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EQUATIONS
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University of Waterloo

For some time, so-called empirical likelihoods have been used heuristi-
cally for purposes of nonparametric estimation. Owen showed that empir-
ical likelihood ratio statistics for various parameters 8(F) of an unknown
distribution F have limiting chi-square distributions and may be used to
obtain tests or confidence intervals in a way that is completely analogous
to that used with parameteric likelihoods. Our objective in this paper is
twofold: first, to link estimating functions or equations and empirical like-
lihood; second, to develop methods of combining information about param-
eters. We do this by assuming that information about F and 6 is available
in the form of unbiased estimating functions. Empirical likelihoods for pa-
rameters are developed and shown to have properties similar to those for
parameteric likelihood. Efficiency results for estimates of both # and F are
obtained. The methods are illustrated on several problems, and areas for
future investigation are noted.

1. Introduction. Likelihood is arguably the most important concept for
inference in parameteric models. Recently it has also been shown to be useful
in nonparametric contexts. For some time it has been used to obtain non-
parametric estimates of distribution functions [e.g., Kaplan and Meier (1958),
Vardi (1985). Recently Owen (1988, 1990, 1991), building on an earlier sug-
gestion of Thomas and Grunkemeier (1975), has introduced an “empirical”
likelihood ratio statistic for nonparametric problems. Owen has shown that
the statistics have limiting chi-square distributions in certain situations, and
has shown how to obtain tests and confidence limits for parameters, expressed
as functionals 6(F) of an unknown distribution function F. Other asymptotic
properties—and the possibility of correcting likelihood ratio statistics or their
signed roots—have been studied by DiCiccio and Romano (1989), Hall (1990),
DiCiccio, Hall and Romano (1989, 1991) and others.

Empirical likelihood, described in Section 2, provides likelihood ratio statis-
tics for parameters by profiling a nonparametric likelihood; the approach is
analoguous to that used for parameteric models, although it is computation-
ally more complex. Owen (1990) showed that for independent and identically
distributed (i.i.d.) data the approach applies to quite general parameters 60(F).
Owen (1991) made extensions to linear regression problems, and Kolaczyk
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(1992) and Owen (1992) have made further extensions to generalized lin-
ear and projection pursuit regression. Although further investigation of this
methodology is needed, especially in small to moderate size samples, it ap-
pears to provide a valuable approach to tests and interval estimation in non-
parametric or distribution-free contexts.

Our objective in this paper is twofold: first, to link estimating equations
and empirical likelihood; second, to develop methods of combining information
about parameters. We achieve both for i.i.d. data as follows. Consider d-variate
iid. random variables x1,...,%, with unknown distribution function F, and
a p-dimensional parameter 6 associated with F. We assume that information
about # and F is available in the form of r > p functionally independent

unbiased estimating functions, that is functions gj(x,0), j = 1,2,...,r, such
that Er{gj(x,0)} = 0. In vector form, we have

(1.1) g(x,0) = (g1(x,9),...,8-(x,0))",

where

(1.2) Er{g(x,0)} =0.

We will show how to use such information to estimate 6 and F, in conjunction
with empirical likelihood.

When r = p, our methods are the same as those of Owen (1988, 1990)
and provide (empirical) likelihood-based methods of interval estimation for
parameters with 8(F). Our main interest, however, is in the case where r > p.
This allows us to deal with the combination of pieces of information about a
distribution. For illustration we introduce some examples that we will return
to later.

EXAMPLE 1. Sometimes we have information relating the first and second
moments of a variable [e.g., Godamble and Thompson (1989) and McCullagh
and Nelder (1989)]. For example, let y1, .. .,y, be i.i.d., univariate observations
with mean 6, and suppose that it is known that E(y%) = m(6), where m(.) is
a known function. Our aim is to estimate 6. The information about F can be
expressed in the form (1.1), (1.2) by taking

g(y,0) = (y - 0,5* —m(6))".

EXAMPLE 2. Let (x1,¥1),...,(xn,y,) be bivariate i.i.d. observations with
E(x;) = E(y;) = 0. In this case we can take g((x;,y;),0) = (x; — 0,y; — 0). A some-
what similar problem is when E(x;) = c is known and E(y;) = 6 is to be esti-
mated, in which case we would have g((x;,y:),0) = (x; —c¢,y; — 6). Such prob-
lems are common in survey sampling [e.g., Kuk and Mak (1989) and Chen
and Qin (1993)].

EXAMPLE 3. Several authors have considered nonparametric estimation of
a distribution F when information about certain functionals of F is available.
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For example, Haberman (1984) and Sheehy (1988) consider estimation of F(x)
based on an i.i.d. sample xy,...,x, when it is known that Ep{T(x)} = a, for
some specified function 7(:). Our methods deal with this by taking g(x) =
T(x) — a; that is, r = 1 and the dimension p of 6 is 0.

We show in this paper that empirical likelihood may be brought to bear
on problems such as these. The basic idea is to maximize an empirical like-
lihood (see Section 2) subject to constraints provided by (1.2). We show how
estimators both of parameters # and the underlying distribution F may be
obtained and determine asymptotic normal distributions for the estimators.
We also demonstrate that empirical likelihood ratio statistics for parameters
have asymptotic x? distributions. All of these results parallel closely similar
results for parametric likelihood inference. Section 2 reviews Owen’s (1988,
1990) definition of empirical likelihood and the concept of optimal estimating
functions. Section 3 presents our methods and associated asymptotic results;
it is also shown that our method combines information in the form of estimat-
ing functions in an optimal way. Section 4 gives two other asymptotic results.
Section 5 presents several examples, and Section 6 discusses some additional
points. Outlines of proofs of the results in Sections 3 and 4 are provided in
the Appendix. Further details are given in a technical report available from
the authors.

