The Annals of Statistics
1995, Vol. 23, No. 2, 396-421

DUAL LIKELIHOOD'

By PER ASLAK MYKLAND
University of Chicago

This paper introduces the concept of dual likelihood as a method of
improving accuracy in inference situations depending on martingale esti-
mating equations. Asymptotic results are given for the dual likelihood
ratio statistic, and the structure of the family of alternatives is explored.
Applications to survival analysis and also to time series, likelihood infer-
ence and independent observations are given. Connections to nonparamet-
ric likelihood (including empirical likelihood) are established.

1. Introduction. Martingale methods are a powerful tool for dependent
variable inference. Estimators in a number of such models have distributions
that are (to first order) approximated by the distribution of a martingale, and
martingales have asymptotic properties that hold under particularly weak
conditions. This is reflected in the wide use of martingale theory to show
central limit theorems (CLTs) for estimators based on dependent variables, in
particular such longitudinal data as occurs in survival analysis, time series,
stochastic differential equations, sequential inference and certain types of
stochastic simulation. Assessing the variance of a martingale is also particu-
larly straightforward. There is an extensive literature on the martingale
CLTs and their applications; some important references include Aldous (1978,
1989), Hall and Heyde (1980), Rebolledo (1980), Helland (1982), Jeganathan
(1982), Jacod and Shiryaev (1987), Fleming and Harrington (1991) and
Andersen, Borgan, Gill and Keiding (1993).

A major weakness, however, is that for small samples the quality of the
approximation in the martingale CLTs can be quite poor. The purpose of this
paper is to propose a way of correcting this problem. We call the approach
dual likelihood for reasons particularly related to Section 6 and it will
permit, in particular, the creation of likelihood ratio statistics in the martin-
gale inference setting.

An overview of the idea is given in Section 4. We shall then argue in detail
(Section 5) that the dual likelihood ratio (LR) statistic gives rise to tests and
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confidence intervals with good accuracy properties, and also that the dual
likelihood itself is a reasonably natural construction (Sections 6 and 7). An
additional feature is that there are some surprising connections: in the case
of independent data, the dual LR statistic coincides with Owen’s empirical LR
statistic [Owen (1988a, 1990)]. There are similar connections to point process
likelihoods in survival analysis. This is discussed in Section 6. In both cases,
this connection reduces nonparametric LR statistics to parametric ones, so
that, for example, the existence of Bartlett correction becomes “obvious” in a
heuristic sense. The relationship to parametric likelihood constructions
(ordinary, partial, quasi and projective likelihoods) is discussed in Sections
3.3 and 4.2.

First, however, we give a description of existing technology for martingale
inference (Section 2) and a review of the data structures to which martingale
methods are most frequently applied (Section 3).

2. The state of the art. A number of data structures are amenable to
analysis with the help of martingales. Most of the data types concerned can
be characterized as longitudinal (cf. Section 3). Although the inference situa-
tions considered are quite diverse, the martingale structure provides a num-
ber of unifying characteristics, which makes it fruitful to work on them as a
group. For one thing, the current way of setting tests and confidence intervals
is mostly the same for all the data types considered. For another, the dual
likelihood is also applicable to martingale inference situations in general.

The “baseline” method for martingale-based inference is to find a “score
function” m(8) = m,(6) which is a martingale for the true value of the
parameter 0, and then do inference based on this. The estimate 6 of 9 is
given by

m(8) =0,

and tests and confidence intervals can be based on the asymptotic standard
normal distribution of either m(8)/s or m(8)X6 — 0)/s, where s* is some
estimate of the variance of the martingale (and similarly in multiparameter
problems). The choice of s* which works with the greatest generality is
the observed quadratic variation, evaluated either at 6 (s = [m(0) m(0)]
orunder a null hypothesis (s2 = [m(8), m(6)]). We shall refer to
m(0)/y/[m(8),m(6)] and its square as martingale score statistics.

The definition of the quadratic variation [m(6), m(8)] depends on the
structure of the martingale m(6). In most instances, m,(6) is a compensated
sum of jumps,

(2.1) m,(8) = Y. Am,(0) — A(9).

