastically increasing’ in 6.

1. Introduction. Let X = (X, ..., X,) be a random vector whose distribution
depends on a vector parameter §. We consider a standard procedure ¢* for
selecting a set of m < k coordinate values corresponding to the m largest com-
ponents of the unknown parameter 6. Let y = (7,, 7,) denote a partition of the
set {1, ..., k} into two disjoint subsets y, and 7,, consisting of m and k — m
elements, respectively. Let I' denote the set of all such partitions, and let x
denote the observed value of X. A general decision rule for the given problem
is a function ¢ = {¢(x): ye'} where 0 < ¢(x) < 1 and 3}, .. (x) = 1. ¢,(x)
is the probability, given x, of selecting the set of coordinate values which are the
elements of 7,.

o* = {¢,*(x): r €'} is given as follows: Let

Cx) = {r:rel, xe )
and let n(x) denote the number of elements in the set C(x). Then

(1.1) ¢, *(x) = 1/n(x) if yeC(x),
=0 otherwise.

A, ={x:x;, = x; forall iey, and jerp,;},

For the problem of selecting the best one of several populations, Bahadur [1]
and Bahadur and Goodman [2] have shown that for certain families of distribu-
tions, the natural selection procedure ¢* (for m = 1) uniformly minimizes the
risk among all symmetric procedures for a general class of loss functions.
Lehmann [6] has given another proof of this result, and has indicated other
properties of ¢*. Eaton [3] has extended the results for a more general problem
of ranking and a family of distributions of X.

In this paper we consider a family of distributions with the property SIP, de-
fined below. Let a partial ordering < be defined as follows: x < x’iff x; < x;/,
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i=1,..-,k. Similarly, 8 < ¢"iff6, <6/, i=1, ..., k. A measurable subset
of the sample space is called monotone non-decreasing (with respect to <) if
xe S and x < x’ implies x’ € S. Let Py(S) denote the probability measure of §
under the conditional distribution of X, given #. The distribution is said to have
stochastically increasing property (SIP) in 6 if Py(S) < P,.(S) for every monotone
non-decreasing set S and # < ¢’. SIP was first introduced by Lehmann [5].

A characterization of SIP is given by the following lemma (for proof see
Lehmann [5], page 400). A function ¢(x) is said to be non-decreasing (with
respect to <) if ¢(x) < ¢(x’) for x < x’. Let E, denote expectation with respect
to the distribution P,.

LemMA 1.1. A family of distributions P, has SIP in 0 if E,(x) < E, ¢(x) for
all non-decreasing integrable function ¢(x), and 6 < 0'.

From Lemma 1.1 it follows that if P, has SIP in ¢, and if ¢)(x) is non-decreas-
ing in x; then E,¢(X) is non-decreasing in 6, and non-increasing in 6.

The results of Eaton [3] are applicable to a family of distributions with den-
sities which have a certain property called M. If ¢ is a location parameter of
the distribution of X then the distribution has SIP but not Property M, in gen-
eral. On the other hand, the multinomial distribution has both SIP and Prop-
erty M.

In Section 2 we show that ¢* is a Bayes decision rule with respect to a given
prior distribution, when the posterior distribution has SIP in x, and the loss
function has certain invariance and monotonicity properties. Some applications
of this result are given in Section 3.

2. Properties of ¢*. The Bayes character of ¢* is derived basically from
certain properties of the distribution of X and the loss function. First we give
same preliminary results and describe the basic assumptions.

Let g denote a permutation of the compenents of a k-component vector, and
let G denote the group of all such permutations. A set 4 C R, (k-dimensional
Euclidean space) is called symmetric if g4 = A for all g € G where g4 denotes
the image of 4 under g. We assume that the sample space y and the parameter
space Q are symmetric Borel subsets of R,. A distribution II is called symmetric
if TI(A4) = II(gA) for all measurable set 4 and g e G, where II(A4) denotes the
probability measure of 4 under II. A family of distributions P, is called in-
variant with respect to G if P,(A4) = P,(gA) for all measurable set 4 and
geG.

Let IT be a given symmetric prior distribution on Q, and let P, denote the
family of posterior distributions of #, corresponding to P,. Theorem 2.1, below,
gives the dual relation between the invariance properties of P, and P,.

THEOREM 2.1. If P, is invariant with respect to G then P, is invariant with respect
toG.

Proor. Let P(A) denote the probability measure of a measurable set 4 C x
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under the marginal distribution of X. For any g € G, we have
P(4) = § Py(A4) d11(0)
= § Py(94) 4I1(0)
(2.1) = § P,(94) dT1(g9)
= § Py(94) d11(0)
= P(gA) .
On the right-hand side of (2.1), the second line follows from the invariance
property of P,, and the third line follows from the symmetry of the a priori
distribution II. From (2.1) we have for any measurable set B C Q
Pl0 e B|Xe A} = P{Xe A|0 e BJII(B)/P(A)
(2.2) = P{XegA|0 e gB{I(9B)/P(gA)
= P{0egB|XegA}.
The theorem follows from (2.2). []
For any partition 7 eI, let L (f) = 0 denote the loss in the presence of 4,

due to selecting the coordinates which are the elements of ;. We assume that
the loss function has the property defined below.

Property L. Forall yel', geGand 6 eQ

(@) Lr(a) = Lgr(ga) and
(ii) L,(0) is non-increasing (non-decreasing) in 6, for i € yy(ra)-

It follows from Property L that
(2.3) L(6) < L,,(0)

for 0, =0,,ier, jer,and g = (i, ), denoting the element of G which inter-
changes the ith and jth components but leaves the other components unchanged.

The optimal properties of ¢* are given by Theorem 2.2 and Corollary 2.1,
below.