2. Definition of empirical likelihood and optimal estimating func-
tions. We first outline empirical likelihood as discussed by Owen (1988,
1990). Let x1,x9,...,%, be i.i.d. observations from a d-variate distribution F
having mean x and nonsingular covariance matrix. The empirical likelihood
function is

2.1 L(F) =[] dF(x;) =[] ps»
i=1 i=1

where p; = dF(x;) = Pr(X = x;). Only distributions with an atom of probability
on each x; have nonzero likelihood, and (2.1) is maximized by the empirical
distribution function F,(x) = n=1x* I(x; < x). The empirical likelihood ratio
is then defined as R(F) = L(F)/L(F,), and it is easily shown that this may be
written as

2.2) R(F) = ani~
i=1

We remark that formulas here and elsewhere in this paper do not require that
the x;’s be distinct.

Suppose now that we want to estimate a parameter 6 = T(F): For simplicity
we consider the mean u of F. To obtain confidence regions for i, we define the



EMPIRICAL LIKELIHOOD AND GEE’S 303

profile empirical likelihood ratio function

n n
pi >0, Zpi =1, Zpixi = ,u}.

i=1 i=1

(2.3) Re(p) = sup{ ani
i=1

As noted by Owen (1988, 1990), a unique value for the right-hand side of (2.3)
exists, provided that p is inside the convex hull of the points xi,...,x,. An
explicit expression for Rg(u) can be derived by a Lagrange multiplier argu-
ment: the maximum of I np; subject to the constraints p; > 0, %% ;p; = 1 and
Srapix; = p is attained when

(2.4) pi=pi(p) =n Y148 (xi— )},

where ¢ = () is a d x 1 vector given as the solution to

@.5) i{lﬂt’(xi — )} M — ) =0,

Since II;p; is maximized unconditionally by F,, it follows that Rg(n) is

maximized with respect to p at i =% and that

(2.6) Re(p) =ﬁ{1+t7(xi —l-t)}_l.

i=1

The empirical likelihood ratio statistic is Wg(u) = —2log Rg(u), that is,

2.7 Wg(u) =2zn:log{1+tr(x,- -u)}.

i=1

Owen (1988, 1990) has proved under mild conditions that if u = uo, then
WEe(up) converges in distribution to xfd) as n — oo. Approximate a-level confi-
dence regions for u may therefore be obtained as the set of points x4 such that
We(u) < cq, where c,, is defined such that Pr(x(zd) < ¢a) = a. Profile empirical
likelihood ratio statistics for subsets of x = (u1, ..., pg) can also be used to ob-
tain confidence regions for subsets of the parameters, in the usual way. Owen
(1990) has shown that the preceding approach applies to quite general param-
eters 6(F), including multidimensional M-estimates. Owen (1991, 1992) and
Kolaczyk (1992) have extended the methodology to a broad range of regression
problems involving linear, generalized linear and projection pursuit models.

Let g1(x,0),...,g-(x,0) be a set of functionally independent estimating func-
tions, as in (1.1) and (1.2), where 6 is a p-dimensional parameter. If r = p,
estimates 6(x) may be obtained as roots of the corresponding estimating equa-
tion g(x, 6) = 0. More generally, if the g;(x, 0)’s are r specified functions, we may
consider the class of p-dimensional estimating functions

(2.8) U = {9p(x, 0) |1 (x, 0) = A(0)g(x,6)},
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where A(f) is a p x r matrix of real functions. In estimating function theory
[e.g., see Goldambe and Heyde (1987)] an estimating function 4*(x,0) € ¥
is called optimum in ¥ if the estimator § from 7)*(x,0) = 0 has minimum
asymptotic variance.

3. Main results. We assume thatx;,...,x, are i.i.d. observations from an
unknown distribution F, that there is a p-dimensional parameter 6 associated
with F and that information about # and F is available in the form of r > p
functionally independent unbiased estimating functions, as described by (1.1)
and (1.2). We apply empirical likelihood to this framework by maximizing (2.1)
subject to restrictions

3.1 pi >0, EP; =1, Zpig(xixo) =0.
i i

For a given 6, a unique maximum exists, provided that O is inside the
convex hull of the points g(x,0),...,8(x,,0). The maximum may be found via
Lagrange multipliers. Let

H = }:log pi+ /\(1 - Zpi) —nt’ Zpig(xi, 9),
13 13 1]

where )\ and ¢ = (¢1,%s,...,%)” are Lagrange multipliers. Taking derivatives
with respect to p;, we have

oH 1

—=——-A—nt"g(x;,0) =0,

3pi pi g(l )
O0H

Epi%-n—)\-o = A=n

i

and
1 1
3.2 == )| ———,
.2 pi (n) 1+t g(x;,0)
with the restriction from the third part of (3.1) that
1 1

. 0= g(x;,0) ==Y —————g(x;,0),

3.3) ;p,g(x, ) n Z 1+ tTg(xi,O)g(xl )

from which (see below) ¢ can be determined in terms of 6.

Note that it is necessary that 0 < p; < 1, which implies that ¢ and § must
satisfy 1+¢™ g(x;,0) > 1/n for each i. For fixed 0, let Dg = {t: 1 +¢t" g(x;,6) > 1/n};
Dy is convex and closed, and it is bounded if 0 is inside the convex hull of the

&(x;,0)s. Moreover,

A RE oL

0t | n < 1+t7g(x:,0) N (1atrg(x,0))
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is negative definite for ¢ in Dy, provided that ¥ ,g(x;, 0)g"(x;,0) is positive
definite. By the inverse function theorem, ¢ = #() is thus a continuous differ-
entiable function of 6.

The (profile) empirical likelihood function for 6 is now defined as

10T (3 rrmsn

-1

Since II? ,p; is maximized for p; = n~' in the absence of the parameteric

constraints we define, analogous to (2.6), the empirical log-likelihood ratio
n

(8.4) 5(0) = log [1+t7(0)g(x:,0)].
i=1

Obviously (2.4) and (2.5) are special cases of (3.2) and (3.3), given by g(x;, u) =
x; — p, and 27 'Wg(p) from (2.7) is a special case of (3.4).

