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theoretic pathology. Hence it seems that it should always be present in any
sampler that can be run on a computer, even in the continuous approxima-
tion that treats the computer’s real numbers as if they were the analyst’s real
numbers.

The main point of Harris recurrence is that asymptotics do not then depend
on the starting distribution because of the “split chain” construction [Nummelin
(1984), Proposition 4.8], something that was pointed out to us by Tierney. More
precisely, the argument of the paragraph at the bottom of the page 135 in
Nummelin (1984) shows that the first regeneration time is a.s. finite (for any
initial distribution) hence the sum up to the first regeneration time is also a.s.
finite and negligible when divided by /.

Typically irreducibility implies Harris recurrence. Corollaries 1 and 2 of
Tierney’s paper show this for Gibbs samplers and non-hybrid Metropolis—
Hastings algorithms, respectively. The following theorem shows this for the
other important case, variable-at-a-time Metropolis—Hastings algorithms.
These are hybrid algorithms in the terminology of Tierney’s Section 2.4 that
update one coordinate at a time using a Metropolis—Hastings update as in
the original example of Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953).

Consider a variable-at-a-time Metropolis—Hastings algorithm on a subset
of R%, We are trying to simulate from the distribution with density propor-
tional to A(x) = h(xy,...,x;) with respect to Lebesgue measure on R?. The
sampler proceedes through the variables in order updating one at a time. It
updates the ith variable by proposing a new value x} from a univariate den-
sity with respect to Lebesgue measure q;(x,x}) that depends on the current

position x = (xj,...,x4) and accepts the proposal moving to the new position
x* =(xq,...,%-1,%},%;41,...,%3) with probability
. h(x*) q;(x*,x;)
(¢)) a(x,x*) =min| 1, ——= 22"
(x,50) ( e

and otherwise remains at the point x, that is, the usual Metropolis—Hastings
update described in Tierney’s Section 2.3.1 applied to the variable x;.

We want to find conditions under which w-irreducibility of such a chain im-
plies Harris recurrence. The conditions involve the “conditional samplers” for
subsets of the d variables. These are the chains obtained by fixing % of the vari-
ables at some possible value and updating the remaining d — k variables one at
a time. The variables being updated are updated using the same basic update
step as in the original sampler for the unconditional distribution; the proposals
are generated from ¢;(x,-) and the acceptance probability is given by (1). In
order for these conditional samplers to be well defined we need to assume that
if I = {i1,...,i} and I° = {i+1,...,iq} that the function

(2) - g0,y xiy) = h((xq,...,%9))

is not almost everywhere zero and is integrable with respect to Lebesgue mea-
sure on R%~* for any possible values of x;,, . . ., x;,. Then (2) is proportional to a
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version of the conditional density of (X, ,...,X;,) givenX; ,...,X,.

THEOREM 1. A variable-at-a-time Metropolis—-Hastings algorithm on R% with
proposal distributions that are absolutely continuous with respect to Lebesgue
measure is Harris recurrent if all of the conditional samplers (including the
unconditional sampler which conditions on the empty set of variables I = @) are
irreducible for any values of the fixed variables, the irreducibility measure and
stationary distribution having density (2).

Proor. LetL(x,A)denote the probability that the chain started at a point x
ever hits a set A. By Theorem 9.1.5 in Meyn and Tweedie (1993) the state space
can be decomposed as H UN where H is a maximal absorbing Harris set and
N is m-null and transient, where “maximal absorbing” means that L(x,H) = 1
implies x € H. The chain is Harris if and only if N is empty. Suppose to get a
contradiction that N is nonempty and fix x € N. For each subset I of {1,...,d}
consider the set

Sy r={y:xi=y;, i €l and x; #y;, i ¢I}.

