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ON THE BERRY-ESSEEN BOUND FOR L-STATISTICS
IN THE NON-1.D. CASE WITH APPLICATIONS
TO THE ESTIMATION OF LOCATION PARAMETERS!

By XI1A0JING XIANG

University of Chicago

In this paper, two versions of the Berry—Esseen theorems are established
for L-statistics in the non-identically distributed case. One theorem, which
requires E| X;|® < oo, is an extension of the classical Berry—Esseen theorem.
Another, proved under the condition E| X;|* < oo for some « € (0, 1], seems
to be of more interest for statistical inference. Some applications are also
discussed.

1. Introduction and main results. Linear combinations of order statis-
tics, exhibiting desirable robustness, play an important role in the theory of
estimation. After asymptotic normality has been established for such a statis-
tic, one often needs more precise information and may try to find suitable
bounds for the error in the normal approximation for finite sample sizes. Let
X1, Xs,..., X, be n independent (but not necessarily identically distributed)
random variables with distribution functions Gi,Go,...,G,, where Gi(x) =
P(X;, < x). Let Xy, X9),...,Xn denote the order statistics of the sample

X1, Xy, .., Xy Define Fn(x_) = (1/n)E}_1Grx), Fn(x) = (1/n)T;_ Iix, <x) and
w(J,Fp) = ffooo xJ(F,(x)) dF,(x). Consider linear functions of order statistics of
the form

1 ,(k ©

(1.1) Sn== ;J<;)X(k) = /_ me(Fn(x)) dF,(x),

where J(x) is a specified weight function defined on [0, 1]. Several authors [e.g.,
Shorack (1973), Stigler (1974) and Xiang (1991a)] have established the asymp-
totic normality of L-statistics in the non-i.d. case under different sets of con-
ditions on J and X;. The aim of the present paper is to obtain a Berry—Esseen
bound for these statistics. Two examples illustrative of the present results are
given in Section 4.
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Let

T, = —%/ J(Fo@) (Iix, <x) — Gix)) dx

—00

1o
_'2—55/_00‘](17"("))(1(&9)—Gi(x))zdx

+ —2-:-;-5 J'(Fn(x))G,(x)(l - G;(x)) dx,
WX X) =~ / T (Fa)) (i, < — G@) (g <) — Gi@) dx, i),
n n i-1
§n = ZT,', An = Z Zh(}(lv Xj)-
i=1 i=2j=1

From the properties ET; =0, i =1,2,3,...,n, Eh(X;, Xph(X;, X;) =0, 1 <i <
J<k<n, Ef(T)MX;, X;) =0, 1 <i<n, 1<j<k<n,for each measurable
function f(x) (real or complex), we have a2(S, + A,) = 02(S,) + 02(A,,). Write
02 = 0%(Sy). Let Hy, = (1/n)SF E|Xil*, k= 1,2,3, Ly, = max(Hy,, Hop, Hsn)
and M,, = max(1, ||J’||L,) with [|J'|| = maxg <, <1 |J'(x)|. Let C denote a positive
universal constant throughout this paper. If M, is finite, we wish to show

sup|P (o7 (S — 1, F) <) - 8| < czu,,
x Un
where I, = ¥7_, E|T;|3.
Let T;j(n) = Sk=1,....n, k7ij EITkl?, 02(n) = Tk=1,...,n, k+i,j0°(T4). We abbre-
viate these to I';; and aizj. The first main result of this paper is the following.

THEOREM 1. Suppose that E|X;|® < oo, i = 1,2,...,n, and there exist pos-
itive numbers oy, og, and ag which are independent of n, such that the fol-
lowing hold: (i) no? > oy; (i) T < opmin;; T and 02 < azmin; jo?. Then

J'(x) € Lip(6), 6 > %, implies

(1.2) sup
x

P(0;(Sn -, F)) <x) — o) < C%Mn.

REMARK 1. Ifd(x) = 1,thenT; = (1/n)(X; —EX)), ||J’|| = 0 and the above re-
sult becomes the classical Berry—Esseen theorem. It follows, in particular, that
the moment conditions E|X;|® < oo, i = 1,2,...,n, are necessary. A previous
extension to the non-i.d. case was given by Friedrich (1989), who required that
E|X;*, i=1,2,...,n, be finite.

REMARK 2. If {L,} is bounded, by Lemma 1 in Section 2, nT, is bounded.
This and condition (i) of Theorem 1 imply (I';/03)M, = O(1/+/n). Friedrich
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(1989) obtained this rate by imposing two additional conditions [his (C2) and
(C3)]. Here those two conditions, which impose stringent uniformity upon the
X;, are relaxed.

