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EXACT MULTIVARIATE BAYESIAN BOOTSTRAP
DISTRIBUTIONS OF MOMENTS!

By MAURO GASPARINI

Purdue University

The common unknown probability law P of a random sample Y}, ..., Y,

is assigned a Dirichlet process prior with index «. It is shown that the
posterior joint density of several moments of P converges, as a(R) — 0, to
a multivariate B-spline, which is, therefore, the Bayesian bootstrap joint
density of the moments. The result provides the basis for possible default
nonparametric Bayesian inference on unknown moments.

1. Introduction. The need for a default prior to represent vague initial
information in nonparametric Bayesian statistics is generally recognized. For
this purpose, in the presence of a random sample Y,...,Y,, with unknown
common probability law P, some researchers would consider using a Dirichlet
prior on P [Ferguson (1973)] with a very small total mass a(R) of the index
a, or a limit as a(R) — 0. The reason is that, in such a limit case, the
posterior law of the infinite dimensional parameter P is centered around the
empirical measure. The results obtained are then comparable to standard
frequentist results, as illustrated by the applications in Section 5 of Ferguson
(1973) and much of the following literature on Dirichlet priors. This reconcili-
ation between the frequentist and Bayesian approaches is appealing to the
scientist who feels opposed to the use of prior information for philosophical
reasons. It also provides a possible default choice for the compilation of
Bayesian software.

Limiting results from Dirichlet priors of the above nature have been
referred to as the Bayesian bootstrap (BB) by Rubin (1981) and Lo (1987),
among others. Such a convention is followed in the present paper, where a
few more applications of the BB are illustrated. The focus is on the posterior
limiting distribution—the BB distribution—of the vector-valued functional of
the parameter P composed of the first s moments: W(P) = (uq,..., u)P),
where u,(P) = [y/P(dy), j = 1,..., s and the prime denotes transpose.

Cifarelli and Regazzini (1990) obtain the proper distribution of the mean
1,(P) when P is chosen according to a Dirichlet process satisfying minimal
conditions. In particular, their results, applied to the posterior process on P,
provide the researcher with a bona fide nonparametric posterior distribution
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on u,(P). Letting a(R) — 0, they obtain, as a by-product, an expression for
the BB density of w,(P), namely,

M( M5 Yays-- y(n))

(1) PR, (r=ya)"’

i=1 i (V) = Yay)
for k=1,...,n — 1 and O otherwise, where y, <yg < -- <Y, are the
order statistics, supposed distinct for the sake of simplicity. Although the
interest of the authors is not on its applications to statistical practice, such a
density turns out to be n — 3 times continuously differentiable, bell-shaped,
log concave, centered around Y = YY,/n and with variance S2/(n + 1),
where S% = Y(Y; — Y)?/n is the sample variance [cf. (7) and (8)]. These
results are comparable to those derived by a classical sampling theoretical
approach or by bootstrap-based inference on pu,(P).

Generalizing the limit result of Cifarelli and Regazzini to more than one
dimension is of some relevance because of the possibility of constructing, for
example, joint BB regions for unknown moments. Multidimensional results of
this sort may actually be obtained by referring to a conspicuous amount of
work done in the field of numerical analysis. Density (1) is in fact a well
known classical univariate B-spline, introduced first by Curry and Schoen-
berg (1966). Its natural extension to higher dimensions, the multivariate
B-spline, is precisely the BB density of the functional w(P). Multivariate
B-splines are nowadays well understood objects; see, for example, Dahmen
and Micchelli (1983).

Sections 2 and 3 contain a summary of the relevant definitions and results
about Dirichlet priors and multivariate B-splines. Section 4 is an application
of these results to the Bayesian nonparametric problem. Section 5 contains
asymptotic results.

if Yoy S M <Yr+1)

2. The Bayesian bootstrap as a limit of Dirichlet posterior pro-
cesses. Let P, the unknown probability measure of real observations
Y,,Y,,..., be distributed a priori as a Dirichlet process with index «, as in
Ferguson (1973). Write P ~2(«a). A fundamental property of Dirichlet pro-
cess priors is that they are conjugate to random sampling, in the sense
expressed by the following theorem.

THEOREM 1 [Ferguson (1973)]. IfP ~2(a) and if, given P,Y,,...,Y, are
i.i.d. P, then the posterior law of P is again Dirichlet, namely,

n
a + Z 83’1‘)’

i=1

(2) P|Y1=y1,...,Yn=yn~g

where 8, represents the unit mass measure of x.