By the continuity of the proposal distributions, once the chain leaves Sy ; is
never returns, since from outside Sy ; there is probability zero of a proposal
in Sy ;. Hence for a chain X, started at X, = x, the number of coordinates
in which X, differs from x is almost surely nondecreasing in time. Moreover,
the distribution of X, conditional on being in Sy ; is almost surely absolutely
continuous with respect to Lebesgue measure on Sy, ; by Fubini and induction
on the dimension of the set I. If the chain eventually hits

Sx, » = {y 1 yi #x;, for all i}

with probability 1, then it hits H with probability 1, which would imply x € H
contrary to the assumption. Hence the only way the chain can fail to be Harris
is if for some I the probability of the chain eventually leaving Sy ; is strictly less
than 1.

Let a(z) denote the probability of leaving Sy ; in one step of the Markov chain
given the current position z € Sx ;. The probability of never leaving Sy ; is given
by

) E[] [1 - )]

i=1

where {Z;} is the conditional chain obtained by starting at the first point where
{X;} enters Sy ; and then only updating the variables x; for i ¢ I. This chain is
ixtreducible by assumption, hence by Birkhoff’s ergodic theorem

4) % ;aai) 25 B(Z) = a
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where the expectation here is taken over the stationary distribution of the
conditional chain. Note that we do not need to assume that this chain is Har-
ris, since Birkhoff’s theorem implies a.s. convergence from almost all starting
points and distribution of Z, is absolutely continuous with respect to Lebesgue
measure on Sy ; and hence gives probability 0 to the bad null set of starting
points for which convergence fails. Also note that o > 0 because otherwise we
would have a = 0 almost everywhere and the chain could never leave Sy ; for
almost all starting points in Sy ; and hence could not be irreducible.
Because of log(1 + x) < x and (4),

oo n n
H [1-a(Z)] = exp(Zlog[l - a(Z,-)]) < exp(— Za(Zi)> - 0.
i=1 i=1 i=1

Hence the integrand in (3) is almost surely 0, and the expectation is 0. Hence
it is impossible for the chain to remain forever on a lower dimensional subset
and the chain is Harris recurrent. O

Central limit theorems. Our main comments apply to central limit the-
orems. Before delving into the complexities of general state spaces, we should
mention one elementary case: there is always a CLT if the chain is irreducible
and the state space is finite. This follows from Tierney’s Theorem 5, because a
finite state space is small, hence the chain is uniformly ergodic. There seem to
be several approaches to establishing a CLT for a Markov chain on a general
state space. Roughly these can be divided into two categories. One uses Markov
chain theory. The other uses functional analysis and martingales.

The Markov chain approach, based on the book of Nummelin (1984) and
related work, is followed by Tierney to arrive at his Theorems 4 and 5. We
would like to make readers aware of two other theorems along the same lines,
but more useful. To state the theorems, we need some preliminary discussion
of the variance in the CLT. Let L2(r) denote the subspace of L2() orthogonal to
the constants

L3(m) = {g € L¥(r): / gdr = o}.
Then the transition operator of the chain is defined by
(Tg)(x) = / gP(x,dy), g e Lim.
For any f € L2(r) let
WP = (£ 1) = [ Ff P dyyrid)

denote the lag k autocovariance of the functional f for the stationary chain. Let
f, be as in Tierney’s subsection 3.3. Then for the stationary chain

n-=k

n-1
nvarfn=’)'o(f)+2z Ye(f).
k=1
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If the sequence f,, has a CLT and is uniformly integrable, then the variance in
the CLT is

n—-1
(5) Jim nvarf, = lim <7o(f)+2 > ";kvk(f)>,
k=1

that is, the Cesaro sum of the autocovariances. If the sequence of autocovari-
ances is summable, then this agrees with the ordinary sum

©) ()23 wih).

k=1

Tierney’s subsection 3.2 discusses the types of ergodicity. In order of increas-
ing strength, these are ergodicity, ergodicity of degree 2, geometric ergodicity
and uniform ergodicity. The consequences of ergodicity of degree 2 and uniform
ergodicity are given in Tierney’s Theorems 4 and 5. The following theorem gives
the consequence of geometric ergodicity.

THEOREM 2. For a geometrically ergodic chain, suppose that [ |f|**¢dn <
+00 for some € > 0. Then \/n(f,, — 7f) converges weakly to a normal distribution
with mean 0 and variance o(f)? given by (6) for any initial distribution.

