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EVENTS WHICH ARE ALMOST INDEPENDENT!

By R. L. DYKSTRA, JouHN E. HEWETT
AND W. A. THOMPSON, JR.

University of Missouri

Often, the probability of the simultaneous occurrence of dependent
events can be well approximated by assuming them to be independent.
Here, we discuss bounds on the error in using this procedure and conditions
when under (or over) estimates occur.

An inequality involving expectations of conditionally independent
random variables is proven. Applications treat extreme values of ex-
changeable random variables and error probabilities for simultaneous
inference.

Bivariate dependence concepts treated by Lehmann are generalized to
the multivariate case in such a way that relations valid for the bivariate
case continue to hold.

1. Introduction. Bonferroni bounds, which can be found for example in Feller
(1957), have often been employed to approximate probabilities for simultaneous
inference. If A4,, - ., A, are arbitrary events and A, denotes the complement of
A; then
() 1= T P) < PN 4) £ 1 — Th P(A) + T P4 0 4)).
The lower bound is used as an approximation for P((i., 4;) and the upper
bound establishes the error of this approximation. For examples see Lehmann
(1966), Chew (1968), Thompson and Wilke (1963), and McDonald and
Thompson (1967).

The Bonferroni lower bound is more accurate than one would suppose but
frequently it is better to provisionally assume independence, using the approxi-
mation
) PN 4) ~ [T P(4)) -

There are two reasons for this.
First, if A, - - -, A, are pairwise negatively dependent, that is if

P(A, 0 4) S P(4) - P(4,); l<i<jsk,
then so are their complements and, ’writing q; = P(4;), we have from (1) that
P(N%., 4;) and TJ%, (1 — gq,) are contained in the same interval of length

2i<j9:9;- But
k—1 k —
Zii<i 495 = —5— (Ziag)' =

o ITia (1 — 99T -
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Hence,

P(Me A) — T4 P(A4)] <

—1 k 2
2k [log ITi.: P(4,)]
and thus pairwise negatively dependent events with large probabilities are nearly
independent. For example, if we provisionally assume independence to obtain a
significance test at the .05 level then []; P(4;) = .95, (log .95)?/2 = .0013, and
the true significance level is between .0513 and .0487.

Second, under various circumstances it can be proved that

3) P(Ni A) = TTi- P(A4) -

When this inequality holds, the approximation (2) is more accurate than that
obtained from the Bonferroni lower bound and admits the same error estimate.
In fact we have from (1) and (3) that

I — 2 ¢ <Iia (1 — 99) = P(Nim 4)

<
S1—3Fhigi+ D PA; 0 4)).

The study of conditions which imply (3) will form the bulk of our paper.
Conditionally independent and identically distributed random variables (rv’s)
lead to an inequality of type (3); this, with applications, is the topic of Section 2.

Lehmann (1966) defines rv’s X and Y to be positively quadrant dependent if

PXSx,YZ)) =2 PXZx)P(Y £ )

for all x, y. This inequality is of type (3). In Section 3 we study positive
quadrant dependence and its generalization to more variables.

Section 4 returns to conditional independence; it contains a theorem which
does not require identically distributed rv’s.

2. Conditionally i.i.d. random variables. X, -.., X, are called conditionally
i.i.d. if there exists a probability measure x on a class of one-dimensional
distribution functions such that, for all k-dimensional Borel sets B,

P(B) = § Py(B) du(F) .
Here, P,(B) is the probability of the event B computed under the assumption
that the X’s are i.i.d. with distribution function F. For a more precise state-
ment of the foundations, see Section 4; here we are intentionally intuitive to
make the applications easily accessible.

For the cylinder set {X;e 4;i =1, -.., k} we have
P{X;eA;i=1, ..., k} = §({,dF)"du(F)

“) = E(§, dF)* = (E §, dF)"
= 1k, P(X; € A)

which is a special case of (3). We now treat two classes of applications.

a. Exchangeable random variables. Denumerably many rv’s X, X,, ---, are
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called exchangeable, see Loéve (1960) page 365, if the joint distribution of any
subset of m of them does not depend upon which are included in the set but
only on m, the size of the set. Exchangeability was introduced by De Finetti
and his basic theorem is that it is equivalent to conditional independence with
common distribution function. Hence, the inequality (4) will hold for exchange-

able rv’s. In particular, following Berman (1962), let Z, = max (X, ---, X,).
It follows from (4) that
PZ,<x)=PX, <x,--+,X, <x) = P(X, < x).