REMARK 3. In the i.i.d. case, Berry—-Esseen bounds for L-statistics with a
bounded smooth weight function have been studied by many authors. Helmers
(1977) first established a Berry—Esseen bound for L-statistics. The best result
to date has been obtained by Helmers (1981, 1982), also by van Zwet (1984)
as an application of his Theorem 1.1. Serfling (1980) established Berry—Esseen
bounds for L-statistics by treating L-statistics as a functional of the empir-
ical distribution function. Our approach in this paper is essentially based on
Serfling’s method, which is convenient for the present non-id case. If the weight
function is allowed to be unbounded, a Berry—Esseen bound has been obtained
by Helmers and Huskova (1984).

Another goal of this paper is to obtain a Berry—Esseen bound when the mo-

ment conditions E| X, |3 < 0o, n =1,2,..., are replaced by
(1.3) I = / [Fu(1-Fow)] dx<oo, n=12,...

for some o > 1. We will show that E| X;|Y/* < oo fori = 1,2,...,n implies (1.3)
(see Lemma 3). In this case, we choose the weight function J(x) to be zero near 0
and 1, and the L-statistics is like a smoothly trimmed mean [see Stigler (1973)1.
Our result is the following.

THEOREM 2. Assume the following: (i) For some o > 1, (1.3) holds. (ii) Each
Gy (x) is continuous. (iii) J'(x) € Lip(}), J(x) = 0forx € [0,e]U[1—¢,1], € € (0, .
Then, if conditions (i) and (ii) of Theorem 1 hold,

P07} (S - ud F) <) - 86| < CL2 T,

On

(1.4) sup

where M, = max(1,13).

REMARK 4. If {I,} is bounded, we obtain the convergence rate O(1/ V).
IfXy,..., X, are ii.d. random variables, Egorov and Nevzorov (1974) obtained
the normal approximation for classical trimmed mean with rate O(,/(logn) /n)
and Bjerve (1977) obtained the rate O(1/y/n).

_ The following section contains several lemmas which are essential to this
paper. The proofs of the theorems are given in Section 3. In Section 4 two
examples are discussed.
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2. Lemmas.

LEMMA 1. Letthe random variable X have distribution F and satisfy E| X|* <
00, where k is a positive integer. Then, form =1,2,3,...,

o0 k
E( [ ey -Fomay) <2'BIXP

- 00

PRrROOF. As |I(X <y — F(y)| <1, for anym > 1,

o) k 00 k
E( / |I<Xsy>—F<y>|'"dy) SE< / |I<xsy>—F<y>|dy) <2E|XF. 4

LEMMA 2. Let X3, Xy,..., X, be n independent random variables. If, for a
positive integer k,E| X;|* < 00, i=1,2,...,n, then

00 - k 1 n

— 00

ProofF. From the decomposition,
[ e -Fa)ax
=n7 Z/ (Ix, <) — Gix))” dx

n i—-1

+2n_222/ (Ix, <x) — Gi®) (Ix; <x) — Gi(x)) dx

i=2j=1
A1n + 2A2n1

(2.1 E(/oo (Fo(x) — Fp(x)) dx) < 2kZ( ) z/k(EA%ﬁ)(k—i)/zk'

—00

Using the inequality |¥7_; a;' <n!~'%?_;|a;/', a; € R, I > 1, and Lemma 1,
1 n
2.2) ENt, <Cn* (; Z;E|Xi|k).
i=

Let
{o o]

1 ..
g(X;, XI) = E/ (I(Xi <x)— G,(x)) (I(ngx) - G,(x)) dx, 1< j<i,

— 00
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and define 9; = 0, 1; = EJ‘:llg(Xi, X),i=2,...,n.Then{¢;, i=1,2,...,n}isa
martingale difference sequence and so is {g(X;, X;), 1 <j < i} for each fixed i.
Hence, applying a theorem of Dharmadhikari, Fabian and Jogdeo (1968) twice,
we obtain
2k n n i—-1

<Cnt= N Ejg** < Cn?t 2 N Ele(X;, X

i=2 i=2j=1

EAZE-E

>t
i=2

By the Schwarz inequality and Lemma 1, E|g(X;,X))|?* < Cn~**E|X;|*E| X;|*.
Hence

2
n n n
2.3) EAY <Cn %23 N "E|X|'E|X)|* < Cn2* (;ll- ZE|Xi|”> )
i=1

i=1j=1

Substituting (2.2) and (2.3) in (2.1), we obtain the desired statement. O

LEMMA 3. Suppose H is a distribution function, and, for 0 < v < 1,
al = [|x|"dH(x) < cc. Then