PRroOOF. Integrating the definition of geometric ergodicity in Tierney’s sub-
section 3.2 gives the following: for all Borel sets A and B

/ [P*(x,A) — m(A)]r(dx)| = [Pr(X, € A and X, € B) — n(A)n(B)| < | M]|1r".
B

The supremum over all A and B is the so-called strong mixing coefficient a(n).
Hence geometric ergodicity implies exponentially fast o-mixing. The result then
follows from a well-known stationary process central limit theorem [Ibragimov
and Linnik (1971), Theorem 18.5.3]. Since the chain is Harris recurrent, the
asymptotics do not depend on the starting distribution. O

This gives us a conclusion almost as strong as Tierney’s Theorem 5 but with
a much weaker hypothesis. Typically, a chain with a continuous, unbounded
state space will not be uniformly ergodic, but many such chains are geometri-
cally ergodic. Moreover, geometric ergodicity can often be verified using a drift
condition (Tierney’s Proposition 1).

The next theorem uses only the weakest type of ergodicity and establishes a
CLT only for a single function. Recall the definition of small set from Tierney’s
subsection 3.2.

THEOREM 3 [Chan (1993)]. For a Harris ergodic chain, suppose that there
is a nonnegative function g in L?(r) and a small set C such that:

(a) g(x) and E[g(X},1)| X}, = x] are both bounded on C,



1752 DISCUSSION

(b) g(x) > |f(x) —nf| for all x € C and
(c) g(x) > Elg(Xp41)| X =x] + |f(x) — nf| forall x ¢ C.

Then \/n(f, — 7 f) converges weakly to a normal distribution with mean 0 and
variance o(f)? given by (5) for any initial distribution.

It should be pointed out that the statement of the theorem in Chan (1993)
contains an error. The formula for o( )2 there is incorrect but is correct as stated
here with the variances referring to the stationary chain.

It is not always known which functions are in L2?(r). Then the following
theorem is useful in establishing whether a function £ is integrable.

THEOREM 4 [Tweedie (1983)]. For a Harris ergodic chain, suppose that f
and g are nonnegative measurable functions and for some set A with n(A) > 0
and [, fdr < oo:

(a) g(x) > f(x) for all x € A®,
(®) [, 8(»P(x,dy) < g(x) — f(x) for all x € A° and
(c) sup, e [y 8(¥P(x,dy) < o

Then | fdr < oco.

Note that A is not required to be a small set, though, of course, any small set
A does satisfy 7(A) > 0. A

To finish the Markov chain approach, we should mention the theorem in
Nummelin (1984), which may be sharper than Theorem 3 (it cannot be weaker
since Theorem 3 is proved as a consequence of Nummelin’s theorem). The con-
dition for Nummelin’s theorem, however, seems difficult to verify.

The martingale—functional analytic approach seems to give the sharpest re-
sults for reversible chains. Requiring reversibility causes no essential loss of
generality. Since the basic Metropolis—Hastings update step is reversible, in
order to produce a reversible sampler it is only necessary that the basic update
steps be combined in a reversible way. This observation has been made by sev-
eral people, the earliest perhaps being Besag (1986) where it is attributed to
Peter Green.

For a reversible chain the transition operator is a self-adjoint operator on
L2(r) that is obviously a contraction, || T|| < 1 (since conditioning reduces vari-
ance). The spectrum of T is the set of complex numbers A such that T' — AT
is not invertible. Because T' is self-adjoint, the spectrum is real, and from the
spectral radius formula, it is bounded by ||T'||. Hence the spectrum is a closed
subset of [—1, 1]. The spectral theory of bounded operators on Hilbert spaces
[Rudin (1991), page 316 ff.] associates with T' a spectral measure E mapping
Borel subsets of the spectrum to self-adjoint projections on L2(r). A point A in
the spectrum is an atom E({\}) # 0 if and only if A is an eigenvalue. The follow-
ing lemma shows, for a Harris ergodic chain, 1 and —1 cannot be eigenvalues,
and hence the spectral measure is concentrated on the open interval (-1, 1).
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LEMMA 5. For a Harris ergodic chain, any eigenvalues of the transition op-
erator have modulus strictly less than 1.

