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CONVERGENCE RATE OF SIEVE ESTIMATES!

XI1AOTONG SHEN? AND WING HUNG WONG3

Okhio State University and University of Chicago

In this paper, we develop a general theory for the convergence rate of
sieve estimates, maximum likelihood estimates (MLE’s) and related esti-
mates obtained by optimizing certain empirical criteria in general parame-
ter spaces. In many cases, especially when the parameter space is infinite
dimensional, maximization over the whole parameter space is undesirable.
In such cases, one has to perform maximization over an approximating space
(sieve) of the original parameter space and allow the size of the approximat-
ing space to grow as the sample size increases. This method is called the
method of sieves. In the case of the maximum likelihood estimation, an MLE
based on a sieve is called a sieve MLE. We found that the convergence rate
of a sieve estimate is governed by (a) the local expected values, variances
and L, entropy of the criterion differences and (b) the approximation error
of the sieve. A robust nonparametric regression problem, a mixture prob-
lem and a nonparametric regression problem are discussed as illustrations
of the theory. We also found that when the underlying space is too large,
the estimate based on optimizing over the whole parameter space may not
achieve the best possible rates of convergence, whereas the sieve estimate
typically does not suffer from this difficulty.

1. Introduction. In this paper, we develop a theory on the convergence
rate of sieve, maximum likelihood and related estimates obtained by optimizing
some empirical criteria. We study this problem in the general setting when the
parameter space is a metric space and the optimization is carried out over a
sequence of approximating spaces.

LetY:,Ys,...,Y, be asequence of independent random variables distributed
according to a density po(y) with respect to a o-finite measure v on a measurable
space (Y, B), and let © be a parameter space of the parameter 6. Letl: ©xY — R
be a suitably chosen function. We are interested in the properties of an estimate
6, defined by maximizing the empirical criterion L,(0) = (1/n)X}_; 1(6,Y;) in the
following sense: L,,(@,) > supL, () — n,, where , — 0 as n — oo.

For motivation, first consider the case of maximum likelihood estimation. In
this case, 1(6,y) = logp(6,y) and the maximum likelihood estimate (MLE) 4, is
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obtained by maximizing the scaled log-likelihood L,(0) = (1/n)%}_;1(0,Y;). In
many cases, especially when 6 is infinite dimensional, maximization over the
whole parameter space is undesirable. The MLE may be inconsistent if the size
of the underlying parameter space is too large. For these reasons, the maxi-
mization is often carried out over a space ©, which is an approximation to ©,
and the approximation error must decrease to zero as the sample size increases.
In the language of Grenander (1981), such a sequence of approximating spaces
is called a sieve, and the maximizer of L,(#) over ©, is called the sieve MLE.
More precisely, let ©1,0q,...,0, be a sequence of parameter spaces approxi-
mating © in the sense that, for any 6 € ©, there exist 7,0 € ©, such that, for
an appropriate pseudodistance p, p(m,0,0) — 0 as n — oo. Then the estimate 6,
is required to satisfy

(1.1) Ln(8,) > sup Ly(8) — 7.
€0,

It is known that the MLE is consistent under some compactness conditions
on O and integrability conditions on /(6,); see Wald (1949) for the case of a
Euclidean parameter space and Bahadur [(1967), page 32] for the case of a
general parameter space. It is also known that the sieve MLE is consistent
under some conditions [Geman and Hwang (1982)]. Much less is known about
the convergence rate of the MLE or the sieve MLE in the case of a general
parameter space. To be specific, let p(-,-) be a metric (or pseudodistance) on
O, and let T, = T, (Yy,...,Y,) be an estimate for 6. For positive ¢,, we say
that the convergence rate is O(e,,) if p(T',, 6p) is Op(e,,) under Py. Special results
from density estimation and nonparametric regression suggest that the rate
of convergence depends on the size of the underlying function class [see Stone
(1982)]. Some results on the convergence rate of the MLE in a compact space
is given in Wong and Severini (1991). They provide an upper bound for the
rate of convergence of the MLE which depends on the metric entropy of the
score functions under the Fisher norm. Related work can be found in Le Cam
(1973), Birge (1983) and Yatracos (1985). These authors consider a variation
of maximum likelihood estimation in which the maximization is carried out
within a finite subset of the original parameter space.

In this paper we provide a method for determining the convergence rate of
a sieve MLE in a metric parameter space. The metric entropy of the logarithm
likelihood ratios and the local behavior of the mean and the variance of the
logarithm likelihood ratios around the true parameter value are used as indexes
to quantify the convergence rate.

In the above discussion, we focus on the sieve MLE, where L, (6) is the scaled
log-likelihood. Such a choice of L, (6) is not necessary. As long as the measurable
function I(6, y) satisfies the stated regularity conditions, all the results in this
paper apply generally to estimates 6, obtained by approximately maximizing
the empirical criterion L,(0) = (1/n)X}_, 1(,Y;) over ©,, that is, 0, satisfies (1.1).
This covers, for instance, least square and absolute deviation estimates [also
see Van de Geer (1990)]. We have not proved that the rate given in this pa-
per is optimal, although it coincides with the known optimal rate in several
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special cases of density estimation and nonparametric regression. The present
theory also leads to the classic n~1/2 rate in the parametric case, thus provid-
ing a unified way of quantifying the rates in most estimation problems with
independent observations.

Our theory also shows that, when the parameter space is too large (in our
formulation, this occurs when the metric entropy index r in Theorems 1 and 2
is greater than or equal to 2), the estimate obtained by unrestricted optimiza-
tion may not achieve the optimal rate, whereas a sieve estimate obtained by
restricted optimization over an appropriate approximating space does not suffer
this difficulty. See Example 3 for a concrete illustration of this phenomenon.

The theory developed in this paper is quite general, allowing for a general
criterion function, a metric parameter space and restricted maximization over
a general sieve. We believe that the conditions used in the formulation of the
results are quite close to the minimal ones at this level of generality. In each
special application, of course, there is always the possibility that some of the
conditions can be relaxed by exploiting the special structure of that application.
With respect to maximum likelihood estimation, a restriction on the applica-
bility of the present results is imposed by the condition that the log-likelihood
ratios are square integrable (Condition C2’). In practice, this condition is some-
times not satisfied. There are recent proposals to deal with this problem essen-
tially by transforming the MLE problem into a problem where the optimization
criterion is uniformly bounded or has exponential tails [Pfanzagl (1988), Van
de Geer (1993) and Birgé and Massart (1993)]. We have chosen to deal with this
problem by studying the lower truncated versions of the log-likelihood ratios.
One advantage of this approach is that, in addition to the convergence rate of the
MLE, it also provides uniform upper bounds of likelihood ratios outside small
neighborhoods of the true value. Although the overall strategy for establishing
the convergence rates is identical to the one presented in this paper, the success
of this approach to the MLE problem depends on a new bound on one-sided de-
viations of likelihood ratos. This more complete study of the likelihood surface
and the MLE is presented in a companion paper [Wong and Shen (1992)].

After the first draft of this paper was submitted, we received two manuscripts
on related topics [Van de Geer (1993) and Birgé and Massart (1993)]. The first
paper deals with the case of MLE under some special convexity assumptions.
The second concerns minimum contrast estimators in a setting similar to ours.
Neither paper considers sieve estimates. Inevitably, there are some partial over-
laps between our results and the results in these papers.

The outline of this paper is as follows. In Section 2, we present the main
convergence rate results. Section 3 discusses several examples as applications
of the present theory. Finally, technical proofs are provided in Section 4.

2. Main results.
2.1. Bounded criterion function. Let p(-,-)be a pseudodistance on ©, and let

E(g(Y))and Var(g(Y)) denote the expectation and variance of g(Y), respectively,
where Y is assumed to be distributed according to po(y).
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ConpiTioN Cl1. For some constants A; > 0 and o > 0, and for all small
>0,

i - 2a
{0, Oo)lznef:e €.} E(l(60,Y) — 1(6,Y)) > 2A;¢*.

ConbpiTioN C2. For some constants As > 0 and 8 > 0, and for all small
e>0,

sup Var(l(6,Y) — 1(6,Y)) < Age?l,
{p(6,60) <<, 0 €0,}

ConprTioN C3. Let
Fn = {U0,) — Umnbo,): 0 € O}
For some constants ry < % and Az > 0,
H(e,5,) < Asn®?c" for all smalle > 0,

where H(e, F,) is the L.-metric entropy of the space F,, that is, exp(H(e, F,))
is the number of e-balls in the L,-metric needed to cover the space F,.