We may minimize /z(6) to obtain an estimate 8 of the parameter 6, called
the maximum empirical likelihood estimate (MELE). In addition, this yields
estimates p;, from (3.2), and an estimate for the distribution function F, as

(3.5) Fo(x) =Y pid(x: < x).
i=1

When r = p it is easily seen that 8 = 6 maximizes I5(6), where 8 is the solution
to the estimating equations Y7 ,g(x;,0) = 0. In addition, p; = n~! and (3.5)
is the empirical cumulative distribution function. The empirical log-likelihood
ratio [5(6) covers as special cases (2.7) and similar statistics for other problems
considered by Owen (1990, 1991, 1992) and Kolaczyk (1992).

When r > p and when profile empirical likelihoods are wanted, computa-
tional issues arise as to the best ways to obtain 6 and profiles of Ig(6). We
discuss this in Section 5, where we consider specific examples. Tbe remainder
of this section presents first-order asymptotic properties of 6, F,(x) and the
empirical log likelihood ratio statistics. Proofs for the various propositions are
given in the Appendix.

In the following, we use || - || to denote Euclidean norm.

LEMMA 1. Assume that E[g(x,00)8" (x,00)] is positive definite, Og(x, 0)/06 is
continuous in a neighborhood of the true value 6y, ||0g(x,0)/06| and ||g(x,6)|
are bounded by some integrable function G(x) in this neighborhood, and the
rank of E[0g(x,0,)/86] is p. Then, as n — oo, with probability 1 Ig(0) attains
its minimum value at some point 0 in the interior of the ball |0 — 6p|| < n~1/3,
and § and T = t(0) satisfy

(3.6) an (6,?) =0, Q2n (5,?) =0,
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where
(3.7 Q1.(6,2) = - Zm g(x:,9),

1 O0g(x;,0)\"
(3.8) Qun(6,8) = Z v e ( g(gg )) t

THEOREM 1. In addition to the conditions of Lemma 1, we assume that
0%g(x,0)/00 06" is continuous in 0 in a neighborhood of the true value 6y. Then
if ||6%g(x,0)/06 067|| can be bounded by some integrable function G(x) in the
neighborhood, then

Vn(@—-6) —=N(,V), r(i-0)—-N(0,U),
Vi(Fa(x) ~ F(x)) — N(0,W(x)),

where

n
F,,(x) = Z]ﬁil(x,- < x),
i=1
= (1>__L___
PiE\n)1+7g(x,0)

v- [B(58) e ()]
W(x) =F(x)(1 - F(x)) ~ B(x)UB" (x),
B(x) = E{g(x;,00)I(x; < x)},

o= tetee) {1~ 2(25)ve(%) toter )}

and 6 and ¥ are asymptotically uncorrelated.

We can use Theorem 1 to get approximate confidence limits for 6 or F(x).
The asymptotic variance V of \/n(f — 6) is consistently estimated by

(825 (o) T2

or by the same expression with the p;’s, replaced by n—1.

We give some addition properties of empirical likelihood methods in the
following corollaries to Theorem 1. We assume throughout that the conditions
in Theorem 1 hold.
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COROLLARY 1. When r > p, the asymptotic variance V = V, of \/n (67 -6)
cannot decrease if an estimating equation is dropped.

COROLLARY 2. The MELE 6 based on 81(x,0),...,8-(x,0) is fully efficient in
the sense that it has the same asymptotic variance as the optimal estimator ob-
tained from the class of p x 1 estimating equations that are linear combinations
of g1(x,0), ...,g,(x,0); see (2.8).

The proofs of Corollaries 1 and 3 are sketched in the Appendix. Corollary
2 is obtained by direct comparison of V in Theorem 1 with the asymptotic
covariance matrix of the estimator obtained from the class of p x 1 estimating
equations based on gy(x, 9), . ..,g(x, 0) [see, e.g., McCullagh and Nelder (1989),
page 341] or by noting the equivalence of MELE’s based on equivalent sets of
estimating functions (i.e., sets which are in 1-1 correspondence) and applying
Corollary 1. See Section 6 for additional information.

We know that when the number of estimating equations and parameters
are equal, the score equations are optimal [see Godambe and Heyde (1987)].
Corollary 3 shows that if p of the r estimating functions gj(x, 0) are actually the

score functions, then, as seems obvious, the covariance matrix V; for v/n(6 — 6)

is the same as that for the MLE, \/n(d — 6). However, F,(x) of (3.5) is generally
more efficient-than the empirical c.d.f. F,(x).

COROLLARY 3. If we know the distribution of x up to parameter, let g =
(h1,h3), where

T o1 ,0 o1 .0 T
hi=(g1(x,0),...,8(,6)) =( ng)gfx ),..., ogagx )) ’

h2 = (gp+1(x, 0)’ e ,gr(x’ 0))T
and x is assumed to have density f(x,06), so that h is the score. Then
Vi=Vy, W, 2E(mi(X,0)1(X <x)) VE(hi(X,0)1(X < x)),

where V, and V, are the asymptotic covariance matrices of the MELE’s 6 based
on hy and on (hy, hy), respectively.

Empirical likelihood provides a way to find efficient estimates in semipara-
metric models which are specified in terms of r > p estimating functions. It
also parallels likelihood in full parametric models with respect to the likeli-
hood ratio statistic, as the next theorem shows.

THEOREM 2. The empirical likelihood ratio statistic for testing Hy: 0 = 0, is
(3:9) Wg(60) = 25(80) — 2Ix(6),

where lg(0) is given by (3.4). Under the assumptions of Theorem 1, Wg(6) — xz(p)
as n — oo, when Hy is true.
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Similarly we can prove the following corollary.