The Bayesian bootstrap describes the limit of the posterior law of P as
a(R) — 0. More formally, the Bayesian bootstrap may be understood in terms
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of weak convergence of probability laws if P is viewed as a random element
taking values on the space % of all probability measures on the real num-
bers, endowed with the topology of weak convergence. We then have the
following theorem.

THEOREM 2. Under the same conditions of Theorem 1, 9(a + L}_, 3, ),
the posterior law of P, converges weakly to 9(L}_, 8, ), as a(R) — 0.

Proor. This is a corollary of Theorem 3.2 in Sethuraman and Tiwari
(1982). O

2(X}_,8,) may be called the BB law of P. The result is equivalent to
stating that P is, in the limit, a random distribution with finite support
{y1,...,y,) and masses (II;,...,II,) distributed according to a Dirichlet
distribution with parameter (1,...,1), as defined, for example, in Wilks
(1962).

The BB behavior of the random vector w(P) may also be related to
Dirichlet posterior processes in terms of weak convergence, as in the follow-
ing theorem.

THEOREM 3. Under the same conditions of Theorem 1, if a = a(R)Q and @
is a probability measure such that [y**Q(dy) < », then, as a(R) - 0, w(P)
converges in distribution to p = (Zy,I1;,Ly?I1,,..., Ly 11,), where (I1,,...,
I1,) is a random vector having a Dirichlet distribution with parameter
a,...,D.

Proor. By application of the so-called Cramér-Wold device, consider a
linear combination of the components of p(P), say C = [Xa; y/P(dy). Then C
satisfies the conditions of Corollary 2.7 of Hannum, Hollander and Langberg
(1981) and converges in distribution to the corresponding linear combination
of the components of p. O

A direct analysis of the convergence of the multivariate densities, possibly
leading to stronger results than Theorem 3, would require consideration of
coalescent knots of the corresponding B-spline and is avoided here, for the
sake of simplicity. Also, notice that pw(P) is not an a.s. weakly continuous
functional, so its weak convergence is not a direct corollary of Theorem 2.

3. Multivariate B-splines. Let the random vector II = (II,,...,II,)
have a Dirichlet distribution with parameter (1,...,1). This is equivalent to
saying that (IT,...,II,_,) has constant Lebesgue density—equal to (n — 1)!
—over the simplex {(7,,...,m,_); m; > 0, £}~ 'm; < 1} and 0 otherwise. The
mean vector of IT is E(IT) = n~!(1,..., 1) and its variance—covariance matrix
is V(II) = n7%2(n + 1)7!A, where the matrix A has diagonal elements equal to
(n — 1) and off-diagonal elements equal to —1.

Let x;,...,x, € R® be distinct and not restricted to a hyperplane.
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DEFINITION 1. The density of the random vector
(3) po=IIx; + - +11,x,

is called the s-variate B-spline, or simplex spline, with knots x;, ..., x, and is
denoted by M(p;x,,...,x,).

Such fundamental objects like densities of linear combinations of uniform
variates made various appearances in the statistical literature [see, e.g.,
Watson (1956) and related works] and were called multivariate B-splines in
de Boor (1976), where a geometrical interpretation, equivalent to the defini-
tion above, is given. This geometrical interpretation is a multivariate exten-
sion of the work by Curry and Schoenberg (1966), where an explicit formula
for the univariate B-spline is derived through a Peano representation of the
divided differences and a classical formula due to Hermite and Genocchi. For
s=1,

n—2
(4) M(,u;xl,...,xn)=(n—1)zn:M,
i—1 e (% — x;)
where (-), denotes positive part.

In the multivariate case, for a small to moderate n, recursive formulae due
to Dahmen and Micchelli [see the bibliography in Dahmen and Micchelli
(1983)], together with the computing power attained in recent years, provide
viable alternatives to cumbersome explicit formulae and approximations of
the earlier statistical literature. For an account of these formulae and for
other applications of multivariate B-splines in statistics and probability, see
Dahmen and Micchelli (1986) and Karlin, Micchelli and Rinott (1986). For the
present purposes, the following result is sufficient:

THEOREM 4 [Micchelli (1980)]. For any p € RS and A €R such that
Yl A =1land p =L, \;X;, we have forn > s + 1,
n—1 n

5) M(p;xq,...,x,) = P R, Y NM(psXy, . X X g, X)),
i=1

From a practical point of view, in order to calculate a multivariate B-spline
at a specific point p, the recursion in (5) above is iterated down to n = s + 1,
for which

s!
(6) M(H;X17""xs+l) =
det[ 1 1 ]
X v X
for p in the interior of the convex hull of x4,...,x,,, and 0 otherwise. See
Micchelli (1979) and Grandine (1988) for further discussion on evaluation
problems.