/ " He1L - H@) Y dx < 24,
v

—00

Proor. We have
%) 1 ) ) 1/y-1
/ (1-H) /’ydxs/ (/ y“’dH(y)) x7~1(1 - H@®) dx
0 0 x
sal,,“f/o x7~1(1 - Hx)) dx
1, /°° 1
<-=a. " x|"dH(x) = ~a ..
oy M 7
Similarly for [ H@®)'"dx. O
REMARK. IfH(x) =F,(x), a, < (1/n)2!_ (E|X; |7, as0 <y < 1.

3. Proofs of theorems. In the following proofs, we always assume that
"] > O.

PRroor oF THEOREM 1. From Remark 5 of Xiang (1991b), Theorem 1 holds
if we can show (1.2) with S, replaced by fol F;l(x)J(x)dx, say T,. With the same
argument as that in Serfling [(1980), page 289], we may write

S =T, Fo) = = [ I(Foue) (Fate) - Fo)) ds
@1 -1 / " (Fo@) (Falw) - Fu(x))’ dx + Ry

=8, +A, +R, +R,,



L-STATISTICS 973

where

—_ 1 & [ —
(3.2) Faz-gzd [ aF )G - i) s,
and it holds that

(33) |Ra<C / IFo) — Fol)|*** d < ClIF = FallS 1 — FallZ,,

where

|F — Frlloo = sUp [Fa(x) — Fa(x)| and

_ [} _ 9 1/2
I ~Fallea= ([ 10~ Fio) &)

Let {c,} be a sequence c, < n and ¢, — oo as n — co. Write A, = A, + A, with
A =%1<j<i<e,MX;, X)) and An=¥0, .1 %11 k(X;,X;)). The precise form of ¢,
will be given later on. This decomposition was first used by Chan and Wierman
(1977) and then by Callaert and Janssen (1978). If we can show

3.4) suplP(a;I(f?n +4,)<x) - <I>(x)\ < o(m%),
x n
~ I I
-1 n n

(3.5) P(crn |An] ZM"U—,&;) = O<M"a_g>’
-1 Fn Fn

(3.6) P(o; Rl > My—5 ) = O Mn—5 ),
On oy

i -o{u).
Un

then the theorem follows from a well-known lemma [cf. Serfling (1980), page
228]. First, (3.7) follows easily from |0, 1R,| < (C/no,)Hyy,, assumption (i) and
the inequality

r

(3.8) —5 2
Un

Z?=1E|Ti|3 > Z?:lElTiP S _}_
R (BITR)*? T VRS EITE T vr

To prove (3.6), again by (i) and (3.8) we have from (3.3), for some universal
constant a > 0,

r = a

-1 1/6 6

P<Un IRnl ZMnU§> SP<n / ”Fn _Fn”oo 2 —C)
+P(n5/6||Fn —F,,||,2‘2 > 1) = Py, + Pa,.

Using 6 > % and an inequality of Bretagnolle [cf. Shorack and Wellner (1986),
page 797), P, = OM,T,/03). By Lemma 2, Py, < nS2E|F, — Foll§, <
CM, T',/os. Hence (3.6) holds.
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Write v, = o3/, and set ¢, = [n — 3n(logy,)/7,] the integer part of
n — 3n(log v,)/v,. For convenience, we assume that ~, > 3log3, and Theorem
1 also holds for all ~, by taking C > 3 log 3 in (1.2). Then (3.5) follows from

- T, -
P(a‘n_1|An| > Mn}?) < P(nlAn| > CMn)
" i—1 6
Zh(Xi, X))

Jj=1

< CMn'lnﬁ(n —cp)? Z E

i=cp+1

< CM;'ny2logv)* D EA(X;, X))|°

Lj=1y..,n, i

< CyX(log vm)?M, < O (Mn r )

a3

We now prove (3.4). For ¢ € (—00, 00), denote by ¢,(t) = E exp{ito; (S, + A,)}
the characteristic function of a;1(§n +A,). Also, let ¢,(t) = E exp{ito;; 1(§n)},
¢(t) = exp(—t?/2). According to Esseen’s smoothing lemma [cf. Feller (1971),
page 538],

H
3.9) sgp’P(a;1(§n +A,) <x) - <I>(x)’ < /_H

ﬁl'(t)t_—(ﬁ@ldt‘ﬁm_l,

where we choose H = gfy,,. From the proof of the classical Berry—Esseen theorem
we conclude that

H
(3.10) /
-H

- . H
P(0; (S, +4A,) <x) — <I>(x)’ <Cyt+ /
-H

¢n(t)t— ¢(t)ldt <cy,

(3.11) sup M‘ dt.