We call the quantity (6y,y) — (6, y) the criterion difference at 0. In the case
of MLE, the criterion difference is just the log-likelihood ratio based on Y. The
above conditions then have rather natural interpretations. First, it is clear that,
in order to have convergence, the expected criterion difference should be zero
at 6 = 9y and positive otherwise. Condition C1 simply specifies the rate of in-
crease of the expected criterion difference as § moves away from 6. On the other
hand, as § — 6,, the criterion difference should approach zero. Condition C2
basically controls the rate of decay of its variance as 6 approaches 6. Finally,
Condition C3 controls the size of the space of criterion differences induced by
# € ©,, that is, it controls the effective size of the approximating space 6,. In
the case when unrestricted maximization can be used, one has ro = 0, and r
depends on the characteristics of the function class. On the other hand, if the
use of sieve approximation is necessary, then Condition C3 says that, for each
e, H(e,F,) may increase with n, but the growth rate is at most polynomial in
n, which is satisfied in most applications, Thus, in the case of sieve estimation,
the sieve approximation error p(m,0y, 6p) decreases in n and the entropy count
increases in n as n™. In Theorem 1, both quantities will enter the calculation
of the convergence rate of sieve estimate. This phenomenon is a generaliza-
tion of the familiar bias/variance trade-off in nonparametric regression and
density estimation.

THEOREM 1. Suppose Conditions C1 and C3 hold and B, satisfies (1.1) with
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1n = 0o(n™%), where

(2(1—2ro) loglogn

y — 0Ot
2 alogn’ if r =0,
2(1 — 2r) .
"'—2—+'r——, lfO <r< 2,
Y= logl
1-2r, loglogn P
2 logn ’ ifr=2
1'72"0, if r>2.

[e~%" is understood to represent log(1/¢).1 In addition, Condition C2 is also sup-
posed to hold for the case of 0* <r < 2. Then,

P8, 00) = Op (max(n ™", plnalo, 60), K*/**(muo, 00)) ),

where K(m,00,0o) = E(l(0y,Y) — U(7,60,Y)) and
(1-2ro loglogn

2a 2alogn’ ifr=0%p32a
4_1(1—_;2_;05’ if r=0% g<a,
R min_(j';’)(z 5y F0<r<z
e A
~ - ;Oiro’ if r>2.

COROLLARY 1. Suppose the stated conditions in Theorem 1 hold. Let T be
the same as in Theorem 1. Then for any real positive number k we have

. max (0(n~="*), p*(mn80, 60), K*/2(mn800, 60)), if ro =0,
Ep 8y, 60) = .
max (o(n="*), p* (400, 00), K*/2*(mn00,00)), if ro#0.

REMARK 1. Inthe case of MLE, the expected criterion difference Eq,(1(6y, Y)
—1(0,Y)) reduces to the Kullback—Leilber pseudodistance

K0, o) = Eg, log(p(60,Y)/p(6, Y)).

Hence, if we choose p(6, 6p) to be the Hellinger distance between p(6y, ) and
p(6,+), then Condition C1 holds with o = 1.
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REMARK 2. p(m,6p,600), K(m,60,6p) and ry are zero for the case of unre-
stricted maximization.

REMARK 3. If K(m,0,,6,) is small enough, it will not enter the rate calcu-
lation. In general, if we know the rates of K(m,6,6) and approximation error
p(mn6o,60) as a function of some adjustable parameters, then it would be an
easy matter to choose the parameters to give the best rate for p(6,, 6p). This is
illustrated in Example 3 (see Section 3).

REMARK 4. The extra logn factor in Theorem 1 for the case of 7 = 0* can be
removed if an extra continuity assumption is made on the criterion difference.
This is done in Theorem 2.

REMARK 5. The constants A; in Condition C1 and A, in Condition C2 will
affect the rate of convergence if they are allowed to depend on r; see also
Remark 11 (after Theorem 2).

REMARK 6. For most applications, H(e,F,) is bounded by a continuous
function of the form Asn?°ec~", where ry and r are allowed to be 0*. Of course,
a result based on the assumptions allowing the upper bound of H(e, F,) to
be of a more general form can be established by adapting the proofs of
Theorem 1 and Lemma 1. However, with the above simple form of the bound
on H(e, F,), the results are very explicit and the calculations on rates become
simple in applications.

Proor OF THEOREM 1. The approach for obtaining the convergence rate
of the estimate is to reduce the problem to finding the convergence rate for a
sequence of empirical processes which are induced by the criterion function /.
After bounding the probability that 8, is outside a small neighborhood which
shrinks to 6, at a certain rate, we consider the rate of the empirical process
only within that small neighborhood. Since the rate of this restricted empirical
process is faster than that of the unrestricted one, we may obtain a better rate
for 8,. By iterating this procedure, the stated rate is obtained. Specifically, by
Lemmas 2 and 3 applied recursively, exponential bounds can be obtalned for
P(p(8,,00) > De®) for a decreasing sequence of rates ¢®), & = . The
desired result is obtained by analyzing the limiting behavwr of the recursively
defined £*”s. The details are similar to those in the proof of Theorem 2.

2.2. Unbounded criterion function. Before we extend the results to the case
of an unbounded criterion function, we first present a brief discussion on Lg-
metric entropy with bracketing.

The e-metric entropy of a space with respect to a metric is defined as the
logarithm of the minimum number of -balls in that metric needed to cover the
space. It can be regarded as a measure of the size of the space. If the metric
used is the Ly-metric, we have the Ly-metric entropy. To define the Ly-metric
entropy with bracketing, let ¥ = {f(0,y): 6 € ©}, where f are measurable
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functions mapping © x Y to R, and E2f(¢,Y) is finite for all # € ©. Denote by
|l - llo the Ly-norm on ¥, that is, for any f(s,Y),f(t,Y) € 5,

/
I£6, V)~ £t Vol = (E(fts, 1)~ f, 1))

where the expectation is evaluated under the distribution of Y. For any given
€ > 0, if there exists S(e, k) = {f{, tye.o, f}ﬁ,f};‘} C L with max; <, ||fJ’-“ —f}llg <e
such that for any f € F there exists a j with ﬁ < f <[} ae, then S(e,k) is
called a bracketing e-covering of F with respect to || - ||2. Let

N3(e, F) = min{k: S(e, k) is a bracketing e-covering of F}.
Then
HB(, 5)=log N3 (e, F)

is called the bracketing Lo-metric entropy of F.

We are now ready to extend the result in Section 2.1 to the case of an un-
bounded criterion function using an iterative truncation argument and a one-
sided inequality on empirical process (see Theorem 3, in Section 4) based on
bracketing Li-metric entropy. In this more general case, the resulting rate is
identical to that in the bounded case, provided some continuity conditions and
moment conditions are satisfied. In addition, we formulate the metric entropy
condition locally so that the usual optimal rate of convergence in the finite-
dimensional case can be established. First, we need to modify some of the reg-
ularity conditions.

ConbpiTioN C2’. For some constants Ag > 0 and 8 > 0, and for all small
e>0,

sup  E(U6p,Y) - 16,Y))* < Age?P,
{0(0,60)<e,6 €6,}

and

sup E(I(6o,Y) - 1(6,Y))* < Agn?,
{6€6,}

with 0 < < min(k, (1 — 2r¢)/(2 — r)), where r, ry and « are specified in Condi-
tions C3’ and C4'.

ConpITION C3'. Let
Tn(oay) = l(aay) - l(ﬂ'nomy)

and

TGS, y) = T,.(o,-yn( sup Th6,y) < b),
{08, m,600) < 6,6 € 6.}
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and suppose, for some constants 0 < rp < %, r;>0,i=1,2,r>0*and A3 > 0,

e -r
B3 (e, 7%:9) < Agn™ ma"((m) '2)’

where HB (e, ,(,b’ %)) is the bracketing Ly-metric entropy of
G‘,Eb,s) = {T,Eb’s)w,y)i p(oa 7|'n00) S 61 0e en}-
As before, if r = 0%, the symbol x " stands for log(1/x).

ConpITION C4’/. For some s > 0, there exist g(6) = O(min(é°, 1)) for small
§ > 0, and b, = O(n2*), where & is a nonnegative number with

( s(1—2rp)

Bk il if r = OF

<2(4a-—2ﬂ)’ if r = 0%,
8(1 — 27‘0) .
) S 2(@a—pE -’ fo<r<2,
1-2ro+4l loglogn
< — =
- 4 2logn ’ ifr=2
< L‘.Mﬂ, if r>2,
\ 2r
such that
]P’( sup T.060,Y) > g(6)b,,) < Aya, for some constant A4 > 0,
{p8,7n80) < 6,0 € O}

where a, = o(1/(nloglogn)) if 8 < a, and @, = o(1/n) if B > a.

These conditions are natural generalizations of those in Section 2.1. Con-
dition C2' controls the Ly-distance between (6, y) and I(6y,y), especially when
p(6, 6o) goes to zero. Condition C3’ controls the bracketing La-metric entropy of
the class 3‘,(,1’"”, which is obtained from the local differences {I(6,y) — l(m260,y):
p(0,m,00) < 6, 0 € ©,} by upper truncation at b. It is necessary to exploit the
dependency of the metric entropy on 4 to recover the n~1/2 optimal convergence
rate in the finite-dimensional case; see Remark 9. We note that a similar local
entropy condition was used by Van de Geer (1990) in the study of regression
problems. Condition C4’ complements Condition C3’ by providing control over
the upper tail of (local) suprema of rescaled criterion differences, that is, it con-
trols the upper tail of G(6) = sup{g(6)~1((8,Y) — l(m,00, Y)): p(8, mn00) < 6, 6 €
©,}. Note that this usually only amounts to a finite moment condition on G(6);
see Remark 7. For comparison, previous related works on regression problems
[e.g., Stone (1982) and Van de Geer (1990)] typically required the existence of
the moment generating function of G(6).
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THEOREM 2. Suppose Conditions C1’, C3’' and C4’ hold and b, satisfies (1.1)
with n, = o(n™*), where

r2(1—2r0)’ ifr=0+,
2
2(1 —27‘0) .
oy ifo<r<2,
w=
1-2ry loglogn ..
2 logn ’ ifr=2,
1 "rzr", if r>2.