0<s<t
This includes the case of discrete time martingales, where the increments can
be seen as jumps at fixed times. In this case, A,(8) = 0, so

(22) m(0) = ¥ Amy(0).
i=1
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Whenever the martingale is given by (2.1), the quadratic variation is given
by

(23) [m(8),m(6)], = L Am,(6)"
0<s<t
If m,(0)=(my (6),...,m, (6)) is a vector, one can similarly define a

quadratic covariation matrix through [m(6), m(8)], = Lo, .. Am, AmT.
Formula (2.1) assumes that m(6#) does not have infinite total variation.
The results in this paper are not subject to this restriction; our only assump-
tion is that (m,(8)), < , <, should be right continuous with left limits (cadlag).
We confine explicit discussion of this case, however, to Section 8, infinite total
variation being rare in problems involving real data. Note that we also
assume the “usual conditions,” in a sense to be discussed in Section 8.
Examples of what these quantities look like are given in the next section.
Rigorous conditions for m(6)/y/[m(8), m(0)] to be asymptotically standard
normal are given in, for example, Theorem 3.2 of Hall and Heyde [(1980),
page 58] and Theorem 2 of Rebolledo [(1980), page 273] and Theorem 5.1 of
Helland [(1982), page 88]. The conditions one needs to impose on the other
statistics mentioned are what is required to make the delta method work.

3. Data structures. Main data types under consideration are discussed
in the following subsections. This is by no means an exhaustive review—just
a set of motivating examples.

3.1. Survival data. Right-censored survival data usually give rise to esti-
mators which can be analyzed with martingales. The most basic problem is
the estimation of the survival distribution when there are no covariates.
There are currently several competing methods for setting pointwise confi-
dence intervals and global bands. One can use the asymptotic Gaussianity of
the Kaplan-Meier [Kaplan and Meier (1958)] or Nelson—-Aalen estimators
[Nelson (1969); Aalen (1976, 1977, 1978)] or one can consider other estima-
tors such as those in Thomas and Grunkemeier (1975) or the transformation
methods considered in Borgan and Liestgl (1990). The reason for the exis-
tence of so many approaches is presumably due to a combination of two
factors. On the one hand, the problem has substantial practical importance.
On the other hand, the CLT tends to not work very well in the presence of
certain types of heavy censoring [see Meier (1976) and also Latta (1981) in
connection with comparing two survival distributions].

The Nelson—Aalen estimator corresponds to the “baseline” method. Let A
be the cumulative hazard of patients with i.i.d. lifetimes, and assume for the
purpose of this discussion that it is continuous [if the cumulative distribution
F(t) is continuous, then A, = —In(1 — F(¢))]. If one wishes to estimate

“9=A, at a fixed time point #, the martingale which is used in the
Nelson—Aalen procedure is given by

(3.1) m,(0) = ftYs_l dN, — A,
0
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up to the time when the last patient ceases to be under observation, where Y,
is the number at risk at time s and the jumps of N represent the observed
deaths of patients (so A is the compensator of the jumps). Also,

[m(0), m(8)] = [m(8), m()]

(3.2) "
= [Y2an,,

0
which is a commonly used choice for s%; see Andersen, Borgan, Gill and
Keiding [(1993), pages 180—-183]. The statistics mentioned in Section 2 then
all coincide, and asymptotic normality is guaranteed by, for example, the
conditions in Aalen (1977).

In connection with this example, it should be emphasized that in this
paper, we only focus on tests and confidence intervals for finitely many
parameters. The dual likelihood ratio statistic described in Section 4 may be
helpful in constructing confidence bands, too (by evaluating it at each time
point rather than taking the whole of A as parameter), but we have not
investigated this issue.