For a large n instead, normal approximations hold under usual moment
conditions and are discussed in Section 5.
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4. Exact Bayesian bootstrap densities of moments. The results de-
scribed in Sections 2 and 3 can now be combined by considering x; =
(¥, y2,...,98), for i = 1,..., n, where y,’s are distinct observed values. We
conclude that the BB density of w(P), is a multivariate B-spline with knots
Xi,...,X,. (The theory could be extended to the case of coincident observa-
tions by defining B-splines with coalescent knots appropriately, but this is
not done here, for the sake of simplicity.)

For example, for s = 1, it is easy to secure the equivalence of formulae (4)
and (1), with x; = y,,—the order of the x;’s does not matter—by noticing
that their difference can be written as

(n—l)i (x; — n)

i=1 nj#i(xi - xj) ’

which is the divided difference of the polynomial (n — 1)(-— u)"~2 at
Xi,..., x, and therefore equals O [see, for example, Theorem 2.1.3.10 in Stoer
and Bulirsch (1993)].

The multivariate BB density of pw(P) is log concave and of global continuity
class " "2 if every s + 1 knot spans a convex hull of positive volume in R*
(see references in Section 3). Multivariate B-splines are therefore very smooth,
even for a small sample size. This is particularly relevant, since critics of the
use of Dirichlet priors have often emphasized their essentially discrete char-
acter (and consequently their inappropriateness) for the analysis of continu-
ous data.

Let m; =Y., y{/n be the jth sample moment, Jj=1,...,s. Then, since
p =[x,,...,x,]IT, its mean is

(7 E(p) = [xy,....,x,]E(IT') = (my,...,m,) = m

and its variance—covariance matrix is

(M — mjmk]sXs-

(8) V("') = [xl”"’xn]V(H)[xh“"xn], - n+1

Figure 1 contains contour and perspective plots of BB joint densities of
first and second moments (u,, u,)(P) for two samples of size n =5 and
n = 10 simulated from a Normal(0, 1) distribution. The convex hull of points
(y;,¥2Y,i=1,...,n, supports the BB density and is drawn on the contour
plots. Edge effects are attenuated as the sample size increases and the
posterior density approaches normality, as described in the next section.

It is clear how to use computations of this sort to obtain, numerically, high
posterior density regions and decision theoretical quantities for unknown
moments and smooth transformations of them, like the variance u, — u?2.

The methodology illustrated here extends to the joint posterior density of
functionals of the form [y;(:y)P(dy), for smooth real measurable functions i;,
it =1,...,s,as in Corollary 1 of Cifarelli and Regazzini (1990).
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5. Asymptotic Bayesian bootstrap densities of moments. A fre-
quentist asymptotic analysis of the results obtained in the previous sections
may be carried out by supposing Y,,...,Y, are independent and identically
distributed random variables with unknown “true” distribution F,, unknown
“true” mean u,; and so forth. From this point of view, the BB density of
several moments is to be viewed as a random multivariate B-spline, since its
knots are random.

THEOREM 5. If F, possesses finite moments p 1,..., Mo 25, then
converges weakly, a.s.-Fy X F, X ---, to an s-variate normal with mean
(0,...,0) and variance—covariance matrix [ po ;1j — Mo, j Mo,k lexs-

Proor. The standardized vector p* has a multivariate B-spline density,
since it can be written as w* = LII;x} ,, with x} = Vn (x, — m). It suffices
to show that conditions of Corollary 4 of Dahmen and Micchelli (1981) hold
almost surely.

Condition (a) holds a.s. since p, 5, < % implies

2
(— max [x¥ nll) = — max |x;, —m|®* >0 as.
l<i<n ’ n i<i<n

by the strong law of large numbers.
Condition (b) holds a.s., trivially, with (using Dahmen and Micchelli’s
notation) y = (0,...,0).
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Condition (c¢) holds a.s. with A (using Dahmen and Micchelli’s notation)
equal to half of the variance—covariance matrix in the statement of the
theorem, since u, 5, < %, by the strong law of large numbers. O

Theorem 5, parallel to standard normal asymptotic theory [see, e.g., Ser-
fling (1980), page 68], is also a generalization of Theorem 4.1 of Lo (1987).
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