The right-hand side of this inequality is the distribution of Z, under the pro-
visional assumption that the X’s are independent. Hence if Z, has some limiting
distribution; that is if there exist sequences of constants {a,} and {b,}, with
a, > 0, such that

Zn_bn

lim, ... P( < x) — L(x)

n

where L(x) is a df; and if in addition

X, — b,
a

n

lim, .., P"< < x> — O(x)

where @ is necessarily one of the three extreme value distributions then
L(x) = ®(x). Thus, with regard to limiting extreme value distributions, the
classical case of independent rv’s yields a lower bound for the case of exchange-
able rv’s provided both limits exist. Berman (1962) discusses the existence of
such limits.

The analog of exchangeability for finitely many rv’s is that they have a
symmetric df, for the distribution of any subset of such variables depends only
on the number of variables selected. It is tempting to conjecture, in analogy
with De Finetti’s theorem that rv’s having symmetric df will be conditionally
i.i.d. The df

H(x, y) = F)F[1 — 31 — F())(1 — F(y)]»
given in Gumbel (1960), provides a counterexample. H(x, y) is symmetric with

marginal df’s F(x) and F(y). But H is not conditionally i.i.d., for if it were
then from (4) we would have H(x, x) = F*(x), which is clearly false.

b. Simultaneous prediction intervals. Discussions of simultaneous prediction
intervals can be found in Lieberman (1961), Chew (1968), Saunders (1968), and
elsewhere. The inequality (4) can be used to construct conservative simultane-
ous prediction intervals.

Let X, - -+, X,y X,11, - +» X, denote n + k i.i.d. random variables. Let ¢
denote a real-valued function defined on some appropriate subset of n + 1
dimensional Euclidean space. If we define k new random variables Z,, - - -, Z,
by Z; = ¢(X,, - - -, X,, X,,;), then these k random variables will be conditionally
i.i.d. with respect to the o-field generated by the random variables X, .- -, X,.
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Thus, for any Borel set A4 it follows from (4) that
5) PZiedii=1,. ., k)2 PZ e 4).

(i) If the n + k i.i.d. random variables are normally distributed, as in Chew
, the appropriate function ¢ to choose 1s
1968), the appropriate functi h i

P(Xy, + s X, Xopy) = [nf(n + DX, — X,)/S,

where
X,= X X/n and S} =31, (X, —X,)/(n—1).
(ii) If the n + k i.i.d. random variables have common density
f(x) = (1/6) exp [—(x — 7)/6] , xz7
=0, x<7

where 6 and 7 are unknown parameters, the appropriate function ¢ and variables
Z, -, Z,are given by
Z, = ¢(Xy, -0y Xy Xpyy) = (Xp; — Y)/L
where
L=31,Y,—Y)+@n—nY,—-Y).
Here Y, <Y, < ... <Y, are the order statistics corresponding to X;, X,, - - -, X,,.

Thus, if the marginal distribution of Z; is known, numbers ¢, and ¢, can be
obtained such that

r=Pa=Z;<¢); j=1 -k
and thus
"< Ple,- L+Y £X,

i S e L+ Y5j=1,..., k.
Although only two specific illustrations have been given here it should be clear
how (5) can be used in other situations.

Let us briefly consider the distribution of Z; for case (ii). This distribution is
independent of # and 5. Hence, to find it we take ¢ = 1 and » = 0. It is well
known that Y, and L are independent with gamma densities y(x; 1, 1/n) and
r(x; r — 1, 1) respectively. It can be shown that X, ,; — Y, has density r(x; 1, 1)
given X, — Y, > 0, and density y(—x; 1, I/n) given X, ; — Y; < 0. It follows
in a straightforward manner that (r — 1)Z; and —n(r — 1)Z; have the F-density
F(x;2,2(r — 1)) given respectively that Z; > 0 and Z; < 0. Thus since
P(Z; < 0)=1)(n+ 1) and P(Z; > 0) = n/(n + 1), (r — 1)Z; has density A(x)
defined by

h(x) = (n/[n + 1)F(x; 2, 2(r — 1)) + (n/[n + 1))F(—nx;2,2(r — 1)) .