COROLLARY 4. In order to test model (1.2), we may consider the empirical
likelihood ratio statistic

Wy = ZXn:log [1 +7*g(x,~,6~?)].
i=1

Under the assumptions of Theorem 1, Wy is asymptotically x;"’r_p) if (1.2) is
correct.

COROLLARY 5. Let 67 = (64,02)", where 6, and 63 are g x 1 and (p —q) x 1
vectors, respectively. For Hy: 01 = 6, the profile empirical likelihood ratio test
statistic is >

(3.10) Wo = 21 (62,69) — 25(61,62),

where 63 minimizes 15(62, 05) with respect to 8. Under Ho, Wy — XGy) as n — oo.

Theorem 2 and Corollary 5 allow us to use the empirical likelihood ratio
statistic for testing or obtaining confidence limits for parameters in a com-
pletely analogous way to that for parametric likelihoods. With full parametric
models, there are several likelihood-based statistics equivalent to the first or-
der for testing Hy: 6 = 6, including the likelihood ratio statistic, score statistic
and Wald’s maximum likelihood estimate statistic. A similar equivalence ex-
ists here, but we will not explore this topic now.

4. Other results. In this section we mention two other results. The first
is that we may use results of Van der Vaart (1988) and Bickel, Klaassen, Ritov
and Wellner (1993) to derive a convolution theorem for “regular estimators”
of Py and 8(Py), where P, is the probability measure corresponding to Fy, and
to show that our maximum empirical likelihood estimates are asymptotically
efficient in the sense of those authors and of Sheehy (1988). This gives the
following theorem.

THEOREM 3. Under the conditions of Theorem 1 and Lemma 2 in the Ap-
pendix, the MELE’s for both the parameters and the distribution function
are asymptotically efficient in the sense of Van der Vaart (1988) and Bickel,
Klaassen, Ritov and Wellner (1993).

The second result is about local asymptotic normality of the empirical like-
lihood ratio statistic.

'THEOREM 4. Under the conditions of Theorem 1, let

(1427 (0 +un"2)g(x;, 6 + un~'/?)
z = :
n,0 (1) H 1+t7(0)g(ax:,0)

i=1
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be the normalized empirical likelihood ratio. Then we have a LeCam—type rep-
resentation,

n
Zy,0(u) = exp { > log [1 +t7 (0 +un"12)g(x;, 0 + un—1/2)]
i=1

- i log [1+¢7(6)g(x:,6)] }

i=1

=exp{ TEg(?‘g) [Eo(gg™)] Zg(xuﬂ)
+;uTE <g§> [Eo(gg™)]” Eo(ge>u+0p(1)}

and
ZE9<38> [Eo(eg™)] ™ (xi,e)—»N(O,Eg(%)T[Eo(ggT)]_IEO(%)>.

The proof is straightforward by Taylor expansion.

Note that Eg@g/é)a)f[Eg(gg")]‘1E9(6g/60) is the inverse of the asymptotic
variance of \/n(f — ), so this representation is similar to the representation
of the normalized parametric likelihood ratio [see Ibragimov and Has’minskii
(1981), page 114].

5. Examples. We consider several illustrations of the estimation proce-
dures. We primarily consider large-sample aspects, but for the first example
we also present some numerical results.

Computational issues are discussed by Owen (1990, 1992) and by Qin and
Lawless (1992a). Additional experience with empirical likelihood methods is
needed before specific recommendations can be given, but a few points may
be mentioned. In order to evaluate /z(0) for a given 6, we have to solve (3.3)
for ¢(6); this is often handled well by Newton’s method, bearing in mind, how-
ever, the remarks preceding Lemma 1. To obtain § we may proceed in two
stages, essentially obtaining /z(f) and then maximizing it. Alternatively, we
may attempt to solve (3.5) simultaneously for § and #; some care is needed be-
cause the solution sought is one of many saddlepoints of the function 4(6,¢) =
¥, log {1+¢7g(x;,6)} and, in particular, must satisfy 1 +¢7g(x;,0) > n=! for
each i.

EXAMPLE 1 (Continued). Recall that y1,ys,...,y, are ii.d., with unknown
univariate distribution F and first and second moments p; = 8, and uy = m(9),
respectively, where m(-) is a known function. We can apply the approach used



310 J. QIN AND J. LAWLESS

in Section 3 leading to equations (3.6), (3.7) and (3.8). This yields

1 yi—6 =
(5.1 n Z 1+t,(y; -9)+t2[y,-2—m(9)] =%

) i —m(6) -
(5.2) n Z 1+t1(y; — 0) +t2[y? —m(6)] =0

1 —1; — th/(e) =
(5.3) n Z T 60— )+ a2 —m(@)]

The third equation implies ¢; = —¢sm’(#) and by substituting this into (5.1)
and (5.2) we may get two equatlons in ¢, and 6 to solve. Recalling the discus-
sion proceeding Lemma 1 in Section 3, we note that the desired solution 8,%,
must satisfy the conditions 1 — Zm'(0)(y; — 6) + %3 [y - m(0)] > 1/n, for each
i=1,...,n. In moderately large samples Newton iteration starting from the
initial value 0,t2) = (7,0) often works; alternatively, we can obtain /z(0) by
finding #(0) (see the comments before Lemma 1) as an “inner” iteration and
can iterate on 6 to find 6. _

The results of Theorem 1 show that /n(f — 6,) — N(0,V) where V is given
in Theorem 1. Some algebra shows that

V = var(y) — A~1[m’(6o)var(y) + 6om (60) — E(y*)]%,

where A = E[m'(6p)(y — 6p) + m(6p) — y2]2. Thus V < var(y), which is the
variance of \/n(¥ — 6,) and so 8 is asymptotically at least as efficient as ¥.
In practice, any higher efficiency of § when the second moment relationship
E(y?) = m(6) holds will of course have to be balanced against a lack of robust-
ness under departures from the relationship.

