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ON A THEOREM OF BAHADUR ON THE RATE OF
CONVERGENCE OF POINT ESTIMATORS

By James C. Fu
University of Toronto

In this paper, we have proved a fundamental property of the charac-
teristic function for the random variable (9/96) log f(x|6). Based on this
result, we have proved under regularity conditions different from
Bahadur’s that certain classes of consistent estimators {¢,*} are asymptot-
ically efficient in Bahadur’s sense

. . 1 1(0)
limeo limy— o ) log Pg{|0x* — 0] = ¢} = -
Our proof also gives a simple and direct method to verify Bahadur’s [2]

result.

1. Introduction. Let (-27, 8, P,) be a probability measure space for each 6
belonging to the parameter space ©; here .27 is an abstract sample space of point
x and O is an open interval of the real line. We assume that for each § € O, P,
admits a density function f, with respect to a given o¢-finite measure. Let s =
(xy, X5, -+ +) be a sequence of independent, identically distributed (i.i.d.) obser-
vations of 22", We denote the n-fold Cartesian product space by (27", ") and
the n-fold product probability measure P, x P, x --- x P, by P,. Thus, s is
distributed according to P, on (227, f~). Whenever our intention is clear
from the context, we shall leave off the superscript. Thus P, will often be
written as P,.

Let g be a nonnegative function on ©; g can be interpreted as the density,
with respect to Lebesgue measure, of the prior distribution of . An estimator
(sequence of estimators) #,* is called a maximum probability estimator (MPE)
with respect to g if (foreachn = 1,2, --.) 6,* is a f"-measurable mapping from
£~ to the parameter space O and

(1 1) g(an*(xl’ ] X”)) Hg=1f(xi I 0n*('xl’ ] xn))
= MaXy ¢ [9(0) H?:lf(xi | 0)] s

for every (x,, - - -, x,) € Z7". In the special case when g(f) = 1, 6,* is usually
called a maximum likelihood estimator (MLE); in this special case, we use the
notation @, for the MPE.

Bahadur [1], [2] has shown (under certain regularity conditions) that for any
consistent estimator T,(s) = T,(x;, - - -, X,),

(1.2) lim inf_, liminf, ., (1/ne?) log P,{|T,(s) — 0] = ¢} = —3I(0),
and that the maximum likelihood estimator @, satisfies
(1.3) lim,_, lim,_,, (1/ne) log Pyf|0.(s) — 6| = ¢} = —11(9) ,
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where /(0) is Fisher’s information. In words: For any consistent estimator 7,
P){|T,(s) — 0] = ¢} cannot tend to zero faster than the exponential rate given by
exp{— ne*l(6)}, and for the maximum likelihood estimator 8, P,{|0,(s) — 0] = ¢}
does tend to zero nearly at this optimal exponential rate.

In this paper, we show under simpler, though stronger regularity conditions
than Bahadur’s that the maximum probability estimator 6,* with respect to g is
asymptotically efficient in Bahadur’s sense almost regardless of the prior density
g(0). In particular, our main theorem provides a simple method of verifying
Bahadur’s [1] result (1.3) in certain cases.

2. Conditions and main theorem. Let I(x|6) = logf(x|6) and I(x|0) =
(0/06)l(x | 6) for every x € Z°. The following are sufficient conditions for our
main theorem.

ConpiITION 1. For all x, I(x|6) is a continuous function of #. Further, for
every 0 € ©, there exists a -neighborhood of ¢, say N(6, d), and a measurable
function A(x, 6), E, A*(x, §) < oo, such that

i(x | 07) — I(x] 67)] < A(x, 00" — 6],
for all ¢’, 6" € N(9, 9).

ConpiTION 2. For each x, /(x|6) has a continuous first derivative over ©.
For each 6 € O, P,{IV(x|6) + 0} > 0.

ConpITION 3. For each 6, there exist two constants ¥ = u(6) > 0 and v =
v(0) > 0 such that P,{I{”(x|6 + 7) < 0} > 0 and P,{I(x|6 + 7) > 0} > 0, for
all y, —u < y < u, and such that the moment generating function ¢(¢, 0, y) =
E [ =19+1] is finite for all (¢,7), —v < t < v, —u < 7 < U.

ConpiTioN 4. The second partial derivative (9/01)’¢(t, 6, r) is jointly continu-

ousintand y for —v < t < v, —u < y < u. [Note: The existence of all partial
derivatives

(g;) 8(1,0,7), i=1,2,.-., for ¢ 0,7)
for —v <t < v, —u < 7 < u, follows from Condition 3. This is not enough,
however, to show that (9/0r)*¢(t, 6, y) is jointly continuous in t and 7.]

ConbpITION 5. The second partial (6/07)(0/01)é(t, 0, 1) exists and is continuous
in (¢, y) for —v < t < v, —u < y < u. Further, [(x|8) = (3/060)*(x|0) exists
for all x e 227 and all 6, and

90 41,0,7) = §, L 10(x|0 + 1) exp{P(x |8 + 1)} dPy(x) ,
dy ot dy

forall —v <t <y, —u<y<u
CoNDITION 6. g(0) is positive and differentiable over ©.

ConpITiON 7. 1,(s]0) = [,(s| ) + log g(6) is concave in 6 for every n = n,,
n, some fixed positive integer, and for all s = (x,, x,, - - ) € 27>
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We also assume that the maximum probability estimator 6, * with respect to
g(0) exists. Sufficient conditions for the existence of §,*, and other properties
of 6,* can be found in Fu and Gleser [6]. The main theorem of the present
paper is as follows.