Furthermore, it is also supposed that Condition C2' holds for the cases of 0% <
r < 2. Then,

p(arn 00) = OP( max(n", p(ﬂ-n007 00)7K1/2a(77n007 00))) )

where K(m,09,00) = E(0y,Y) — U(mn6p,Y)), and

( 1—2r B log[max((ﬂ - r2)logn,2)] im0

4o — 2min(a, B) 2logn ’ ’
ro 4a—m1n_(-a2,,3)(2—r)’ FO<r<2

s re

\1;;"0, ifr>2.

REMARK 7. Theorem 2 is obtained using an one-sided truncation argument.
Thus, the truncation constant b, in Condition C4’ can be determined by some
one-sided local moment conditions. For instance, if« = 3 =s=1andr; =0,
then Condition C4’ is satisfied if the (2 + r)th moment of local supermum of
the (rescaled) criterion difference exists; see Example 3. In such a case, the
truncation constants b,, in the proof do not affect the final rate calculation and it
is typically possible to obtain the usual (optimal) rate by Theorem 2. If enough
moments do not exist, then s in Condition C4’' may not satisfy the required
inequality. In such cases, one can still obtain a rate which is suboptimal and
depends on . Such a result is available, but will not be presented here.

REMARK 8. For most infinite-dimensional sieves, we can choose ry =r; =0
in Condition C3’.
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REMARK 9. For finite-dimensional problems we typicallyhavea=8=1, r =
0*, ro=0andry = 8. Then n=" = (1/2Y/2)n~1/2,

REMARK 10. If K(,6p,00) = O(n=227), where 7 is given in Theorem 2, then
K(7,80,6y) will not enter the rate calculation.

REMARK 11. If A; in Condition C1 and A, in Condition C2' are made to
depend on n, the convergence rate will be affected. It is easy to modify the proof
to obtain the resulting rate in such a case, for example, if A; = cin~% and
Ay = con?2 for some positive constants c; and b;, i = 1,2, then the results of
Theorem 2 continue to hold if ry is replaced by rq + b1 + by max((2 — r), 0)/4 for
r > 0* and by ro + by + by /2 for r = 0*.

3. Examples.

ExAMPLE 1 (Robust nonparametric regression). Let
Y,;=0(X,;)+€i, i=1,...,n,

where X; and ¢; are independent, and ¢; are independent and identically dis-
tributed. :
We want to estimate the unknown regression function 6 € ©, where

o= {9 € CP[0, 1: |6, < Ljy = 0,1,...,p, |02 = 6F)| < Lp.1fos —x2|m},

where p + m > % and Lj,j = 0,...,p + 1, are fixed constants. Our criterion
function /(6,y) is —|0 — y|. The maximization will be done over the whole ©.
This can be thought of as a nonparametric M-estimation problem, and it would
correspond to maximum likelihood estimation if the ¢;’s are double exponential
errors. The empirical criterion function based on the observations is (—1/n)
¥?_4| Y; — 6(X;)|, and we will obtain the convergence rate of 5,, to 0y in terms of
the distance p(61, 02) = [E(1(X) — 05(X))?1V/2,

Let F(:) be the c.d.f. of ¢;; it is assumed that F(0) = % To apply Theorem 1, we
verify Conditions C1-C3. To do this, we will make use of the following identities:

(60—, if y > max(, 6p),
_J o=, if y < min(8, 6),
Iy = 60| +ly = 6@ = { 9, _ (5, +0), if 0<y<bp,
~[2y B0 +0)], iflo<y<o.

We will examine three cases.
Case 1. Suppose F(.) is differentiable and strictly increasing in a neighbor-
hood around zero. It follows after some calculations that

]E[(—IY — 66X)]) |X] + ]E[(|Y - e(X)|)|X] =2 /ow—o"' (16 = 6ol — y) dF(y)

|6 — 60|
_2 / (F(y) — F(0)) dy,
0
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where 0 and 6, are evaluated at X, and F(-) is the cumulative distribution
function of ¢;. Since F(y) is differentiable and strictly increasing near the origin,
there exists § > 0 such that, for any 0 < y < §, we have F(y) — F(0) > %f(O)y.
Thus,

|6 — 6ol
/0 (F(y) - F(0)) dy > k(8 — 6,)?,

where £ = min([£(0)/(4L2)162,£(0)/4). Hence,

elBh 3 E(160,Y) - 1(6,Y)) = {p(eol’lél)fz 4 (-E|Y - 6pX)| + E|Y — 6(X)|)

. 2
2 o o.l,fgze} 2E [0(X) — 6o(X)]

= 2ke2.
Hence, Condition C1 holds with « = 1. Furthermore, since
280, Y) — 1(8,Y))] < |6p(X) — 6(X),

it follows that E(1(8y, Y)—1(8, Y))? < E(6y(X)—0(X))? and Condition C2 holds with
B = 1. Let F = {l(8y,y) — 1(8,y):0 € ©}. Then H(e,F) < H(e,0) < Age~1/(p+m)
for some constant Az > 0, where the metric entropy is calculated using the
supremum norm of © [Kolmogorov and Tikhomirov (1959)]. Thus, Condition
C3 is satisfied with rp = 0 and r = 1/(p + m). Also. p(m,0¢,00) = K(m,00,600)
because we are using unrestricted maximizations. Finally, applying Theorem
1, we obtain the convergence rate

~ 1/2
[]E(G,,(X) B 90(X))2] 2 _ Op(n~@+m/p+m+1) gy s L

which agrees with the optimal rate given in Stone (1982) when p > 1. However,
Stone’s estimate does not require the knowledge of L;, j=0,...,p + 1.

Case 2. Suppose the density of ¢; is f(y) = c(Lo)/|y|", if |y| < 2Ly, and
f(») = 0, otherwise, where 0 < v < 1 and c(Ly) is some normalizing constant.
Note that there is a singularity at zero. In this case, we have

[6—60]
E[(-1¥ - 600 ] + E[(Y - 000 [x] = [* " (6 - 60l - )y
2¢(Ly)

= 20 g g2,
G O L
Take p*(0y,0) = [E|6 — 8|2~ 71/@=7), then
inf _E(l(6o,Y) — I8, 7)) > A2,
{p*(60,6) > €}
sup Var(l(6,Y)-106,Y)) < sup [E(b —06)
{p*(85,0) < €} {p*(60,0) < €}

<B sup (p*(00,0))2_7
{p*(60,0)< €}

< B2,
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for some constants A > 0 and B > 0. Hence, Conditions C1 and C2 hold with
a = 8 = (2 — v)/2. The resulting rate is

P*(éna 00) = O]P (n—2(p+m)/[(2 - Y)2+(p+m)+ 1)]) ,

which is faster than the standard rate. Note also that p*(-,-) dominates the L;-
metric. This result, to our knowledge, does not follow from any previous general
theory on the properties of least absolute deviation estimation such as Van de
Geer (1990).

Case 3. Suppose that the bounds L;, j = 0,...,p + 1, on the corresponding
derivatives are unknown. A sieve similar to the one in Case 3 of Example 3 can
be constructed. Let r, = nXP+m)/2(p+m)+1] and ], — oo arbitrarily slowly. It
can be checked that Condition C1 is satisfied with A; = ¢;/;2. Using Remark 11
after Theorem 2, we obtain that the convergence rate of the sieve estimate
Eo(8,, — 00)? is Op(n— (P +m)/2(p+m)+1112) Next, we restrict our consideration to a
neighborhood of 6, determined by the above rate. Within this neighborhood, it
can be verified that A; can be taken to be independent of n. Applying Theorem 2
with the sieve {# € ©,: E(0 —6,)? < €,}, where ¢, is the rate obtained above, we
have that the convergence rate of the sieve estimate is Op(n= (P +m/[2(p+m)+1])

ExAMPLE 2 (Mixture model). SupposeYi,...,Y, are independent variables
distributed according to

U
p(F.y) = /0 8(y,2)dF (@),

where F(z) is a distribution function on [0, U]. We discuss two cases.
Case 1. g(y,z2) takes the form of 2yz exp(—y?2)/C,, where

Cz=/2yzexp(—y22)dy, 0<y<oocand0<z<U,

that is, g(y,2) is the density of an exponential-type density with parameter
2. Suppose F(2) has a density 6(z). Then p(6,y) = fOUg( y,2)0(z)dz. We assume
0 € ©, where

0= {0 € C[0,Ul: |[6],, <L;,j=0,...,p, s a density},

up —
where L;, j = 0,...,p are known constants. We consider maximum likelihood
estimation, where the maximization is over the whole parameter space.