As far as survival data with covariates are concerned, we shall take as an
example the regression model in Aalen (1980, 1989). The model is as follows.
Patients 1 to n have survival distributions with cumulative hazards
H(#), Hy(t),... . The vector H(t) = (H\(2),..., H,(¢))" is given by

(3.3) H(t) = j:Y(s) dA,,

where Y(s) is an n X p vector of (possibly time dependent predictable)
regressors and A, is a p X 1 “cumulative” coefficient. The most standard case
would be coefficients which do not vary over time, in which case the hazard
rate h(¢) = H'(¢) has the form

(3.4) h(t) = Y(t)a,

where « is a vector (so A, = at). In estimating 6 = A,, the martingale used
by Aalen is

(3.5) m,(8) = fotX(s) dN, — A,,

where X(s) = (Y(8)TY(s))"1Y(s)T, up to the time when Y(s)TY(s) is no
longer of full rank. N, is an n-dimensional vector whose ith component jumps
from O to 1 if and when patient #i dies under observation. The (matrix)
quadratic variation is

(36) [m(8), m(8)], = [X(s) dN(s) X(s)",

where N(¢#) is the matrix with N(¢) on the diagonal and zeros everywhere
else.

Other models which fall into the martingale framework are the partial
likelihoods [Cox (1972, 1975), Andersen and Gill (1982), Wong (1986) and
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Efron (1988)], as well as procedures for comparing populations [see, e.g.,
Aalen (1978) and Latta (1981)]. For books containing broad treatments of the
survival analysis /martingale connection, see Fleming and Harrington (1991)
and Andersen, Borgan, Gill and Keiding (1993). Also note that point process
methods are not restricted in their application to survival data. Other appli-
cations include capture-recapture experiments [see, e.g., Becker and Heyde
(1990)] and the infection model in Rida (1991).

3.2. Time series data. Autoregressive (AR) process inference is amenable
to martingale treatment in a general setup where one observes pairs (X,,,Y),),
related by

p
(3.7) Y,= Y 60X, ,+e¢,.

i=1
In the case of a linear AR model, X; , would be Y, _;. For nonlinear models
[such as in Priestley (1988) and Tong (1990)], X; , could be f(Y,_,), or it
could be something more complicated. The &’s are martingale increments
with constant variance o2 (i.i.d. being a special case).

Least squares estimation for 6 produces a score which is a martingale
[see, e.g., Hall and Heyde (1980), Chapter 6.2]. The baseline method is
very standard in this context. The score function is the vector m,(0) =
(Mg, nioys -+ -» My, ,(0)) given by

(3.8) m; o (0) = L X; n8:(6),
k=1
where
p
(3.9) &(0) =Y, — Z 0, X; 1
The quadratic variation is [m; (8), m; (0)] =X X ksk(()) Alter-

natively one can estimate covariance in the quas1-hkehhood Way by 2 Xi_,
X; 1 X, ,, where 6 is the variance estimate based on the £,(6)s (using
either the true 6 or 9).

Asymptotic normality is, for example, assured by the conditions in Chap-
ters 3.2 or 6.3 in Hall and Heyde (1980) [cf. Chan (1990) and Tjgstheim
(1990)]. The normal approximation, however, can be arbitrarily bad when one
is close to the boundary of the domain of stationarity [indeed, it fails if one
approaches the boundary on a suitable triangular array; see, e.g., Chan and
Wei (1987)].

3.3. Parametric and partial likelihood inference. Though not necessarily
longitudinal, the score function in a parametric problem is a martingale
[“time” usually representing number of observations; see, e.g., Chapter 6 of
Hall and Heyde (1980)].

The dual likelihood concept is somewhat less relevant in this context (it
seems less interesting to mimic a likelihood when you already have one). In
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instances, however, where there is uncertainty about the validity of the
parametric model, a certain measure of robustness can be introduced by
basing inference only on the martingale property of the score, rather than on
the entire likelihood. In the simple case of a score test, this might mean
letting &2 be the observed quadratic variation of the score instead of the
observed or estimated expected information [as proposed in Royall (1986)].

This approach is closely related to quasi-likelihood inference [see, e.g.,
Godambe and Heyde (1987) and Chapter 9 of McCullagh and Nelder (1989)
and the references cited there] and projective likelihood inference [McLeish
and Small (1992)]. In these approaches, however, assumptions concerning the
form of the (conditional) second moment are made, leading to an estimate of
variance not solely based on the martingale property of the quasi-score.
Incorporating overdispersion [see, e.g., McCullagh and Nelder (1989)] into the
model can partially or fully offset this, and corresponds to involving the
quadratic variation of the martingale.

Likelihood inference is further discussed in Section 4.2.