Hence it suffices to show that

(3.12) / If

Tn

(3.13) /
It < 7a'?

From the inequality [cf. Billingsley (1986), page 353]

- dt < CM,~;t,

¢n(t) ; ¢n(t)‘dt < CMn'Yn,_l'

N ()
exp(ix) — 7
k=0

1

S+ el

we have

(3.14) $n(8) = $u(t) +ito; ‘E exp{ito; 1S, ) A, + O(tza,;?EZf,).
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Let ¢ij(t) = Eexp{ita‘12k= 1,..,n, k#i,ka}- Then
E exp {ito;; 15, A,
(3.15) = Z ¢(E exp{ito; X(T; + T) }h(X;, X;).

1<j<i<en
Let ||Ty||z = (E|T1|*)*2. Then, from
E exp{ito, '(T; + T)}h(X;, X)) = O(t%0, % | Ti |2 Tjll21A(X;, X))llz),

we have

=0<t20',?2 > |¢ij(t)|||Ti||2||Tj||2||h(Xi>Xj)||2)'

1<j<i<cn

Thus, by (3.14),

?i”—(”—’—;—‘?-"—@[w(t%;s > |¢i,~<t>|||T,~||2||T,~||2||h<&,X,~>||2>

1<j<i<e,

(3.16)
+O(|tloy 2ERL).

Let v; = o} /Fu From condition (ii) of the theorem, for some a4 > 0,
Vi = Q4Yn, U j = 1,2,...,n. Suppose that the constant C in (1.2) is larger

than 1604[2 Then, for v > a2/186, the conclusion of the theorem always holds.

Hence we may assume that v, > 16a;2. Using a lemma [cf. Chung (1974), page
229],

-1..)2
3.17) |¢(®)| < exp _on s’ It < -l-fy,-jfﬁ.
3 4 O’ij

This and }v,0n/0; > 4a47,, > 7,, 1mply

/' 0o 9
/ 2|48 dt < / 2 exp{ - —t—}dt < 0.
0 0 30[3

Hence, by || T2 Tyll2lIA(X;, X2 < n=4| X:l3 21 51152,

*%
/0 (t26;3 > |¢ij|||Ti||2||’—"j||2||h(Xi>Xj)||2> dt

(3.18) 1<i<i<en
< Cn~'2Hy, < CM,v; .
On the other hand, we have

1/2

Tn .
(3.19) / toT2EAL dt < Co2yun~2Hp, < CMyun7 L.
0
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Combining (3.16), (3.18) and (3.19), relation (3.13) is proved.
Finally to prove (3.12) we note that

n

|¢n(®) — 6n(®)| < |tlo; E|R| H |E exp {ito 1Ty }|.
k=c,+1
Let & = 107 20%(T})~ 307 3E|T}*H, j = 1,2, ..., n. Then, following Feller [(1971),
page 544], |E exp{ito; 'T;}| < exp{-§t?}, |t| <H,j=1,2,...,n,and [T} _,
|E exp{ito; 'T}| < exp{—t>%}_, ., 6 }. Without loss of generality, we assume
bp > 6p-1>++->61. Then Xr16= % implies

n
- log~,
. — ¢ E < el o et
(3.20) exp{ t 6k} < exp{ n t° » < exp o t

k=cp+1 n

Therefore, (3.12) follows from

H
log v, o C g -1
2 < < .
L’}ﬂ exp{ o7 t“rdt < Tog 7 and o, E|A,| < CM,~, O

PROOF OF THEOREM 2. We note first that the representation (3.1) holds.

Let F,: 1([3) be the -th quantile of F,(x) for 3 € (0, 1). Then assumptions (i) and
(ii) of the theorem yield

321  |F, A-o)-F, (o)< <2> /oo [Fr@)(1 — Fp(x)]* dx.

€ —00

With arguments similar to the proof of Theorem 1, it is easy to show |0, IR, <

C — N v T,
ER(X;, X)|® < n_ﬁMﬁ, P<a;1|A,,| > U—';M,,) < o(d—gM,,)
n n

Let AW/, Fy,u,x) = J@) — JF,(x)) — J'Fr(x))(w — Fr(x)). For the rate of R,, we
have

Fn(x) _
/ AT, Fo, )| dur| dx
(x)

o0
|Rn| 5/ Lip, 2y - Futz) < e/2)
—00 F,

Fo(x) _
/_ |A(T, F,u,x)| du| dx

F,(x)

oo
+/ Lip) - Fut)l > /2)
— 00
= Iln. +I2n-
Since J(x) = 0 for x € [0,] U [1 — ¢, 1],

Fla-e/2) .
I,<C |Fa@) - Fao* 1 da.