It is easy to show that the model is identifiable. We now verify Conditions C1-
C3, using the Hellinger distance p(6;,605) = ||p'/2(61,-) — p/2(62, -)||2. Let r(y) be
the square root of the likelihood ratio, or () = pY/%(,y)/p'/%(6y,7). Then

O0<L<r(y)<M< o,

for some constants L > 0 and M > 0.
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Applying the inequality x/(1 +x) < log(1 + x) < x, for x > —1, we know Con-
dition C1 is true with a = 1. Furthermore, after some manipulations, we have
Var (log p(6,Y) — log p(6o, Y))
< E(log p(68,Y) — log p(6, 1))

2
= 2]E(log(1 +(r(Y) - 1)))
< BE(KY) - 1)?
= B||pY/2(6,Y) — p¥/2(60, V)|,
for some constant B > 0. Thus, Condition C2 holds with 8 = 1.
To calculate the metric entropy function, we have to bound the differenced
log-likelihood function. Let Bs(s) be the same as defined in Ossiander [(1987),

Lemma 1]. Notice that by the uniform boundedness of r(y) and by Holder’s
inequality, after some calculations, we have

Esup(It,y) — Us,))*
Bs(s)

< 4E sup (log(l +(r(y) - 1)))2

Bs(s)

< EEsup (pl/z(S,y) —1191/2(1fa.’)’))2
Bs(s)

2
< k/sup[/g(y,z)(s(z)— t(z)) dz] [( p(6o,7) )Zde

Bs(s) pY2(s,y) +pl/2(t,y)

<w [ ( / g(y,z1>g<y,z2>dy) dz1 dz

< k&%,
for some constant £ > 0, where £ may be different in each step. Hence,
H(e,5) <H(£,0,| - llsup) < Ase™'/?,

for some constant A3 > 0 [Kolmogorov and Tikhomirov (1959)]. Then Condition
C3 holds with ro = 0 and r = 1/p. By taking =,y = 6y, following Theorem 1,
we have p(0,,, 8p) = Op(n=P/@+1), which is believed to be optimal in this case.
It should be remarked that because of the nature of this problem, the metric
induced by the Hellinger distance p(-, -) is rather weak.

Case 2. Instead of estimating the density as in Case 1, we estimate the
distribution function F'(z) below. It is now assumed that g,(y, z) has derivative
g.(y,2) with resect to 2z, and that [(g.(y,2))?dydz is finite. Also assume that
the log-likelihood ratio r(y) is bounded above and below. Integrating by parts,
we have

U
pF,y) = —/ g.(y,2)F(z)dz — g(y, U).
0
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If p(-, ) is used again, then Conditions C1 and C2 hold with o = 8 = 1.
The following bound on the metric entropy of F can be obtained using results
from Birman and Solomjak (1967): Hg(e, F) < C/e, for some constant C > 0.

Hence, by Theorem 2, we obtain p(8,, 6,) = Op(n=1/3).

ExAMPLE 3 (Nonparametric regression). Let
Y; = 0X;) + ¢, i=1,...,n.

Our parameter of interest is the unknown function # € ©. Assume that X;
and ¢; are independent, ¢; are i.i.d. error, E¢; = 0 and ]Eeiz = o2, Furthermore,
we assume that the X’s are distributed uniformly on [0, 1]. We will discuss
three cases.

Case 1.

0= {9 € CPl0,11: |6, < 00,7 =0,....p, |0Pw) — 6P (xz)| < Lixy —x2|’"},

where p is an integer, p + m > 0 and L is an unknown constant. We consider
the use of the least square criterion, that is, 1(6,y) = —(y — 6)2.

It is known that in this case the least square estimate is not consistent due
to the fact that the parameter space is not compact. We now discuss an estima-
tion procedure based on appropriate approximations to the original parameter
space. We will use two slightly different sieves depending on the values of p + m.

() Ifp+m > }, we use the sieve

0, = { 0€0O:0(x)=ay + Zn: (oj cos(2mjx) + B; sin(2mjx)),

i=1

I'n
ade ) Piat+ i) < B,

j=1

where d is a constant arbitrarily close to p + m such thatp +m > d > % Itis
assumed that Ele;|” < oo for large enough v > 0. The choices of I, , and v will
be given later.

Let p(61,05) = (E(6; — 62)*)1/2. The approximation property of this sieve is
well known, for example, from Lorentz [(1966), Theorem 8 and 9, page 62)]. For
any 6 € ©, there exists m,0 € ©, such that

1
p(mr6,0) < sup|m,f(x) — 0(x)| < O(;ﬁ,,—,).
X n

Notice that

Z(BO’Y) - l(O,Y) = (90 — 0)(Y _ 00; 0>’
EBo ~ 67

E(I60, V) - 16, Y)) = ==,
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2
E(I(60, Y) - 1(6,Y))* = ]E[(go _o) (Y_ 0024-0)]

= o?E( — 0)? + %E(oo -0t
Then Condition C1 holds with o = 1. We will employ an interpolation inequality

(2d—1)/(2d) d)||1/2d)
16 = Gollsup < 116 — 6ol 24~ /D)6 — 60|[/ >

Such an inequality is well known; see Gabushin (1967) for the case where the d
is an integer, and see Lemma 7 for the fraction case with the Holder norm. Note
that the derivative with a fractional order can be defined in terms of Fourier
series in this case. Then

E(0 — 6p)* < sup(8 — 60)%0%(8, 6o)
< l,2,/(2d) (p(@, 00))2(1+(2d— 1)/(2d)).

Thus Condition C2’ holds with 8 = 1 and Ay = [2/®®¢22d-1/@d)_for a]] small
e > 0. Let I, = n2?, where ¢ will be determined later.

Since the differences of the logarithmic likelihoods are not uniformly
bounded, we employ Theorem 2. First we calculate the bracketing L,-metric en-
tropy needed in Condition C3'. Let B.(s) = {t € Op: ||t — s||sup < €, p(t, mabp) < 6}.
Then

Esup(i(s,Y) — I(¢,Y))” = Esup(s — ?(2Y — (s + 1))’
Be(s) B(s)

< O(?).

Let fr’,(,b’s) be the same as defined in Theorem 2, and let B(§) = {t € ©,, p(¢, m,6p) <
6}. By Lemma 1 of Ossiander (1987),

HE (e,5>") < H(e,B(), | - llsup)-

Note that for ¢ = ag + £} ,(q; cos(2mjx) + f; sin(@mjx)), [[¢]lsup < |oro| + B[ (|| +
|3;]). By Lemmas 5 and 6 (Section 4), we have H(e, B(6), p) < Asrylog(min(s,
I, n=@=1/2)/¢) for some constant A; > 0. We first discuss the case when p +
m > (1 +5)/4 ~ 0.809. In this case, we can choose ¢ and d such that 2¢ <
(d —1/2) — (p +m)/[2(p + m) + 1]. Take r, = n?". Then

HE(e,39%) < H(e, B(©), p)

< Asn?" log g,

for small 0 < £ < 6 and some constant Az > 0. Hence Condition C3’ holds
with rg = 7, r = 0*, r; = 0 and r; = 1. Next, we verify Condition C4’' with
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by = 815/ *1 and g(6) = 264 - /@D,

P( sup 10,Y) — Um,00,Y) > bn,s@d—l)/(zd))
{p(6,m200) < 6, 6 € ©,}

< ]P’( sup (ma0 — 6)(2Y — (0 + mabp)) > b, 624~ 1)/(2,1))
{p(8,7,60) < 6, 6 €6,}

< P(|2Y — 26o| > 31, — 21,)

SP(IY—%I > ’5)

c]Elell'Y
L’

IN

for some constant ¢ > 0. Hence Condition C4’ holds if v is large enough, for
example, v > max(2, 1/2¢). Finally, note that

1
Kb, 00) = E(16o, ¥) ~ U, V) = Tl — mab)? = 0(;261:7))-
n

It now follows from Remark 11 that the convergence rate of the sieve estimate is

max(n—[l —2(r+ ¢)]/2’ n—2‘r(p+m)) .

Thus, by choosing 7 to optimize this rate, we get

;e 1-2¢)
T2Q2(p+m)+1)

Then the resulting rate for the sieve estimate is Op(e,) with &, = n=(1 —2¢Xp+m)/
(2(p+m)+11 Now choose I, to satisfy 12/ @22~ D/ _ (1) or

ln < min(n(zd —1(p+m)/[2d+1)p+m)+ 1]’ n[(2d — 1)22(p +m) +1)) — 2(p +m)]/[2(2(p + m) + 1)]) .