THEOREM 2.2. If the loss function satisfies Property L and if the family of pos-
terior distributions P, with respect to a prior distribution I, is invariant with respect
to G, and stochastically increasing in x then ¢* is a Bayes procedure with respect to
I1, for the problem of selecting a set of  coordinate values corresponding to the m
largest components of 6.

ProoF. Let ¢ = {¢,(x): €T’} be a decision rule for the given problem,
and let

(2.4) t(x) = § L(6)dP,0).
From the invariance of P, and the loss function (Property L, (i)) we have
(2.5) £(X) = 1,(9%)

forall geG.
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As the family of distributions P, is stochastically increasing in x, we have
from SIP (using Lemma 1.1) and the monotonicity property of the loss function
(Property L, (ii)) that 7 (x) is non-increasing (non-decreasing) in x; for i € ry(7,)-

From the monotonicity property of #(x), shown above, and the invariance
property given by (2.5), we have that foriey,, jer,, 9 = (i,j) and x; = x;

(2.6) tr(x) = tgr(gx)
< 1,00

The Bayes risk of ¢ with respect to II is given by
2.7) re = Ex(Xyer $,(08(x)

where E, denotes expectation with respect to the marginal distribution of X.
That ¢* is a Bayes procedure follows from (2.6) and (2.7). []

Let (A4) denote the condition that the integral § §(x)dP,(x) is a continuous
function of # for all bounded measurable functions §. We have the following
corollary.

CoROLLARY 2.1. If the parameter space Q = R, and the support of 1I is Q, if
(A) holds and if L () is bounded and continuous in @ for each y € I' then ¢* is ad-
missible, under the conditions of Theorem 2.2.

The conditions of the corollary imply that the risk is continuous. The ad-
missibility of ¢* follows from its Bayes character. The proof is standard (see,
for example, Ferguson [4], Theorem 2.3.3 and Theorem 3.7.1).

We make the following remarks on the results given above.

REMARK 1. The optimal property of ¢*, given by Theorem 2.2 is not as strong
as the one obtained by Eaton [3] in the presence of Property M. When Prop-
erty M holds, ¢* is seen to be a Bayes rule for any symmetric prior. Therefore,
¢* minimizes the risk uniformly among all symmetric procedures, and is ad-
missible and minimax.

REMARK 2. If the conditional distribution of X has SIP in #, under what
conditions will there exist a proper prior for which the posterior distribution
has SIP in x? We do not have a satisfactory answer to this question. However,
we conjecture that if # is a location p'arameter then there exists a proper prior
for which the posterior distribution is stochastically increasing in x.

3. Application. For illustration we consider below several distributions which
satisfy the conditions of Theorem 2.2. These distributions do not have Prop-
erty M.

ExaMpPLE 1. Let the distribution of X have density function
f(x, 0) = Ux — 0)V(x)[ W(6)
where W(0) = § U(x — 0)V(x)dxand dx = dx, - - - dx,. If { W(0)df = 1 where
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df = df, - - - df,, then W(0) represents the density function of a prior distribu-
tion II, say, and U(x — @) represents the posterior density function. As x is a
location parameter of the posterior distribution, the distribution has SIP in x.
If U(x) is a symmetric function of x then the conditions of Theorem 2.2 are
satisfied.

For example, let

Ux = 0) = (4 ) exp(—2Zharlx — 0
Vix) = RII)*exp(—3% Xk, x.?)

i=1"4

and

W) = (1) e 1t (o0, — 2 + g0, — 2)

where 2 is a positive number, and ®(y) denotes the standard normal distribu-
tion function.

ExAMPLE 2. Let the components of X be independently distributed, and let
X, have the double exponential distribution with density

3.1) f(y; 05 = gemv="0, —o {y< >,
i =1, ..., k. Let the prior II be multivariate normal with the null vector as
mean and covariance I, so that the components of 6 are independently dis-
tributed. As the components of X are independently distributed under the con-
ditional distribution, the components of # are independently distributed under
the posterior distribution. From (3.1), the posterior distribution function of 6,
given x,, is given by
(32) H(0;; x;) = e7®(0; — 1)/¢(x;) for 0, < x;
=1 — es®(—0, — 1)/P(x,) for 6, > x;

where

$(y) =eQ(y — 1) + e ®(—y — 1).
It is easy to show that H(@,; x,) is non-increasing in x;. Thus the posterior dis-
tribution of # has SIP in x, and Theorem 2.2 is applicable.

ExXAMPLE 3. Let X be normally distributed with mean 6 and arbitrary but
known covariance X. Suppose that a'sample of n observations is taken from
the given distribution. Let X denote the sample mean. As X is a sufficient
statistic we consider decision rules based on X. Therefore, in what follows we
substitute X for X and n~'Z for X.

Let the prior II be multivariate normal with mean 7 and covariance 1 =
(W-' — Z7%)~* where W = (W,;) is given by

W, =a for i=j
= pa’ for i+#7j,
0 < p < 1anda® > 0. Let U denote the smallest characteristic root of X, and
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let @> < U/(1 + (k — 1)p). As the largest characteristic root of W is equal to
a(l + (k — 1)p), we see that 1 is positive definite.

The posterior distribution of # is normal with mean y = 2Z7}(x — 7) + 5 and
covariance W. The distribution has SIP in y and is invariant with respect to G.
The decision rule ¢* = {¢ *(y): y € I'}, based on y, is Bayes with respect to II.

The distribution of X has the property M (see Eaton [3], Proposition 2.2) if
and only if 2=* = ¢;1 — ¢,e’e where ¢, > 0, —oo < ¢,fe, < 1fk, e = (1, ..+, 1)
and 7 denotes the k X k identity matrix.
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