Proor. For any f € L2(r) with || f|| = 1, there is a bounded function g such
that |f —g| < % By Cauchy-Schwarz, n(g) < || f — g|| < % Now

IT" Il < m(g) + |T"g — n(| + |1 T™(f - &l

and the first and third terms on the right-hand side are less than % The middle
term is

2
/ { [ ey - w(dy>]} ) < gl [ 1P, ) - nO)fPa(a),

where on the right-hand side |- || indicates total variation norm. Since the
integrand converges to 0 (Tierney’s Theorem 1), this term converges to 0 by
dominated convergence. Hence ||T™ f|| is eventually strictly less than 1, and it
cannot satisfy T'f = Af with |A\|=1. O

Spectral theory simplifies questions about the variance in the CLT. It follows
from dominated and monotone convergence that the limit in (5) always exists
and is equal to the ordinary sum (6) and also to the spectral integral

o [1+A
™ o = [ 5B

though the limit (and the integral) may be +o0o, where Ey is the positive Borel
measure defined by

E¢(B)=(f,E(B)f).
If (7) is finite, there is a CLT.

THEOREM 6 [Kipnis and Varadhan (1986)]. For a reversible Harris ergodic
chain, if (7) is finite, then \/n(f, — 7 f) converges weakly to a normal distribution
with mean 0 and variance o(f)? given by (5), (6) or (7) for any initial distribution.

Kipnis and Varadhan give two conditions, equivalent to (7) being finite. The

first is that f lies in the range of (I — T)'/2, and the second is that there be a
constant C such that

(8) (f,8) <Cy/(g,(I-Txg), geLim.

It is not clear how useful this is in practice. We know of no examples where this
has been used to establish a CLT for a Markov chain Monte Carlo sampler. The
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main benefit of reversibility and the Kipnis—Varadhan CLT to date seems to
have been in simplifying theoretical questions. The calculation of o(f)? by the
spectral integral (7) is one example. Other examples are given by Geyer (1992).

Let us now turn from consideration of the existence of a CLT for a single
function to the question of whether every square-integrable function has a CLT.
Kipnis and Varadhan did not show that finiteness of (7) was necessary for a CLT
(this appears to be an open question), but we can say that the variance of f, is
O(n=Y) for all f € L(r) if and only if (I — T)*/2 is a surjection, in which case
I —Tis also suljectlve From Lemma 5 the only L2(r) solutions of Tf = f are
constant, so I — T is also one to one on L2(7r) That is, we have a CLT for all
square-integrable functions if I — T is invertible, and if I — T is not invertible,
there is some f € LZ(r) for which (5) is not finite.

For this criterion, reversibility is superfluous.

THEOREM 7 [Gordin and LifSic (1978)]. For a Harris ergodic chain, suppose
that f is in the range of I — T, say f = (I — T)g. Then /n(f, — nf) converges
weakly to a normal distribution with mean 0 and variance given by

©) a(f? =gl - ITgl?
for any initial distribution.

Gordin and Lif8ic remark that the theorem could conceivably hold with
o(f)? = 0 in which case /n(f, — 7f) converges in probability to 0 (the limit
is degenerate). This cannot happen in the reversible case. If the chain is aperi-
odic, —1 is not an eigenvalue, and the formula (7) for o(f)? is strictly positive.

It is not clear how the invertibility of I — T' can be easily checked. It is, of
course, equivalent to

(10) 0< inf ﬂg'—Tlg—'E.
gclim gl

In the reversible case, it is enough to check that the right-hand side of (8) is
bounded away from 0 when g is bounded away from 0, that is,

— /2 4|2 _
(11) 0< inf ﬂ(I_T)_gﬂ= inf (g, ;-”)g)‘
gELY(m &l g€ LAm lgll

But neither condition seems easy to check in general.