Consider the sieve {§ € ©,: p(6,6p) < e,}. It can be verified that, with this
sieve, Ay in Condition C2’ can be chosen to be independent of n. Applying The-
orem 2 again, we obtain that the convergence rate of the sieve estimate is
Op(n—(P+m)/2p+m)+1]) Tn this second application of the theorem, the moment
condition needed is determined by v > 1/2¢. Next consider the case when
1/2 < p +m < (1++/5)/4. In this case, we obtain a slightly inferior bound on
the metric entropy, H5 (e, &’,‘,b’”) < A3n?" log(n/e). The resulting rate for sieve
estimate is
OP (n—(p +m)/[2(p+m)+ ll(logn)(p +m)/[2(p +m) + 1])

with 7 = (1 +0%)/[2(2(p + m) + 1)].
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(ii) Supposep =0and m < % Then the above interpolation inequality with
the L;-norm does not apply. We need to construct a different sieve. Let

o, = {«9 €0: 0(x)=ap+ Z (o cos(2mjx) + B sin(2mjx)), sup |0(d)| < l,,},
Jj=1

where d is a constant arbitrarily close to m such that m > d > 0. The optimiza-
tion for this sieve is more complicated, compared with the previous one. The
convergence rate of this sieve estimate is

Op (n——m/(2m + 1)(10g n)m/(2m + l)) .

by an argument similar to that in Case 1 with r, = n?™ = p2m/@m+D |~
p2dm/(2d+D@m+D+1] p  1+1/@A+D L p 20 ry = 1andy > [(2d+2)(2m+
1) + 11/(2dm). In checking the conditions, we need to employ the interpolation
inequality (|6 —6||sup < |16 —60]12/ % * V)|6 — 6y |52 * P (Lemma 7, in Section 4).

Case 2. The parameter space © is as in Case 1 except that the uniform
bounds on ||§“||syp, for j = O,...,p, and the Lipschitz constant L are known.
Assume also that E|e|” < 0o, wherey > m+pifm+p > 3,v>2ifm+p=1
andify>m+pif m+p < % We use the same criterion function and distance
measuring discrepancy between two functions as in Case 1. The optimization is
performed over the whole parameter space. Similarly, Condition C1 holds with
«a = 1. Applying the interpolation inequality as in Case 1,

sup|0 _ 00' <ec [p(a, 00)] 2(m +p)/[2(m +p) + 1]’
for some constant ¢ > 0, we have Condition C2’ with 3 = 1 and / = 0. Following
a result of Kolmogorov and Tikhomirov (1959), Condition C3’ holds with r¢ =
ri =rg = 0andr = 1/(p + m). Similar to Case 1, we know that if b, = n”
and s = 1 — 2(m +p)/[2(m + p) + 1], then Condition C4’ holds. The convergence
rate of the regression estimate [E(8,(X) — 5(X))21V/2 is Op(n—(P+m)/12p +m)+11) if
p+m > 1, Op(n=4(logn)/?)ifp+m = } and Op(n=P*™/2)if p+ m < 1.

Case 3. The above sieve is based on the trigonometric basis functions, which
are orthogonal. Next, consider B-spline approximation in which the sieve has
some local properties in the sense that each basis function has a support only
in a certain range of the domain. Let

rm+p+1
@n={0692 Z aiqﬂi,i lmax +1|a,~|§l,,},

=1,...,rn +
i=1 n+P

where (41, ..., ¢, +(p+1) are B-splines of order p + 1 on [a, b] with ¢; supported
on [x;,%;+p+2], and (@ = x1,..., %, +(p+1) = b) is the uniform partition of [, b]
supporting the basis functions; see Schumaker [(1981), page 224] for details.
The approximation error of this sieve is O(r; P *™), which follows from Corollary
6.21 of Schumaker (1981). Notice that, for § € ©,, 0|2 = [¢/(r» +p + 1)?1E?_, a?
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for some constant ¢ > 0, and ||0||sup < cMax;-1,.. r,+p+1|a;| for some constant
¢ > 0. Applying a technique similar to that in Lemma 5 with two modifica-
tions: (1) replace the L;-ball by the cube in Ry *?*V and (2) replace the Lo-ball
by the ball induced by || - ||2, we obtain HB(e, 3",(,1”6)) < H(g,B(6), ||  ||sup) < c(rn +
p+1)log(6/¢) for 0 < £ < 6 and some positive constant c. After some calculations,
we get that the convergence rate of sieve estimate is Op(n (P +™/[2p+m)+1])

It can be seen that different basis functions may yield basically the same
optimal rate. It is interesting to note that, for the case m +p < %, the estimate
based on unrestricted optimization in Case 2 does not achieve the best possible
rate of convergence, whereas the sieve estimates in Cases 1 and 3 are able to
do so, although the rate in Case 1 has a logn factor which is probably due to
an inexact metric entropy calculation. The recent paper by Birgé and Massart
(1993) also made the observation that the estimate based on unrestricted op-
timization cannot lead to the optimal rate of convergence when the parameter
space is too large.

4. Technical proofs. Before giving the lemmas needed in the proof of The-
orem 1, we state a lemma which extends Corollary 2.1 in Alexander (1984) by
allowing the entropy of the underlying function class to depend on n.

Let F, be a function class which depends on n. Let H(e, F,) be the Lo.-
metric entropy of J,, and let I(s/4, ¢,) = fst}’4(H(e, F,)Y2de. Furthermore, ¢,
is defined as a solution of H(¢y, F,) = (¢/4)y1(M,v,F,), where Yy1(M,v,F,) =
M?/[2v(1 + M/3n/?v)] and v > supg, Var(f(Y)). Let s = eM/8n!/2 and v,(f) =

n~12%0  (F(Y;) — Bf(Y)).
LEmma 1. If
H(e,5,) < Agn?°e™,

for € € (0,al, where a is a small positive number, and there exist some positive

constants c;(r,ro,€,A), i=1,...,4, such that
max(cn ~2+8r0)/ 2+ D) oo proy 2 —1/4) for0<r<2,
czn’ logn, forr =2,
(4.1) M > { ¢4n%o/rpr=2/@n for r > 2,

1/2
max (cg,n(‘l"“"“/2 logn,cgn’v'/? (log%> ), for r = 0*.

Then

(4.2) P* ( sup v,(f) > M) < 5exp(—(1 — e (M,v,5,)).
Fn

Proor. This follows, after some calculations, from Theorem 2.1 in
Alexander (1984). O
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REMARK 12. It is useful to note that ;(-) satisfies the following inequality:

M?/4v, if M < 3n1/2p,

>
Vi, v, 5 2 {3Mn1/2/4, if M > 3nV/2,

which will be used in the proof below.

LemMA 2. Suppose Conditions C1 and C2 hold. Assume also that Condi-
tion C3 holds if 0* < r < 2. Let e = n—minle1,0~2r0)/lar+2D  yyhere oy =
(1 — 2r¢)/(40). Then there exists an My > 0 such that, for any D > 0, we have

P(p(Br,80) > DeP’) < 5 exp(—(1 — £) max(D*®, D?*)M;n%0).

We will omit the proof of Lemma 2 because this is similar to (but simpler
than) that of Lemma 3.

LEMMA 3. Suppose Conditions C1 and C2 hold. Assume also that Condition
C3 holds if 0* <r < 2. If at Step k — 1 we have a rate

egz -D_praer s max(n‘(l = 2r0)/lalr+ D) 5 00 g0y, KY/2% (7,6, 00)),
so that
P(p(Bn, 60) 2 Detk =) < 5[exp(~(1 - &) max(D*, D**)Myn*")
+(k-1) exp(—Ln6°)],

where

5o = min(r+ drg Br(1 —2ry) +r0)

r+2° 4o
and

L = (1 - e) min(M,D**, MsD**~F@="/2),
Then at Step k, we can find an improved rate
e® = max(n~%,n~1~ 2r0)/latr+ 2 e g0 60), KY/2%(r, 0o, 8)),
where oy, = (1 — 2ry)/(4a) + a_18(2 — r)/(4), so that

P(p(Bh, 80) 2 De) < 5[exp(~(1 — ) max(D**, D*)M1n*°) + k exp(~LE)]-

Proor. Without loss of generality, we assume D > 1 and we only prove the
case of 4o > B(2 —r)/2. Let BY = {De® < p(8,,00) < D=V} fori = 2,...,k.
Then

P(p(Bn, 60) > De®) < P(p(Bn,80) > De* ~ V) + P(BP).
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To prove Lemma 3, we only need to tackle P(B®).
By Conditions C1 and C3,

{p(8,60) > De, 6 € ©,}

> 241 (De®)™ —E[i(6,Y) — Umnbo, V)] = n
> Ay (De)™.
For the last inequality, we need
(4.3) A1 (De®)® — Aq(1+0(1))K(mabo,60) > 0.
Thus,

P(@Y)

IN

P ( sup Ln(0) = Lyp(m,60) 2 —n,,>
{De® < p(6,00) <D~ ?, 6 € ©,}

IN

P sup . nl/?
{De® < p(8,00) <De ~ P, 6 € ©,}

X (Ln(o) — Ly(m,00) —E [Ln(o) - Ln(ﬂneo)]) > A-lnl/2 (ngz))za } .

Let

Uk = sup Var (I(mafo, Y) - 16,Y)).
{De® < p(6,60) < De* P, 6 € ©,}

By Condition C2, v;, < 4A2(De% ~ V)28, We choose

(k)

g —min((1 — 2rg)/(4a) + o — 182 — r)/(4a),(1 — 2ro)/[a(r + 2)])’
n

=n
so as to satisfy (4.3) and the following constraint:

(4.4) nl/? (Deff))za > max(cln'(2 —r—8ro)/12r+2)] o, (Dsf,' 1)2ﬁ(2 - ")/4nr0) ’

for some constants ¢; > 0 and ¢z > 0. Then, by Lemma 1,
P(Bge)) < exp <_ 'l/)l(Alnl/z (Degz)) 20) Uk, gn)) .