We consider for illustration a model with first and second moments satis-
fying Ex = 6 and E(x?) = 26% + 1. We generated 1000 pseudorandom samples
of sizes 15, 20, 30 and 40 from N(6, 62 + 1), for two values of 4. For each sam-
ple we obtained three estimates of 0: the sample mean, the MELE based on
the additional knowledge that E(x2) = 262 + 1 and the parametric MLE based
on the normal distribution. Table 1 shows that estimated mean and variance
of each estimator, obtained from the simulation. We see that the variance of
the MELE lies between that of the sample mean and the parametric maxi-
mum likelihood estimator. In Table 2 we compare three methods of obtaining
confidence intervals for 6. The first two are based on our empirical likelihood
methods: one (ELR) obtains confidence intervals from the empirical likelihood
ratio statistic (3.9) and the X(21) approximation of Theorem 2; the other (NCI)

is based on the limiting normal distribution for the MELE 6 given in Theorem
1 and the variance estimator following Theorem 1. The third method (PLR) is
based on the parametric likelihood ratio statistic from the normal distribution
N(6,62 + 1) from which the data were generated, with X(21) as the approximat-
ing distribution. Table 2 shows, for 1000 samples, of sizes n = 30 and 60, two
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TABLE 1
Estimated mean and variance of three estimators of 6, from 1000 simulations

Sample mean MELE MLE

n Mean Var Mean Var Mean Var
N(0,1), true value of 6 = 0.0

15 0.004484 0.067624 0.006848 0.061824 0.006482 0.058516

20 0.000956  0.049740 0.001945 0.048108 —0.002313 0.045455

30 -0.005714 0.031004 —-0.005119 0.030921 —0.004360 0.029835

40 0.000956  0.024572 0.002931 0.024221 —0.000947 0.023431
N(1,2), true value of § = 1.0

15 1.004317 0.128445 0.946416 0.086383 0.966406 0.083193

20 0.995677 0.106569 0.952668 0.062353 0.972931 0.059177

30 1.006338 0.068629 0.968523 0.035759 T 0.984540  0.034930

40 1.015897 0.044045 0.984512 0.021883 0.994275 0.020584

# values and nominal 90% and 95% confidence intervals, the average length
(Avl) and empirical coverage (Ecv) for each type of interval. It is interesting
to note that the two empirical likelihood methods agree closely and that for
smaller samples their coverage probability is substantially less than the nom-
inal 90 and 95%. By comparison, the parameteric likelihood yields intervals
with close to the nominal coverage. Further investigation of this is needed,
but these results raise the question of whether, even for small samples, like-
lihood ratio intervals are similar to ones based on normality of 8 for empirical
likelihood and whether higher-order corrections for both methods are needed.

Finally, as an example, Figure 1 depicts an empirical likelihood ratio curve
Wg(0) (solid line) and a parametric likelihood ratio curve (dotted line), for a
particular sample with n = 30 and 6 = 1. We can see that for this example the
curves are very close.

EXAMPLE 2 [(Continued) Two-sample problem with common mean]. In this
case observations (x;, y;),i = 1,2, ...,n, occur in independent pairs and E(x;) =
E(y;) = 0. To estimate 6, we consider the estimating equations based on g; =
x— 0 and g =y — 6 and we associate the empirical likelihood probability p;
with (x;,y;). After some simplification, from estimating equations (3.6)—(3.8)
we have

n

i=1

SN

where 7 is determined by

n

' X — i
(5.4) —_—— =0.
; 1+¢(xi —y:)
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TABLE 2
Average length and coverage for three confidence interval methods, from 1000 simulations

90% 95%
Avl Ecv Avl Ecv

n =230

N(0,1) ELR 0.55064 85.8% 0.65714 92.4%
NCI 0.56965 86.0% 0.67889 92.0%
PLR 0.60197 89.6% 0.72441 94.3%
N(@1,2) ELR 0.56698 83.3% 0.67737 89.2%
NCI 0.56863 84.3% 0.67767 90.1%
PLR 0.61489 88.3% 0.73900 93.6%

n =60

N(,1) ELR 041535 89.5% 0.49611 95.4%
NCI 0.41291 89.2% 0.49210 94.9%
PLR 0.42549 90.8% 0.50950 96.1%
N(1,2) ELR 041200 88.6% 0.49267 94.1%
NCI 0.40933 89.0% 0.48782 93.2%
PLR 0.42845 91.3% 0.51265 96.1%

Moreover, we seek the solution 7 to (5.4) that satisfies 1+ #(x; —y;) > 1/n for
eachi=1,2,...,n. Such a solution exists if and only if the x; — y;’s are not all
of the same sign. In that case there is exactly one such value %, which lies in
the interval (¢1,ty), where

(1/n - 1) (1-1/n)

max|0, max(x; —y;)]’ vs min(0, max(y; — x;)]

i =

The asymptotic covariance matrix for V7@ — ) is given by V of Theorem 1

as
-1
a g T -1 a g 02 0.2 —_ 02
V=(E| = N E E A M. .
{ <30) (E(ee")) (69)} 02+ 0% ~ 204

where 02 = var(x;), a = var(y;) and oy, = cov(x;,y;); V may be estimated using
the sample covanance matrix entries.