To finish the functional analytic-martingale approach, we should mention
the theorem of Téth (1986) which extends the methods of Kipnis and Varadhan
to the nonreversible case, but at the cost of imposing a condition that is diffi-
cult to verify. In the reversible case T6th’s theorem reduces to that of Kipnis
and Varadhan.

Schervish and Carlin (1992) and Liu, Wong and Kong (1994) have followed
another path to geometric convergence, establishing that T is Hilbert—Schmidt.
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This also implies a CLT. Any Hilbert—-Schmidt operator is compact and hence
has a countable spectrum having no point of accumulation other than 0. By
Lemma 5 a Harris ergodic chain has no eigenvalues of modulus 1, hence if T
is compact, |T|| < 1. Thus I — T is an invertible operator on L2(r). Hence T
Hilbert—-Schmidt implies T compact implies |T|| < 1 implies I — T invertible
implies a CLT by Theorem 7.

It is clear from the theorem that a Hilbert—Schmidt transition operator is not
essential, since not all compact operators are Hilbert—Schmidt and I — T can be
invertible when T'is not compact. In general, a Metropolis—Hastings sampler for
a continuous distribution will not have a compact transition operator unless,
like the Gibbs sampler, all proposals are accepted with probability 1. From
Tierney’s Section 2.3 we see that the general form of the transition operator is

(TF) ) = () f(x) + / () p(x,)(dy)

so T =M + S, where (M f)(x) is the first term on the right-hand side and (S f)(x)
is the second term. If M is a compact operator, then r(x) is 0 almost surely
except on a countable set, and hence is 0 almost surely if 7 has no atoms [cf.
Exercise 5, Section 2.4 in Conway (1985)]. If M is noncompact, then T and S
cannot both be compact, and T can be compact only if there is some rather
strange cancellation occurring.

Examples. With all of this theory, there is some question as to whether
there is much hope of obtaining a CLT for practical problems. In our somewhat
limited experience, this does seem to be fairly easy using drift conditions. Geyer
and Mgller (1994) proposed a Metropolis sampler for spatial point processes and
obtained a CLT for one particular sampler, an unconditional Strauss process,
using Theorem 3, though while this discussion was being written it was dis-
covered that the drift condition of Tierney’s Proposition 1 and our Theorem 2
imply that the sampler is geometrically ergodic and hence has a CLT for all
functions in L2*¢(r).

A somewhat different example is the Gibbs sampler for the mixed model in
genetics [Thompson and Guo (1991) and Guo and Thompson (1994)]. A quan-
titative trait y that depends additively on unobserved discrete genotypes g,
continuous genotypes z (thought of as approximating the combined effect of a
large number of genes of small effect) and environmental influence e is assumed
to have the form

y=u(g)+z+e,

where g,z and e are independent, g has a finite number of possible values
and z and e both have nondegenerate (multivariate) normal distributions with
mean 0. We want to sample from the conditional distribution of g and z given
y (everything that follows is conditional on y but this will be suppressed in the
notation) in the case where z and g have high dimension and it is convenient to
Gibbs sample them one component at a time. First we consider the case when
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the variables are sampled in fixed order, sampling the z’s in a block and then
the g’s.

Let g,z and g’,2’ denote consecutive steps of the stationary chain. Then g’
is updated from a kernel £1(g’ | g,2’), which is discrete, and 2’ is updated from
a kernel k5(2’ | g,2), which is normal with mean a(g) + Bz and variance A. Let
f(z|g) denote the stationary distribution of z given g, which is normal with
mean m(g) and variance ¥, and p(g) the marginal stationary distribution of g.
Here B, A and X are constant matrices, and A and ¥ are positive definite by the
nondegeneracy assumption.

What must be shown to establish that the transition operator is Hilbert—
Schmidt [Schervish and Carlin (1992)] is that

Z//[k1 £ kz( P )} f('1g") p(g)f(z|g) p(g)dzdz’

f(z'g") p(g)

is finite. This happens if each term of the sum for which p(g) and p(g’) are
nonzero is finite, which since k2, < 1 happens if

(12) //k2 2'1g",2) (zlg) dzdz’'
f(z'lg)

is finite for all g and g’. But this is finite for the same reasons that a Gibbs
sampler for the multivariate normal is Hilbert—Schmidt [Schervish and Carlin
(1992) and Schervish (personal communication)]. Since every basic update step
of the Gibbs sampler preserves the stationary distribution, z’ and g have the
same distribution as z and g. Hence

T =var(z’|g) = A + BEBT.