The behavior of ¥;(-) can be analyzed according to Remark 12.
() If (De®22A; > 12(De* ~ V)28, then

o 3A o
v (Arn? (De)™® 04, F) > “F2n(DelP)?

> M2D2ann-2(l —2r9)/(r+2)
> M2D2an(r+4ro)/(r+ 2),
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for some constant My > 0.
(i) If (De®)22A; < 12(De*~ V)28, then

2

1/2 (1) -(k)) 22

1/2 () () 2 (Aln " (Der?) )
¥1 (A2 (D)™, 04, 5, ) 2 5
4(4A5)(De% D)
> MyD— P22 (- Dy282=n/2__17
=73 n (e(k _ 1))25'
n

> MgD4e— 52 —n/2 (821)) —Brro
> M3D4a - B2 - r)/2nﬂr(l - 2ro)/(4a)+r0,

for some M3 > 0. Hence,
5exp(—(1 - €)M2D2°‘n(”4ro)/(r+2))’

; (k)) 2 (k—1)\268
PEY) < if (De®)™A; > 12(De%—1)™,
n ) = 5exp(_(1_8)M3D4a—ﬁ(2—r)/2nﬂr(l—2ro)/(4a)+ro)’

if (De®)™A; < 12(De ~ )%,
Take

i r+4ry Br(l —2rg)
60_m1n( R 1o +ry

and

L = (1 — &) min(MyD?*, MyD*>— @ -n/2)
Then for the ¢# chosen above we have

lP’(Bflk)) < 5exp(—LY),

and

_1-2rg B2 —r)

Ok 4o +or-1 4o

This completes the proof. O

ProoF oF COROLLARY 1. Lete, =n~", and notice that Theorem 1 can then
be applied to bound

Epk(o,;, 60) _

n

/ P(p(Bn,80) > D¥*e,) dD.

The result follows after some calculations. O
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THEOREM 3 (One-sided large-deviation inequality for empirical processes).
Let 7 be a class of functions bounded above by T, that is, f < T for f € F, and
Ef(Y) = 0. Let v,(f) = n~Y252_,(f(Y;)—Ef(Y;)) and v > sups Var(f). For M > 0
and € € (0,1), let

2
vaelMv. )= oy I?IIT/3n1/2]
and s = eM /8n'/% Suppose
4.5) HE %, %) < Sya(M,0,9)
and
(4.6) M<en o, oV<T,
and, if s < v1/2,
@ I(i—,vl/2> = / /4/ (EHBw, )" du < 1‘42513;/2.
Then
(4.8) ]P’*(sgpu,,(f) ZM) < 8exp(—(1— epe(M,v,9)).

ProoF. For the case of s < v1/2, we use a one-sided version of Bernstein’s
inequality and employ a chaining argument similar to those of Dudley (1978),
Pollard (1982), Ossiander (1987) and Alexander (1984); also see Pollard (1989).

Since F has finite bracketing Lo-metric entropy, for any 6o > 61 > --- > 6y >
0, there exist ¥, j < N, with |F}| = N23(6j, F), such that foreach f € Fone can find
fH( If:), fU(f) € Ly N F; such that fE(f) < f < f/(f) ae. and |7 () - HPllz < 6.

et

up(f) = 5122 fP(f) and L(f)= max FEP,

then (), us(f), k =1,...,N, is a nested sequence of bracketing approxima-
tion in Lg. For simplicity, we will only write /;, and u;, making their dependency
on f implicit.

Since sups f < T a.e., we may assume that

supmax(ug,lp) <T a.e.
F

Furthermore, I <f < uj and 0 < ug.1 —le+1 < ug — I and [E(u — L)21V/2 <
[E(fU — fE)?1Y/2 < &, fork =0,...,N.
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Let {ay,...,an} be a sequence of strictly decreasing numbers to be chosen
later. Define '

By = {(uo — o) > a1},
Bk = {(uk -—lk) > a1 and (Uj—lj) <GQj+1 for j= 1,...,k - 1},

fork =1,....N -1, and By = (UN‘IB,,)C Note that {B;, & = 0,...,N} is

a sample partition, that is, 1 = 2N=OIB,¢, where Iz stands for the 1nd1cator
function of the set B. Hence, we have

f=uo+ Z(ukIB;, uolp,) + (f zukIB,,>

k 0
SUo+ Z Z(uj —uj-Ip, + Z(f up)lp,
1] 1
=up+ Z(uj Uj— 1)IUk>,Bk + Z(f u)lp,.
Jj=1

Let {m,...,nn} be a sequence of positive numbers satisfying
N

(4.9) Sy

and let

Pl = I.'}'QI supIP(V,,(uo) > (1 - %)M),

N j-1

P, = Z H |5 H |F7 sup]P’((u,,(uJ uj— l)Iu,,>,B,,) > 77])
j=11=0 1=0
N-1

P3 = Z P* (sup(u,,(f uplp) > 77,+1)

Jj=0

M
]P4 = IP* (Sl;,p (Vn(f - UN)IBN) > % + 77N) .
Then

IP*(sup vn(f) >M> < P; + Py +P3 +Py.
F

We proceed to bound Py, ..., P, respectively. For this purpose, we choose o
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forj=0,...,N and 7,a;forj=1,...,N to satisfy (4.9). Set

60 = (Hg (§¢2(M’v’3')a3')) )

Ojv1= maX(s, sup{x < 552’4: H3(x,5) > 4H§(6,-,8")}),
N = min{j: § <s}.

Then, by (4.5), 6y < v'/2. Furthermore, set

bl

i, HE (6, 9) i 8n'/287_,
nj=4b-1| =——1] %=

forj=1....,N.
To bound P, notice that

Var(uo) < 2[|[uo — f||* + Var(f)] < 2[63 +v] < 4v.

Hence, by the one-sided version of Bernstein’s inequality [Bennett (1962)],
we have

Py < exp(HE (60, ) exp(—z,bz((l - Z)M,v,&"))

Notice thatHg(éo, J) isbounded by (¢/4)2(M, v, F); by (4.5) and 2 (1—¢/4)M, v,
F) > (1 —e/4)*ye(M, v, F), it follows from some computations that

2
P < exp(%ﬁz(M,v,fﬂ -(1-%) %(M,v,s*))
< exp(—(1 - ex(M,v,5)).
To bound Py, note that, forj=1,...,N,

Var((uj - uj—l)IUkszk) S ]E((u] - uj—l)IUk>JBk)2
< E((wj-1 —lJ—1))2
<8

Furthermore, for j = 2,...,N, we have —a; < [;_3 —uj_; <uj—uj_; <0
a.e. on Uy » jB;. Hence, by the one-sided version of Bernstein’s inequality, for
j=2,...,N,

2
’f'.
P((ty = - 0Tons ) > ) < exP(“z(a? ) +a:jq,-/3n1/2))'
2
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As for the case j = 1, we have

(w1 —uoly, 5 B, — E[(u; - lto)Iu,,ZlBk] < IE[(u1 - uo)Iu,,>lB,,]

( (1 — uo)) )1/2
bo.

IN A

Hence,

2
Ui

Furthermore, it can be checked that we have, by (4.6) and the choice of 7;,

n S 21 HE 6,9
2(82 + 6om1/3n1/2) ~ €

Similarly, by the definition of a; and 7 for j = 2,...,N, we have

J

77j2 > 3n} > 2Zzngg(5l,33
2(87_, +a;n;/3nY/2) ~ 2287, ~ € '

Then we have

2
P, < exp| 25" HE(, F) — iUt
2_eXP( Z 2 (6, %) 2(62+60771/3n1/2))

<1

2
M
+ Z exp(z Zﬂz (61, 9) (6.2_ L+ a;n,/3n1/2) )

1<j

< > 0)

xp(—2(1 — )4/ (M, v, F)).

~
]
—

MZ 'Mz

<

[y

J:

To bound P5, we compare f to the upper approximation u; on each B;, for
j=0,...,N — 1. Then we have

n

vn((f = uplg) <n 237 ((FOV) — w(Y))Ip,) + /2 supE Gy ~ L)l ).

i=1
Notice that u; — /; > a;,; on B}, hence
Ew -1 _ &

2 =75
a1 i1

P(B)) <
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and
E((u; — I)Ig) < sup|Ew; — 1,)2PB)]*? < &
sgp (uJ_J Bj)—S‘s’;p[ Uj —tj J] _a—,:
Thus,
52
(F(yy - uj(Yi>)IBj) +nt/2

Qj+1

n

supv, ((f —uIg) < n~1/2 sgp(

i=1

4
<n2 5
Qj 41

which is less than }7;, 1. Hence, P5 = 0.
To bound P4, we apply a similar argument as above:

v ((f = uIy) < n*?E(uy — Iy) < n'/?(Euy — lN)2)1/2 <n'/%6y < E-SA!
Hence, P4 = 0.
Finally,

IP*(sup v(f) > M) <Py +Py +Pg+ Py < 3exp(—(1—e)po(M,v,5)).
F

It remains to show that our choice of ;s satisfies (4.9). By (4.7) and Alexander
[(1984), Lemma 3.1], we have

N 93 N-1 12
LIRSV DD 5,( >, Hé(&,sf))
j=0 j=0 1<j+1
24 N-1
<S5 2 G(HEE,P)
etf? =
27 [ 1/2
= 51/2/ (HE (u,9) " du
M
-— 8 ’

hence (4.9) holds and the result follows.
For the case of s > v1/2, set 6, as above, 71 = eM/8 and a; = 1. Then Py =
P3 = 0;
P; < exp(HE(60,F)) — ¢2((1 — e)(M,v,5))
< exp(H5 (60, F) — (1 — e)*po(M, v, F))
< exp(—(1 — enpe(M,v,5)).
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To bound Py, notice that v/2 > s and n'/26, < eM/8. Applying a similar
argument as above, we have P, = 0. Hence,

P (sup vn(f) 2 M) < exp(—(1 — )M, v, F)).
F

This completes the proof. O

LEMMA 4. In the same setting as in Theorem 3, let T = ¥, depending on n.
Assume that (4.6) is true and T = O(n%*). Assume also that, for some Dpositive
AO? a, ro, randp?