It is easily shown directly that § is asymptotically equivalent to the optimal
(minimum asymptotic variance) linear combination of ¥ and y. In particular,

note that in the case where o, = cov(x;,y;) = 0 that V = 0202 /(o2 + o2), which
is the same as the variance of the optimal linear combmatlon estlmator

2 2
0=\ ol Bl Bl K2
0% + 0} o2+ 02
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0.4 0.6 0.8 1.0 1.2 1.4

Theta

F1c. 1. Empirical likelihood ratio and parametric likelihood ratio curves.
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EXAMPLE 3 (Continued). Haberman (1984) and Sheehy (1988) have con-
sidered constrained estimation of probability measures based on i.i.d. sample
X1,%2,...,%, from a distribution Py, where it is assumed known that Ep, T'(x) =
a, for some specified function T'. The estimators they considered are based on
the minimization of Kullback-Leibler divergence from certain collections of
probability measures to the empirical measure of the x;’s and Sheehy (1988)
has proved that the estimate is asymptotically efficient. We may apply empiri-
cal likelihood to this problem, utilizing the fixed constraint ¥ ,p;T'(x;) —a = 0.
In this case earlier results about the c.d.f. still apply, and we obtain the esti-
mate F,(¢) of the distribution function. It is easy to check that for this estimate

\/ﬁ(f'n(t) — Fy(?)) is asymptotically equivalent to

/ [1(x < £) - Fo(t) - cov(1(x < £),T) (var T)~}(T - a)]
x dy/n(Fn(x) — Fo(x)) +0p(1).
This matches with Sheehy’s Theorem 2’.

EXAMPLE 4 (An example of “semi-empirical” likelihood). The methods de-
veloped in this paper are also useful for dealing with incomplete information in
parametric or semiparametric models. As an example we consider a problem
arising in field studies of equipment failure [Kalbfleisch and Lawless (1988)].
In this situation, N items are in use and associated with item i are a time to
failure y; > 0 and a vector of covariates x;; a regression model with density
f(y|x; 6) specifies the distribution of y; given x;.

An incomplete data problem arises because only items that fail by some
time T are inspected: each item that fails at time y; < T is inspected, and
covariate values x; are determined. For items with y; > T, the x; values are
unknown. One approach is to base inferences about 8 on the likelihood function
for y;’s such that y; < T

H f Yi |xu
i:y; <T Tlx" 0)
where F(y|x;6) is the c.d.f. of y given x. However, this does not use the infor-
mation that the remaining y;’s exceed T'. This information cannot be used in
a parametric likelihood framework without specifying a distribution for the
covariates, but it is possible to use empirical likelihood, as follows.
Consider y and x to be jointly distributed, and define estimating functions

61(3,%,0) =1y < T) 2 [10g (y},6) ~ log F(Tlx; ),
Iy<7T)
F(T|x;6)

Note that Eg, = Ege = 0, and X} ,81(x;,t;,0) is the score function from L(6).
We now associate p; in the empirical likelihood formulation of Section 3 with

g2(y)x’ 0) =
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Pr(y;,x;),i = 1,2,...,N, and use (g1,82) as our estimating functions. This leads
to an MELE ¢ Where, by Theorem 1, vVN(8 — 6) — N(,V)as N — .

To illustrate, we consider the special case where f(y|x; 6) =  exp(—0y), that
is, there are no covariates. We find that V = 6%2/{1 — exp(—07T)}, which is
precisely the asymptotic variance of the MLE 8 obtain from the censored data
likelihood

L= H 6 exp(—0y;) H exp(—0T).

iy <T iy >T

Further investigation is needed for cases where covariates have an effect,
but it is interesting that in this special case the MELE is equivalent to the
fully efficient MLE. Qin and Lawless (1992b) cons1der similar applications of
empirical likelihood.

6. Additional remarks. Other approaches may be taken to combine es-
timating functions. First, we remark that likelihood is not the only distance
in the simplex for (p1,pe,...,ps) that can be used to generate confidence sets
for 6 with a chi-square calibration. Efron (1981) and DiCiccio and Romano
(1990) consider the (n — 2)-dimensional subfamily of multinomials generated
by minimizing the Kullback-Leibler distance D(F,F,) = ¥;p; log(np;) subject
to ¥;p;x; = p and ¥;p; = 1. Owen (1991) has considered log Euclidean likeli-
hood, defined as lgy = —%Ei(np, 1)?, as an alternative to i, log p;. This is
quite tractable and leads to methods asymptotlcally equlvalent to the ones in
this paper.

Another approach to combining estimating functions is to consider the op-
timal (minimum asymptotic variance) linear combination of the r estimating
functions gj(x;,0), j = 1,2,...,r, as mentioned in Corollary 2. This leads to
[e.g., see McCullagh and Nelder (1989), page 341] the estimating equations

n
6.1) > Divi'gi =0,
i=1

where g; = (g1(x,-,0), . ,g,(xi,0))f, D; = 0g;/06 and v; = var(g;), which is as-
sumed nonsingular. The v;’s are unknown, but when the g;’s are i.i.d. we have
v; = v, which may be consistently estimated, for example, by

SO I
v=-3 &,
i=1

S

where g; is g; evaluated at any consistent estimate 8 of 6. We then obtain §
by solving

n

6.2) S Djolg = 0.
i=1



316 J. QIN AND J. LAWLESS

The empirical likelihood approach has the potential advantage of providing
likelihood ratio statistics, upon which tests and confidence intervals may be
based. One might hope that these possess better small-sample properties than
methods based on approximate normality of the estimates. This was not ap-
parent from our simulation in Example 1, however, and needs investigation.
The empirical likelihoods also appear to be Bartlett or signed square root cor-
rectable and may be generalized to handle independent but not identically
distributed data.

A good deal of work is needed to apply and assess the methods in prac-
tical situations. Experience is needed to determine how easily estimates can
be obtained in small- to moderate-size samples and what the properties of
the estimators and the empirical likelihood ratio statistics are in these situ-
ations. Higher-order asymptotic properties and comparisons with resampling
methods are also of interest. We hope to consider some of these topics in fu-
ture communications.

APPENDIX

Here we give proofs for the results in Sections 3 and 4.
PROOF OF LEMMA 1. Denote 0 = 8y +un=1/3, for 6 € {0 | ||6 — 6o = n~1/3},
where ||u| = 1. First, we give a lower bound for /z(6) on the surface of the ball.