MAIN THEOREM. Assume that Conditions 1 through 7 are satisfied. Then
2.1) lim,_, lim, ., . log P,{|6,*(s) — 0] = <} = —}(0),
ne
for all § in ©.

It is worth noting that the theorem is valid for any choice of g for which
Conditions 6 and 7 are satisfied. The conclusion (2.1) can be shown to hold
also under basically the same regularity conditions on the density f(x|f) as were
assumed by Bahadur ([1], [2]) to prove (2.1) in the special case when g(¢) = 1,
plus added assumptions on g(f); see Remark 2 at the end of Section 3. How-
ever, we take a different approach here.

3. Proof of main theorem. We begin the proof by proving some needed lemmas.
The following lemma, due to Daniels [5], gives expansions for E,[(x|6’) and
E,[IV(x|6")] for ¢’ in a small neighborhood of 6.

Lemma 1. If Condition 1 and Condition 2 hold, then if 0’ is sufficiently close to
0, the following statements are true:

(a) E,IM(x]) =0,

(b) 0 < E[i™(x|O)F = I(6) < oo,

(c) EjIN(x|0")y = — (6" — 6)I(0) + o(6" — 0),

(d) E[i®(x| 6] = 1(6) 4 o(1).

Proor. See Daniels [5].

Let 8’ = 6 + y, where y is a small (positive or negative) constant. Under
Conditions 1 and 2, we have (Lemma 1) E,I"(x|0 + y) = —7I(f) + o(r), and
it is known (Bahadur [3]) that if for small enough 7, P,{{*(x|6 + y) > 0} > O,
then for such y there exists a unique solution, say ¢ = 7,(y), of the equation

g{ ¢(t9 0, T) = ¢(1)(t, 0, T) =0.

The following lemma gives a basic property of z,(y).

LeMMA 2. Assume that Conditions 1 through 5 are satisfied. Then for each 0 there
exists a unique single-valued function t,(y) defined on —u < y < u such that

% Bt 0, imepir) = $V(7o(r) 0,7) =0,

and t(y) = 7 + o(y) as y — 0.
Proor. Let u(t, 7) = ¢*(¢, 0, 7). From Condition 3, it follows (see Parzen
[7], page 216) that

(3.1 u(ty 1) = § 2 1V(x|0 + 7) exp{rl®(x]|0 4 1)} dPy(x) ,
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for —v <<V, —u <y <u. By Conditions 1 through 5, Lemma 1, and the
fundamental theorem of implicit functions (see, e.g., Taylor [8]) applied to u(z, )
we have u(zy(y), ) = 0, 7,(0) = 0 and 7,/(0) = 1. The result t,(y) = y + o(y)
follows immediately from the Mean Value Theorem (expanding z,(y) around
7 = 0). This completes the proof.

PROOF OF THEOREM. Let p,(0, ¢, a) = inf,,, e~*¢(t, 0, ¢) and 1,%(s| ) =
(d|dd)l,(s| ) for every s e 2°~. From Condition 2, Condition 6 and Condition
7 we know that

1,9(s160) =0, when 6 < 6,%(s),
<0, when 6’ = 6,%(s),
for all se 27>, 6’ ¢ ©. Hence we have
Po{l(s[0') > 0} < Pyf6,* = 0} < Pyfl,(s|6') = 0} .
Taking ¢’ = 0 + ¢ and a, = —n~%3/d6) log g(6)|,—s» ¢ > 0, we have

Pof o D0+ 9 > 0} S PO — 02 4

<P, {% T I0(x, |0 + ¢) = anl» .

Since lim, ., a, — 0, it follows from the continuity of p,(6, ¢, a) at a = 0 and
from the Bernstein-Chernoff-Bahadur theorem (see Chernoff [4] or Bahadur

[3]) that

lim, .. L log P,{8,%(s) — 6 = ¢} = log p(6, , 0) .
n

In a similar way, we have
lim, .. 1 log P,{8,%(s) — 0 < —e} = log py(8, <, 0) ,
n

where p,(0, ¢, 0) = inf,_, ¢(1, 0, —¢).
It now follows that

lim, . L log P,{|6,* — 6] = ¢} = log p(6,¢,0),  where p = max {p, pu} -
n

It will now suffice to show that
(3.2) lim,_.. L log o(0, ¢, 0) = —31(0) .
&€

By Condition 4, Lemma 1 and Lemma 2, we have

log p,(0, ¢, 0) = loginf,,, ¢(t, 0, ¢) = log ¢(7,(¢), 0, ¢)
(3-3) = ky(0, €)To(e) + ko0, €)75'(e) + 0(74(¢))

= —%0) e + o(e?)
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where k,(0, ¢) and k0, ¢) are the first two cumulants, under P,, of the random
variable /(x| 4 ¢). It follows from (3.3) that (3.2) holds for p = p,. It fol-
lows from symmetry that (3.2) holds also for p = p,. It now follows that 3.2)
holds for p = max {p,, p,}. This completes the proof.

REMARK 1. Part of the above proof depends heavily on Condition 7. This
condition is rather restrictive, but when g(f) is log-concave, it is satisfied for
some distributions (such as the normal distribution with known variance, and
other members of the Koopmans-Darmois class of probability distributions) of
interest in both statistical theory and practice.

REMARK 2. The conclusion can be established also by using Bahadur’s [1]
method under his regularity conditions, plus some regularity conditions on 9(6)—
such as that (d/df)‘ 1og g(6) exists and sup, ., |(d/d6) log g(8)| < oo fori = 1,2, 3.
This approach is, however, quite complicated in its details.
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