Aon®o(n®u)", if u € (0,a),
HEw,F,) <
Agn?o, if u>a.

Then there exist some positive constants c;(r,ro,e,A,), i = 1,... .4, if

( max (cln[r —2+8(ro — pr) +4x@2 — r)l/[2(r + 2)]’

con ~Prp2=n/4) for0<r<2,
c3n™ P logn, forr=2,
(4.10) M > 4 C4n2(r° —pr)/rn(r—2)/(2r), for r>2,

max (cln[—l +4(ro + n)]/2’ cznrov1/2)

og 2\ 5 = 0%;
L X max og D 2, for r =0%;
then
M2
4.11) P* (sup () >M) < 3exp(—-(1—-s)———).
F, 10v

ProOF. Under (4.6), it is easy to verify that ¥2(M,v,F,) > M?/4v. Hence,
to check (4.5), it suffices to verify that (¢/4)M?2/4v > n2ro—Pry=r/2_ A gufficient
condition for this is that there exist appropriate constants c;, for i = 1,...,4,
such that

(con™ ~Pry2-n/4 for0 <r<2,
cgn™ " P logn, for r = 2,
M > J c4n2(ro —-pr)/rn(r—2)/(2r), for r > 2,

n-2 1/2
max| c;pl "1+ 40+ K)/2 may (log Wz—> ,211, forr=0*
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Next, we derive a sufficient condition for (4.7). Note that

I(%,vl/2

) << ZA(I)/Z(r—— 2)—1nr0—prs(2—r)/2)

1/2
\ v/

Thus, a sufficient condition for (4.7) is

MeY/?

( 2A(1)/2(2 — ) Ipro—pPry@—n/4 for r < 2,
1
A(1)/2n’°"" log . for r = 2,
2A(1)/2(r _ 2)—1nr0 —prs(2—r)/2, for r > 2,
n_zp 1/2
240n"v1/2 max <log v_1/7> ,21, for r=0"
\

¢ 2A3/2(2 — r)~lpro—pry@-n/4 for r < 2,
1
AlPpro=Priog > forr =2,

for r > 2,

n_2p 1/2
24,n™vY? max (log——) ,2], for r = 0%

607

Since (4.10) implies the above two sufficient conditions, the lemma now follows
from Theorem 3. This completes the proof. O

Proor oF THEOREM 2. We will only give the proof for the case 0 < r < 2 and
r = 0*. The proofs for other cases are similar to those in Theorem 1. The basic
idea is the same as before, namely, to improve the rate iteratively by obtain-
ing increasingly faster uniform approximation rates in a sequence of shrinking
neighborhood. In addition, we utilize an adaptive truncation argument: in each
iteration, the truncation constant is reduced as the rate is improved. This adap-
tive scheme allows us to avoid the slight loss of rate (typically a log n factor) that
would result if a fixed truncation constant were used throughout the iteration.

Let

Let

1< ®
¥ = =3 (Ta0,Y) - Th (6,Y0),

i=1
1 *n ®
1<2k>=’_1;(7*,; (6,Y) — ETY (60, Y)),

I =E(TH'0,Y) - T,0,)).

R = L,(6) — Ly(m,00) — E(L8,Y) — Umy80,Y)) = I¥ + I + I
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and
C1 = {p(0,m00) > D, 6 € ©,},...,
C) = {Dsﬂ”l) < p(6, m,00) < DeP, 9 On},

fork =2,3,...,where the superscript (k) represents the kth step in the iterative
scheme, ¢ is a sequence of rates to be derived in each step and k¥, % =
1,2,...,is a sequence of (decreasing) truncation constants to be chosen in each
step. We assume that p(6,, 6y) does not achieve max(p(, 0y, 6), K1/2%(m,,6, 60));
otherwise, the rate in Theorem 2 is obtained.

Step 1. Let

FO - {T:‘n“(o, Y): p(8, 1) > DX, 9 € en}.

By Condition C1,

inf IE(l(Tr,,Ho, Y) -6, Y)) — Mn
{p(6,7200) > DeP’, 0 €0,}

> 24; (1 +0(1) (DeP)** — E(U6o,Y) — Umnb0, Y)) = 1
> A, (D),
For the last inequality, we need
(4.12) A3 (1+0(D) (DeP)?* — A4 (1 +0(1))K(mabo,65) > 0.
Then,

P(0(8, mabo) > DelP) < P(sup(L,,(o) — Ly(mabp)) > —nn)
C,

= IP(sup nt/? (Ln(e) — L,(m,600) — E {Ln(a) - Ln(ﬂnao)]
C,

> inf n'2E(Umno,Y) — U6, Y)) ~ nn>

< ]P’(supR > An'/? (Degl>)2“> [by (4.12)]
Cy )

(1), w1, md)
<P +Py7 + Py,

where

B = ]P(supI(ll)#O),
C1

>

IP,(21) - P(sgpnl/zl(zl) > <?1>n1/2 (DE;I))M
1

b

]Pgl) = P( Supn1/21§1) > (_3_1)n1/2 (DE;I))2O‘> )
1
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We now choose {1’ and P’ to bound these probabilities. Set £ = n2*, and

(4.13) D) < pminll =200+ krir) = 5@ = P)/lalr+ 2, 11~ 2o + wr1r) — U2 = r)/4e)
Then, by Condition C4/,
]P’(ll) < n]P’( sgp T.,0,Y)> kﬁP) < Asna,.
1
Also, by Conditions C2’ and C4/,

sup |I"| = sup |ET,(, Y)I( sup T,(0,Y) > kﬁ,”)
Cl Cl Cl

< pl/2 (sup T.(0,Y) > kP ) sup (ET2(6,Y))"/*
(ot G

1
= AVl

By our definition of @, and {7, it is easy to check that P{" = 0.

To bound P{", we apply Lemma 4 with 5, = 3, T' = 2 and M = (A;/3)n'/2
x (DeP)?. Note that by Condition C8' we have HB(e, ) < Agno(n=2s"¢)~",
and by Condition C2’ we can set v = Ayn?. Keeping in mind the range for [
given in Condition C2/, it can be verified that, with "’ defined as above, (4.6)
and (4.10) are satisfied. [In fact, (4.13) gives the smallest ¥’ for which (4.10) is
still satisfied.] Hence, by Lemma 4,

2
(n1/2 (De)**A 1)
10A2n2l

PP < 3exp |1 —¢)

< 3exp(—-(1 - E)M1D4°‘n2(’o+hr1r)—rl),

for some constant M; > 0. Thus, if (4.12) is satisfied with ! as defined in
(4.13), then we have the bound

(4.14)  P(p(Bn, 1r60) > DeP) < Agna, + 3exp(—(1 — )M Dip2ro+snn —rly,
If (4.12) is not satisfied, we can define ¢ by
(4.15) Ay (DEL)*™ = 24,K(r, 00, 6o),

and the bound (4.14) is still valid. In this case, we stop the iteration. If ¢ as
defined by either (4.13) or (4.15) is larger than the sieve approximation error
om0, 00), then we also stop the iteration. R

Clearly, if the iteration stops at this step, the convergence rate for 6, is as
stated in theorem. Otherwise, we continue to the next step to bound P(De{? <
p(Bn,60) < DeD) for an appropriate choice of @ < ).
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Step k + 1. Define (g, B, ), B = 0,1,..., inductively by oy = 0 and, for
k=12,...,

Br+1= maX(n— ﬂ,o),

2
1- 2(7‘0 +,Bk+1r1r) ,6(2 -r)
Qp4+1 = 1o +ap 1o
_ 1—-2(ro + Bre1rir) — 28,412 — 1)
Ye+1 = a(r+2) .

Note that {c;} and {v;} are nondecreasing and {3} are nonincreasing.
We will iteratively derive a sequence of rates of the form

(4.16)  p(Bn,00) < OP(maX(n”"‘" ™, p(mnB0, 60), K2 (ma o, 00)))~

Clearly, Step 1 established (4.16) for 2 = 1. The iteration will be stopped
at Step £ if in (4.16) the maximum is achieved at p(m,8p, 6) or K'/2%(r,09, 6p);
otherwise, we continue the iteration to obtain a faster rate.