Similar to the proof of Owen (1990), when E||g(x, )||? < oo and |6 —6|| < n~1/3
we have

ap 1O-[23 a0 0| 260 100 s

=0(n~'3) (as.),

uniformly about 6 € {6 | ||§ — 6| < n~1/3}.
By this and Taylor expansion, we have (uniformly for u),

150) = S 0)g(s0) = 5 S [ 00 +o0*)(a0)
Yo [ Zg(xi,o)gf(xi,e)]_ Yl o)]

+o(n1/3) (as.)

= Zg x,,oo) + — Z _a_g_(_';_‘o_’_o_(?l —1/3] - Zg x;, 0 x,,0)]
ﬁ Z:g(xi,ﬁ’o) + Z Bg(a(;,o, 00) ‘1/3] +o(n'3) (as.)

NI:

-1

l\’:|§

X
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3
x[E(g(x. 60)g™ (x,00)] "
x [O(n‘l/z(loglogn)l/z) +E(§g;(gé@)un‘l/3] +o(n'/?) (as.)

> (c—¢e)n'3, as,

[O(n‘l/z(loglogn)l/z) +E(6g_(;‘;_@_)) un‘l/s]

where ¢ — € > 0 and ¢ is the smallest eigenvalue of

(25 st (5).

Similarly,

-1

1(00) = 5[5 St 0] [7 St 00 )]
X [-’1; Xi:g(xi, 00)] +o(1) (as.)

=0(loglogn), (as.).

Since Ig(6) is a continuous function about 6 as § belongs to the ball ||6 — 6| <
n~1/3, 1z(6) has minimum value in the interior of this ball, and 6 satisfies

aE(0)| _ > (07(6)/06)g(:,0) + (0g(x;,6)/06)7¢(6)
90 oz 5 1+¢7(0)g(:,0) 9=6
1 og(x:,0)\"
- ; 1+¢7(0)g(x:,0) ( : Bl ) £() 07
=0. u}

PROOF OF THEOREM 1. Taking derivatives about # and ™, we have

0Q1,(6,0) =l Z g (x;, 0) 8Q1.(6,0) =_l Zg(xi,o)g(xi: 8)7,

06 n< a0 ot -
6Q2,,(0, 0) =0 8Q2,,(0, 0) =l Z ag(xi,o))"
00 ’ ot n & 00 ’

Expanding Q1:.(0,D, Q2.(6,D at (6y,0), by the conditions of the theorem and
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Lemma 1, we have
0=Q1,(6,7)

=Qu(00,0) + 2000 G_g) , Rute0)_g) (5
0=Q2,(6,7)
&9 =Q2,(60,0) + —222 207 6Q2"(9°’°) (6 - 60) + gQﬁa(t—f‘LQ(t ~0) +0p(6n),
where &, = |0 — 6o|| + |[Z]l- We have

(520) e (2505

(A.2)

where
ann ann - 8g
_| o o6 Su Sz _ ~Eeg) E('B_O.)
A4 S,= =
0Q2n Sa1 0 E( og ) T 0
ot (86,0 o0

From this and Q1,(6,,0) = (1/n)L?,8(x;,00) = Op(n~1/2), we know that 6, =
0,(n~1/2), Easily we have

vn(6 - 80) = S5 182157 VnQ1,(60,0) +0,(1) — N(0,V),

V=s;2%l={E(%>r(Eggr) 1E(g§>} )

The rest of the proof is similarly straightforward. O

where

PROOF OF COROLLARY 1. Write
- og1 T 0gr_1 T ogr T _ ogr
0=((5) (%) (%)) (0 (%))

c.(0)=E(eer) = (G205 G2

Cai(8) Cx2(9))

where C1;(0) is an (r — 1) x (r — 1) matrix. For square matrices A and B of the
same order, let A > B denote that A — B is positive semidefinite. Then

53 ()

= D} (6)C;*(6)D(9)

(o) (5

= Vr_—l’ 0
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(%)

PROOF OF COROLLARY 3. We know that
4 Ohi\" (,0ha\7\ (E(R1h]) E(h1h3)\~
v-i=( (22, (%2
09 0 E(hsh]) E(hsh3) E(%>
00
- ((E%) —E(ahl) (ER1AT)” E(hlh’)+E(

o
x((Ehlh;)-l 0 ) a6
(

-1 )
0 A _Ehzh;)(Ehlh;)—lE,(%';x) +E(%’;,a)

ﬁ

q;lg

where
Axpq = E(h2h§) — E(h2h71-) (Ehlhql-)—lE(hlh;) .

Since A4, is the score, (Eh1h]) = —E(8h1/06) and, taking derivatives about 6 in
the equation E(h3) = 0, we have

a"Zf( ,8) dx +/h afx’o)dx 0,

that is

o

o ) ()

oh . oh " e
E( aol) (Eh1h])™ E( aol) = (Enih7) =V, L.

E(8h2) +E(h2h]) = 0.

Thus

If 6 is the MLE for 6, then F(x, 5) is the MLE for F(x, 0); so the asymptotic
variance W, of /n(F,(x) — F(x)) is no less than the asymptotic variance of

Vn(Fx, 6) — F(x)). We only need to calculate the asymptotic variance of the
_ latter, which is easily found to be

E{h(X,0)1(X <x)} V,E{h:1(X,0)1(X <x)},

and the corollary is proved. O
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PROOF OF THEOREM 2. The log-empirical likelihood ratio test statistic is
Wg(6o) = 2{ Zlog [1+t58(x;,60)] — }:log [1 +7"g(x,~,§)] }
i i
Note that

15(8,7) = log [1+Fg(x,8)] = —-’23Q;,, (60,0)AQ1, (60,0) +0,(1)
i=1

where A = S;'{I + 81255, ,S2157;' }. Also under H,

1 1 _ a-1
; Z 1 +t6g(xi,90)g(x“ 00) =0 = to = Sll an(00, 0) +Op(l)

i
and

3" log [1+£58(xi,60)] = ~5.Q (60, 0)S ' Q1n (00, 0) + 05 (1).