Now [ k2’ |g’,2)?f(z| g)dz is seen to be proportional to a normal density with
mean a(g’') + Bm(g) and variance ;A + BEBT = & — 1 A. Hence, when this is di-
vided by (2’ | g’) and integrated with respect to 2/, the integrand is proportional
to a normal density with precision matrix =1 — (£ — 1A)~1, hence integrable
(this matrix is positive definite because 0 < A < B implies B~! < A~1 for any
matrices A and B).

For a general scan (12) becomes

sz,zlggzz)f(zlg) ’
(13) // @12 . d.zdz,

where &, ; is the one-dimensional normal density of the Gibbs update for z;. It
is clear that (13) is integrable if (12) is because all the normal kernels have the
same variances and dependence on other components of z, only the dependence
on the g’s differs and this only changes means. The result extends to a random
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sequence scan (each variable is updated exactly once per scan, but the order is
random), because then the overall transition operator is a convex combination
of the operators for each of the scan orders, and a linear combination of Hilbert—
Schmidt operators is Hilbert—Schmidt.

Conclusion. Using the methods discussed here and in Tierney’s subsec-
tion 3.3, it should be possible in many cases to establish whether the CLT holds
for a Markov chain sampler.

The strongest conclusion is that I — T is invertible, which implies a CLT for
all functionals in L2(7). One would like to establish this whenever it is true and
disprove it whenever it is false. Our methods for doing so, however, are rather
weak. I — T is invertible if T is Hilbert—-Schmidt [Schervish and Carlin (1992)
and Liu, Wong and Kong (1994)], but this applies only to Gibbs samplers not
to general Metropolis—Hastings samplers and even for Gibbs samplers will not
always work. The invertibility of I — T' could be disproved by finding a sequence
of functions g that drive the right-hand side of (10) or (11) to 0, but that also
seems difficult.

The next strongest conclusion is that the chain is geometrically ergodic,
which implies a CLT for all functionals in L2*¢(rr). This is established using
the drift condition argument (Tierney’s Proposition 1 and our Theorem 2). It is
not clear to us how one establishes that a chain is not geometrically ergodic.

For a sampler that is believed not to be geometrically ergodic, the CLT can
still be established for specific functionals using the drift condition argument
[Chan (1993), repeated as Theorem 3 here]. Another approach would be to
attempt to verify (8) directly (reversible chains only).

It should also be mentioned, just for the sake of completeness, that the nor-
malized partial sums of a square-integrable functional can converge in law to a
stable distribution with exponent strictly between 1 and 2 (of course, then the
normalizing constants cannot be n~1/2). Davydov (1973) gives examples. It is
also possible for the CLT to hold with normalizing constants other than n=1/2
(for a trivial example, consider i.i.d. sampling from a distribution without finite
variance but still in the domain of attraction of the normal distribution).
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discussions.

Irreducibility. For simplicity, I wrote Theorem 1 and other results in my
presentation to use as their key assumption that P is irreducible with respect
to 7. In most applications this is relatively easy to verify, but as Doss points
out there are cases where it is not. The theory in Nummelin used to develop
these results is actually more general. In particular, it is sufficient to verify
irreducibility with respect to any o-finite measure. Thus the following general-
ization of Theorem 1 is available.

THEOREM 1*. Suppose P is p-irreducible for some o-finite measure ¢ on E
and 7P = 7. Then ¢ is absolutely continuous with respect to wr, P is w-irreducible,
P is positive recurrent and = is the unique invariant distribution of P. If P is
also aperiodic, then, for m-almost all x,

[P (x, -) = m(-)|| — O,

with || - || denoting the total variation distance. If P is Harris recurrent, then the
convergence occurs for all x.
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