Thus, if the iteration does not stop at Step %, we need to verify that (4.16) is
true with o, and 4, replaced by o3, 1 and ~; . 1. To this end, set

4.17) EE+D = p28e1 and  e®+D = max(nT+1, nTMe1)
By the same arguments as in Step 1, we have that

P(Def*V < p(Bpmnbo) < De®) < PE+D 4 PF+D 4 PE+D,

where
]P(1k+l) = ]P(supI(lk”);éO),
Ck+1
P(zk+1) - ]P;(supnl/21(2k+1) > ﬂn1/2(D€ge+1))2a),
CIH»I 3
P+D ]P’(supnl/ngk”) > ﬂnl/z(psgeu))za),
Cri1 3
and that

PV < Ayna, and sup|I§*Y| < Ai/ 2qL/2 (Dsﬁlk))ﬂ .

k+1

Since as/2(De®)P < o(1)(De®+ D)2, we have PE+D = 0. To bound P§*P, we
apply Lemma 4, with

k +
F, = FE+D - {T",;‘n "(0,9): De#*P < p(6, ma60) < D, 9 € 0, },

T =k%*V and M = (A,/3)nY/%(De{f * V2>, Then, by Condition C2’, we can take
U =g, 1 = 442(DeP)?8, By Condition C8/, we have

Hg (E, Tr(zk + 1)) < A3n2’°(n_ﬂ’“ rrg)=T,
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By our choice of e%**1 and the fact that the iteration had continued up to Step
E, it can be checked that (4.10) is satisfied. Also, (4.6) is satisfied because

M Ap'/?(Del+D)*
ent’?v - Denl/2A, (DeP) *

cnl/2 (Ege + 1)) 2a
= 4Jz-n
2
nl/2 [n1/2 (Ded+D) a]
< c
= nl/2—-4r0/@-n[p—[2—r—8ro+Bs1r1r) = 806; 12— Nl/20r+2)]2+1)/2 —1)
c
= n2 max(2x — oy8,0)
<L
= 4%+

for some constant ¢ > 0. Hence, by Lemma 4, we have

PE+D <3 exp(—(l — Ny (Alnl/z(eﬁf"”)za, Vh+1, 3’2’“”’))-

Note that

(n1/2 (Degeu))za)z
10(4A42)(e%)

M2 (n1/2 (Sgk + 1))20)2nr0 +Bk+1r1r

(n1/2 (%+D) 20)4/ @-n

> Mznro(n—(2 —r—8ry)/(r+ 2))r/(2 -r

> M2n6°a

2a k+1
¢2(A1n1/2(D€g“D) ka1, FH )) >

where M is a positive constant and 8y = (r + 4r¢)/(r + 2). Since the dependency
of D is not important in the following derivation, we make M; dependent on D
implicitly. Hence,

P(Dek+D < p(Br,, 1,00) < DeP) < Agnan +3exp(—(1 - e)Man®).

We now analyze the convergence rate provided by this iteration.
Notice that oy, is nondecreasing. If 2k — slim; _, o o > 0, then we have the
following recursion:

1 —2ry — 2krir (2 —r)+rirs
Ch+1 = yraa v o e

Further analysis leads to a contradiction to Condition C4'. Hence, we know that
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B = 0 for all large k:
1- 27‘0
klim op = 4o — ﬁ(z — r)’
- 00, if 40 — B(2-r) < 0.

if 40 — B2 —-r) > 0,

Furthermore, lim;, _, oy, = (1 — 2ry)/[a(r + 2)]. Hence, for all large %,

1—2r, (1 - (82 - r)/4a)*

da \ 1-4@-n/da ) if 4o = f2 )70,

ap =

1- 27‘0 . _
4 k, if 4o — B2 -r)=0.

Therefore, 7, = min(ag, ;) = oy, for all large k.
If 8 > @, thenlim;, _, o, 7, > (1 —2rp)/[a(r + 2)]. This implies that there exists
K such that ¢ > (1 — 2ry)/[a(r + 2)]. Then

Sg{) = n—min(aK, (1 =2ro)/[alr+2)D) _ n-(l —2ro)/lalr+ 2)].

The rate n~ (1~ 20)/ler+2) jg achieved in a finite number of steps.
If 3 = o, then limy_, 7 = (1 — 2rp)/[ar + 2)]. So lim,_, n~ " =
n~(1 -2/ [ar+2] Similar to the proof of Theorem 1, we choose

log (1 — 2r¢)logn) /(4a = B(2 — r)log 2)
log4a/B(2 —r) } ’

such that Dn~ % < 2Dp~(—2r0)/[(2+7)] Then we have

k(n) = [

P(p(Bp, mnp) > 2D~ (1~ 2r0)/lalr+ 20
R k(n) ) N )
< P(p(Bn, 00) < DeP) + > P(Del*? < p(B,00) < De?)
(=2

_ 0y 2rg —rl/2
PR

) +k(n)exp(—(1 - s)M2n5°)]
+ Ask(n)na,.

Hence the convergence rate is n—(1 —270)/[a(r+2)],

If 83 < a, then lim;_, .7 < (1 — 2r¢)/[a(r + 2)]. Similarly, the rate is
n—(1—2ro)/la — A2 ]

We now discuss the case r = 0*. The basic idea is the same as above, but the
form of metric entropy is slightly different.

Step 1. HB(e,F) < Agn?vlog(n? /e). By the same argument as above, we
have

p(Bn,00) = Op(e), where e = max(n=1~200+m)/2a p~[1- 2o +D)/ 4a)

x max (logn®<1 =9 2),
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Step k +1. Here HB(e,F** D) < Agn2 log(n2Pe+111~ "2 [¢) and
Eﬁ,k +1) _ n—min([l — 2(ro +28;+1)1/2a,(1 — 2r¢) /4o + o4, 3/20c) max (log n2ﬁ" w1 — aplrg — ﬂ), 2) .
The amount of improvement in rate at the (k2 + 1)th step is given by

1-2r B log[max((2ﬁk+1r1 — og(re — 9)) logn, 2)]

Ge1= T Tt 2logn -

Again, o4, 1 is increasing and limy, _, o, 5 = 0. Applying an argument similar to
that for the case of 0 < r < 2, the result follows. This completes the proof. O

LEMMA 5. (A metric entropy calculation). Let S be a 6-sphere in R", that
is, S = {x = (x1,...,%,) € R™: ¥_, 22 < 62}. Let || - ||, be the usual Li-metric in
R™ Then H(e, S, || - |I,) < cnlog(n'/2§/¢), for some constant ¢ > 0 and € < 6.

Proor. Define a cube centered at the origin with diameter ¢ as

{x=(x1,...,2%,): max |x;| <e}.
i=1,...,n

Let G be a covering of S consisting of cubes of diameter ¢/n so that any of
the two e/n cubes only touch one face with each other. The construction of G is
geometrically obvious. Let G; be the subset of G whose element does not intersect
with the boundary of S. Let G = G\G;. Let N, N; and N3 be the cardinalities of
G, G; and Gs, respectively. It is clear that N is bounded by N; + N,. Notice that
the volumes of a §-sphere S and a cube with diameter ¢/n are (71/26)" /T(n/2+1)
and (¢/n)", respectively, and the cubes with diameter ¢/n within G; are densely
packed; thus,

N, < (7;1/26)"/I‘(r’ll/2 +1) < c(27r1/2n1/2§>n,
B (e/n) - €
for some constant ¢ > 0 (Stirling’s formula). Since the surface areas of S and a

cube with diameter ¢/n are 27%/26" ~1/T'(n/2) and (¢/n)"* ~1, respectively, and
a cube has 2n faces, it follows that

2(n/2) 8"~ 1/T'(n/2) /ays (128)"
- ((s/n)n_l)/2n <@ )<n E>

for some constant ¢ > 0. It can be seen that, for each cube constructed above,
there exists an e-L; ball centered at the center of the cube such that the -L; ball
contains the cube completely. Hence, an ¢-L;-covering of S can be constructed
based on §G; thus, N(e, S, || - ||z,) < N. The result then follows. O

H

LEMMA 6. Let S be a é-ellipsoid in R", that is,

S= {x =(x1,...,%,) € R™: Zi2'7x? < 62}.

i=1
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Then

H(e,S, |- I,) <cnlog(n==2§)/c  for some constant c > 0 and e < 6.

ProoF. The result can be obtained by applying an argument similar to the
one in Lemma 5. O

LEMMA 7. Let C'[a,b]l = {f: f(@) =f(b) =0, ||f|lz = sup, ¢ 4(|[f®) —F(W)|/|x—
y|7) < L}, where || - ||g is the Holder norm and A = [a,b). Then,

IFllsup < 2IIF1EL*

where a = 2v/(2v + 1).

Proor. For any § > O and x € AN (x — §/2,x + 6/2), there exists x* €
AN(x—6/2,x +6/2) such that

|F™)] = | F@)].

min
x€EAN(x—6/2,x+6/2)
Then it can be seen that

1@ < 1) + 67| flla
< 572 flly + 87L.

By choosing 6 = (||f||2/L)Y/*1/?, we obtain the desired result. O
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