Fole/2)
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Hence by the Hélder inequality, P(I1, > n~1) < (C/v/n )M,,. For I,,, we have

P(I;,>n71) < Cn/_ ) P(IF,,(x) —F,,(x)| > E) dx
Fl1-e/3) 2
Fol(1-¢/3) _ .
+Cn /_ 1 P<|F,,(x)—F,,(x)| > —) dx
Tl e/3) 2
Fle/2) _ .
+Cn/ P<|F,,(x) — Fnx)| > 5) dx

and it is easy to see that I? < (C//n)M,. To estimate Is), let & = [o] + 1 and
assume that

(3.22) n— [n (1 - %)} >2k+1, ne>12.

For those n which do not satisfy (3.22), Theorem 2 also holds if we take

CZmax( /E, /4a+6>,
£ £

where C is the constant in (1.4). Thus, for x > F,1 - ¢/3), [n((1 - ¢/2)] +
1 < n(1-¢/3) -1 < nFy(x) — 1. This and Hoeffding [(1956), Theorem 4] give
P(|Fp(x) — Fr(x)| > €/2) < n?*(1 — F,(x))%*. Hence

o< an“/ (1 = Fo)* (BIFs — Fol+9) Y2 dx < T,
JFT a-e/3) vn

Symmetrically, it can be shown that 1;9;3 < (C/+/n)M,. Combining these results,
P(o;YR,| > M,/\/n) = OM,//n). Since the rest of the proof is analogous to
that of Theorem 1, it is omitted. O

4. Examples. In this section, we consider two statistical models. The pro-
ofs of the conclusions stated are omitted for the sake of brevity. These proofs
can be found in Xiang (1991b).

ExAMPLE 1. Consider the model Y; = 6 + X;, 1 < i < n, where X; are in-
dependent random variables with distribution function G;(x) = G(x/a;), a; > 6§
for some 6 € (0,1] and G(x) is a continuous distribution function. Further as-
sume that G(x) = 1 — G(—x), G(x) is strictly increasing in a neighborhood of
the origin and, for some « € (0, 1], ff"oo |x|* dG(x) < 00.Our goal is to estimate
9 from the sample Y7,Yy,...,Y,. This model arises, for instance, if the true
model is assumed to be Y; = 8 + X;, where X;,X,, ..., X, are i.i.d. with common
distribution function G(x), but because of the influence of perturbations the ob-
served model is Y; = 6 + a;X;. Let Y(1),Y(2),...,Y(n) be the order statistics of
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the sample. Choose a weight function J(x), J(x) = 0 for x € [0,e] U [1 — ¢, 1],
Jx) > 0forx € (¢,1 —¢), € € (0, %) and J'(x) € Lip(%). Further, require that

J(x) is increasing in [0, 1], fol Jw)du = 1 and J(x) is symmetric about x = 1.
The L-estimate of 4 is given by (1.1). Then, from Theorem 2 and the remark
following Lemma 3, if @, = (1/n)¥}_,0; <M < oo,

- C
4.1) SI:p|P(an 1S, — 0) <x) — dx)| < N

ExaMPLE2. Consider the gross error model [see Tukey (1960), Huber (1964,
1981) and Hampel, Ronchetti, Rousseeuw and Stahel (1986)] Y; = 0 + X;,
1 < i £ n, where the X; are independent random variables with distribu-
tion functions G;(x) = (1 — €;)®(x) + ;H;(x), ¢; € [0, 6] for some § € [0,1), (x)
denotes the standard normal distribution function and the H;(x) are symmetric,
belonging to some class of distribution functions. We further require that each
H(x) is continuous and for an a € (0,1, h; = [ _|x|*dH;(x) < 00, 1 <i < n.
Our goal is to estimate 0 from the sample Y,Y5,...,Y,. This model arises, for
instance, if the distribution functions of the observations are assumed to be
normal with variance 1, but because of the occasional presence of gross errors
they differ from the normal distribution, and these differences for different ob-
servations might not be the same. Choose J(x) of the same form as that in the

previous example. Then if (1/n)¥}_, hil/ % is bounded, (4.1) holds.
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