Thus
Wx(00) = Q7 (60,0) (4 - 1) Qun (60,0) + 05 (1)
=nQ1, (60, 0)S1;' 812555152151 Q1 (60, 0) + 0, (1)
= [(—Su)_l/z\/'_lan (6o, 0)]T [(—311)—1/23123521.1321(—311)—1/2]
x [(-Sll)-1/2ﬁan(0o,o)] +0,(1).

Note that (—S1;)~1/2,/nQ1,(fo, 0) converges to a standard multivariate normal
distribution and that (—=S1;)~Y/2S15S5,',S21(~S11)~Y/? is symmetric and idem-
potent, with trace equal to p. Hence the empirical likelihood ratio statistic
WE(6o) converges to x2. O
PROOF OF COROLLARY 5. By Taylor expansion we have
Wy =2l (9(1), ?)'g) —2lg (51, 52)
= [(—311)—1/2\/7—1(?1"(90,0)] (Egg™)~'2

{ (58)[(=55) e ()] (=55
- (255 (=) e (258)] " (55) }

x(Egg™)~Y/2 [(—Sn)—l/z\/’_lan (6o, 0)] +0p(1).
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By a result in Rao [(1973), page 187], we only need to show that
-1
. ag % T T\-1 (_95 ig "
A: (Eae) [(Eae) (Egg") (an)} (an)

-1
9\ [(522) a1 (2%8)] " (526
Z(Eaal)[@aol) (Bes") (Eael)J (B5.) -
In fact,

o (o) (o) e ()] (e3)
(st 5ty ([0 o) o) o (E(%Y

06," 06 0 0

- (o38) [ (o38) e (538)] (555"

2 — 2
Thus Wa — X _p—g)—¢r—pn = Xg- O

Now we consider the proof of Theorem 3. For this we need the concept of
a tangent space T(Py) of Ly(Py); see Sheehy (1988) for a concise description.
First we give a lemma; let

8A (x, 0) = (gl (x’a)a LR ’gp (xyo))f’ &B (x: 0) = (gp+1 (x,a), L) ,g,(x,&))f,
Eg(x,0)=0 = Eg4=0, and Egg=0.

LEMMA 2. Assume that (Ep, 0ga/00)~! exists. Define
T*(Po) = { h: h € Ly(Po), |h| < K, some K > 0, Ep,h =0,

o () 5%) ") o}

Then T*(Py) is a maximal tangent space at Py € P.
Since T*(Py) is maximal we must have

(A.5)

Tm (Po) = {h h €L2(Po),Epoh =0,

EPO([gB Ep("’g;)(Ep%g;) alh)- 0},
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for any maximal tangent space T, (Py).

PROOF. Consider a parametric submodel F,, with density f,. Since
f&a (x,0Fy)) dF, =0, we have

/BgA(x,O(F,,)) 06(F,) dF, + /gA(x, 6}(Fn))alogf,7 dF, =0,

o0
that is,
0ga(x,60) 96(Fy) _
90 877 oo dPo + /gA(x, 00)h dPo =0
or
-1
30(Fn) _ agA(x, 90)
(A.6) o | [Epo (—3(;—) Ep, [ga(x, 80)h).
Similarly,
0ga (%, 80) 96(F) -
/ 90 377 o0 dPo + /gB(x, 9o)h dPo = 0,
that is,

Ep, (—————ang;’ 00)) { - [Ep0 (_____8gAg;, %) )] _lEPo [ga(x, 60)h] }

+Ep,[gs(x,00)h] =
e ([gB EP“(%;) (EPoag?) gA]h) =0,

T(Po) C T*(Po) = {h he Lg(Po),Epoh =0,

g og. -t
oo -2n (355) (20 5) "s]s) o}
In order to show that T*(P,) is itself a tangent space, we need to show that if
h € T*(Py) there exists {P;: 0 <t <1} C P so that

or

S0

/ [t-l((au.v,)lf2 — (dPo)¥?) - %h(dPo)l/z]z ~0 ast—0.
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It is easy to show that the sequence {P;} defined by dP;/dP, = 1 + th will do,
and we are done. O

PROOF OF THEOREM 3. We will show that the MELE 4 is fully efficient.
Since the tangent space T (Po) is linear, it is sufficient to show that the
influence function of 6 is the projection of the (pathwise) derivative of the
functional 8(P,) onto the tangent space. Since

I o ()] e

the derivative 6 of 6 is

n=0

-1

0,
9 [Epo( ég; )] EA-
Noting that

. oga\17? _ _

0= 851551 8(x, 60) ~ { [EPO( = )] 84+ 85,5578 (x, 90)}
and

~ 1 _
Vn (9 —6o) = 7 > 851521858 (xi, 60) + 0, (1),
i
we want to show that
(A7) ;1821872 (x,80) € T (Po),
0ga\1! -1 -1 L

A8)  a=1{[Er(F2)] ga+Sz1SuSTe(x,00) | € T (Po).

By Bickel, Klaassen, Ritov and Wellner [(1993), Section 3], our empirical like-
lihood estimate for 6 is then efficient.
Easily we can show

15) 0, _ _
EPo{ [ EPo( ég: ) (EPo gg ) gA] [gfslll‘swszzl.l]} =0.

Next we show a € T (Py).
Note that Sg.1 = Ep,(9g/00)"E(gg™)Ep,(0g/00), S12 = S3, = Ep,(0g/06) and
Su = —Ep,(gg"), so

DAY _
a= 822 1{S22 1 [EPO ( a;)] 8a+ Sleulg}
: ’ 7, (o)
=851 S0, 87! -1 1 .
2172151 “‘EPo( 96 ) (EPo 20 ) 8A mee

In a similar way, we can establish the efficiency of the distribution function
estimate F,,. O
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