Hence, with some ingenuity, one can employ the ordinary F-tables to obtain
constants ¢, and ¢, such that

r=Pe<Z; <¢).
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3. Signed dependence. Directly generalizing Lehmann’s concept we define
X,, .-+, X, to be positively orthant dependent if

(6) PO, <x5i=1,-,n) = [[r P(X; < x))

for every choice of x, x,, - - -, x,.

Esary, Proschan, and Walkup (1967), while studying the relation of system to
component reliability, introduce the concept of associated rv’s and relate it to
positive quadrant dependence. For the reliability application see Esary and
Proschan (1970).

In the papers of Lehmann (1966) and Esary, Proschan, and Walkup (1967),
it is shown for bivariate rv’s that positive quadrant dependence, association,
positive regression dependence, and positive likelihood ratio dependence are
successivley stronger properties.

In a certain sense, this same structure is preserved when one discusses n
random variables.

According to Esary et al. (1967), the rv’s X, ..., X, are associated if
Cov[f(Xy, -+, X,), 9(Xy, -+, X,)] = 0 for all functions f(x,, ---,x,) and
g(x,, - -+, x,) which are non-decreasing in each argument, and for which the
covariance is defined.

Elsewhere, Esary and Proschan (1968) define rv’s X, ---, X, to be stochasti-
cally increasing in sequence if the conditional df of X; given

Xi—l = X;_1 "'9X1: X1

i.e. F(x;|x;_y, - -+, X;), is non-increasing in x;_;, - - -, X; for i =2, .-.,n. This
is a generalization of positive regression dependence as defined in Lehmann (1966).
Esary and Proschan (1968) establish the fact that random variables that are
stochastically increasing in sequence must also be associated. A simpler, more
direct proof of this is given in the following theorem.

Tueorem 1. If X, ..., X, are stochastically increasing in sequence and if
gi(x,, - -+, x,) are nonnegative and non-decreasing in each argument for i=
1,2, ..., k then

E[Hi":l g«;(Xv ] Xn)] Z i’c=1 E[gi(Xl’ R } Xn] .

The same inequality is true if the g’s are non-increasing instead of non-decreasing.
If k = 2, and all expectations exist, we may omit the requirement that the g, are
nonnegative.

Proor. It is true, see Kimball (1951) and Mitrinovic (1970, Section 2.5),
that if g;(x) = 0,i=1,2, ..+, k, are non-decreasing and X is a rv, then

(7) E[T1%1 9:(X)] = TLiz: [E9:(X)] -

(If k = 2, the requirement that g;(x) = 0 may be omitted.)
It is also true that if F, > F,are distribution functions, and if g, < g, are both
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non-decreasing functions, then
®) §9:4F, < § 0,dF, < § g,dF, .
Then, by the definition of “stochastically increasing in sequence”, (8), and
the fact that g,(x,, - - -, x,) is non-decreasing in all arguments, it follows that
S gi(xv Tt xn) dF(xllxa’ Tt xn)
must be non-decreasing in x,, x;, - - -, x,. By precisely the same argument,
SS gi(‘xl’ ] xn)dF(xllx?’ Tt xn)dF(x2|x3’ Tty xn)
must be non-decreasing in x;, - - -, x,, and in general,
S . S gi(xl, cee, xn)dF(xllxa’ .. .,xn) e dF(xj_llxj, .. .’x”)

is non-decreasing in x;, x;,,, - - -, x,. Thus, using (7) repeatedly, we may say

E[TI%0 9:(X, - - -5 XO)]
=9§ o S ITEgu(xy, - ooy X,) dF (x| Xgs -2y x,) -+ - dF(x,)
= S SH!{:ngi(xl’ ""xn)dF(x1|x2’ "‘,xn)dF(lexs’ : "’xn) “'dF(xn)

Z Hf:ls et Sgi('xl’ ""xn)dF(xlle’ ""xn) ct dF(xn)
= H§=1 E[gi(Xl’ R Xn)] .

One generalization of Lehmann’s positive likelihood ratio dependence to n
rv’s is the following. See Sarkar (1969) for another generalization.

DEFINITION. X, is positively (negatively) likelihood ratio dependent on X,, - -. X,
ifforx! > x,,i=1,...,n,

f(xv ] xn)f(xl,’ xz,’ ] xnl) g (é)f(xl’, Xgy vy xn)f(xl’ xz,’ AR x’n/)

where f denotes the joint density function.

The ordered rv’s are positively (negatively) likelihood ratio dependent if X; is posi-
tively (negatively) likelihood ratio dependent on X, ,, ---, X, for i=1, ...,
n— 1.

With this definition, we can structure the multivariate concepts of dependence
as follows:

THEOREM 2. Each of the following properties implies the succeeding one: (i)
positive likelihood ratio dependence (ii) stochastically increasing in sequence (iii)
association, and (iv) positive orthant dependence.

Proor. That (i) implies (ii) is essentially the statement, extended to vector
valued parameters, that rv’s having monotone likelihood ratio are stochastically
ordered; see Lehmann (1959, page 74). That (iii) follows from (ii) has been
established earlier in this section. Esary et al. (1967) prove that association
implies positive orthant dependence.
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4. Conditionally independent rv’s. In this section we provide a more precise
foundation for Section 2 and we prove a theorem which can sometimes be used
to show that P(X;e A;i =1, ..., k) = [[k, P(X, € 4;,) where the A4, are not
equal, and/or the X; are not identically distributed. Note that this is a generali-
zation of equation (4).

If X, ---, X, are conditionally independent (c.i.) with respect to a g-algebra
B, see Loéve (1960), then their joint df may be thought of as a mixture of
distributions of independent rv’s. Specifically, following Blum et al. (1958), if
& is the class of one dimensional df’s, let & (x, y) = {Fe & : F(x) < y} and
S(.Z) the o-algebra generated by {F(x,y):x,y real}. Let &%= x
F x...x 7 and [S(F)]* be the usual product g-algebra. If we let
F;? (o, x;) denote the conditional df of X; for the appropriate g-algebra <z, the
mixing probability measure ¢ on & * is determined by

w(F*) = Plo: (F,%(0, x)), - -+, F,7(@, x;)) € F*}

where F* e [S(F)]*.

It then follows by a change of variable argument, see Loéve (1960, page 342),
that for Borel functions g,, g, - - -, g, such that g,(X)), - - -, g.(X,), I1¢-1 9:(X))
are all integrable,

E[H?:l gz(Xa)] = S H?:l Epzlg,(X,)] dﬂ(Fp M) Fk)

where E [g(X;)] is the expected value of g;(X;) if F, were the df of X;.

THEOREM 3. If X), ---, X, are c.i. with mixing measure p, and g, 9, * -, 9
are nonnegative Borel functions such that g,(Xy), - - -, 9(Xy), [1%=1 9:(X;) are all
integrable, then if there exist constants a;; such that

Epl9.X)] = E[g.(X)]
iff
Eplo,(X)lza;,  as. (»)

i=1,...,k—1,j=i+ 1, ..., k, then

E[1T%. 94X))] = 11i- E[94(X0)] -
Proor. Note first that
§ Ep[9:(X)] dp = E[g(X)] -
Thus if
Fi=A{(Fy, -+, F,) e T8 Eg[9:(X)] = E[9(X)]} and
Fa={(Fy -+, F)e F5 Ep[0:(X)] > E[g(X)]}
then
D = E[[]}-1 9(X)] — E[gu(X)]E[I]i= 9:(X0)]
= § {11} Er L9 X)IHEF [9:(X)] — E[9:(X))]} dpe
=—{- {I1% Er [9:.(X)IHE[94(X)] — Ep [9:(XD)]} dy
+ § o, {11 B [:(X) IHER [9:(X)] — E[9:(X)]} e -
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Now, since § {EFl[gl(Xl')] — E(9,(X)]}dp = 0,

Yoy EL9u(X0)] — B [9:4(X)] dpe
= $o, Er[0(X0)] = Elgy(X))] dy:
=C, say.
Thus

— ) Tlis Ex J9(X) N E[94(X)] — Ep[0u(X)]} dpe = —[1T5, a]C .
Similarly,

$orp 1Tt Er [0 X)NEL9:(X0)] — Ep[0:(X)]} dp = [T]4-04,5]C -

Adding these two inequalities gives us that D is nonnegative. Clearly we can
repeat the same argument k — 2 times for the desired result.
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