3.4. Independent samples. Suppose one takes independent samples
X, X and wants to estimate a parameter 6 given by

Clearly, the estimating equation
N
my(0) = X (X, 0)
i=1

is a martingale. For nonrandom N, this may seem quite uninteresting, since
one then has the entire arsenal of techniques for independent data at one’s
disposal. This is belied, however, by the connection between dual and empiri-
cal likelihood. If N is based on a stopping rule, the possibility of using
martingale methods is even more relevant.

4. Dual likelihood.

4.1. Definition. The device by which the likelihood is created is the
following. Suppose m(6) is a ( p-dimensional) martingale at the true value of
(the p-dimensional parameter) 6, given by formula (2.1). The dual likelihood
is a function L,(u) of the parameter 6 and a dual parameter p (of the same
dimension as ), so that /,(u) = In(L,( w)) is a log likelihood in u for fixed 6
and so that

(4.1) m(0)" = (9lg( 1)/ s, Ily( )/ Ity )lu=o.

One can now go ahead and use likelihood methods on u instead. For example,
a test of 6 = 6, can be carried out by doing a likelihood ratio test with L, ( w)
on the hypothesis that u = 0. We refer to this procedure as a “dual” LR test.
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Similarly, confidence sets for 6 can be created by inverting the test (for each
0).

The explicit form of the dual likelihood is the Doléans-Dade multiplicative
martingale corresponding to um,(8), alias the product integral of um,(6),

(4.2) Ly( ) = exp(—pA(0)) ljt(l + u"Amy(6)),
so that .
(4.3) L(w)=—uA(0) + ) ln(l + p,TAms(G)).

References relating to the Doléans-Dade martingale include Doléans-Dade
(1970), Jacod and Shirayev (1987) and Gill and Johansen (1990). [The formu-
las (4.2) and (4.3) assume that m(6) does not have infinite total variation; the
general formula is given in Section 8.] Computation of the dual LR statistic is
discussed in Sections 4.2 and 6.

4.2. Some whys. Several questions are immediate. Why is (4.2) a likeli-
hood or why does it have likelihood properties? Why this likelihood, rather
than any other ones, and why does one want a likelihood in the first place,
anyway?

Most of the rest of this paper is concerned with answering these questions.
The following discussion is a summary explanation, with references to later
sections.

At the risk of being simplistic, let us divide the desirable properties of
likelihood inference into two categories: efficiency and accuracy. Efficiency
has to do with terms ranging from “inferentially correct” to “uniformly most
powerful.” This property, obviously, vanishes when using the wrong model. So
dual likelihood is not efficient, in the same way as partial likelihood is not
efficient [Wong (1986)].

The accuracy properties, however, remain. Accuracy refers to the quality of
the asymptotic approximation and to how close nominal and actual coverage
probabilities (and type I errors) are to each other. (Improvement in accuracy
is, for example, the main purpose of bootstrapping and Edgeworth correction.)
The likelihood ratio statistic, which is our main focus, converges to the y?2
distribution in a much nicer way than the studentized score statistic con-
verges to the normal distribution. It gives, in other words, rise to asymptoti-
cally based tests and confidence intervals which have considerably greater
accuracy than the ones derived from score statistics (see the discussion in
Section 5.2). It is not necessary for the model to be correct for this to be true.
The partial likelihood ratio statistic can generally be expected to have good
accuracy properties [see Mykland and Ye (1992)], and the same is true for the
dual likelihood ratio statistic (cf. the discussion in Section 5).

In fact, the score statistic from the dual likelihood (4.2) is

ieo(o) _ m(6,)
—0, ()Y [m(8y), m(8,)]"
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(and similarly in multiparameter problems). Hence, going from the martin-
gale score statistic to the dual LR statistic is, in some sense, like changing to
a better statistic in the same parametric problem. In particular, the efficiency
of the dual LR procedure is, to first order, the same as for the martingale
score test (cf. Section 5).

To sum up, the slogan is same efficiency, better accuracy.

In the particular case of martingales which are score functions in an
ordinary, partial or projective likelihood model, this means that one can gain
robustness without sacrificing accuracy or efficiency (at least in the Pitman
sense). In comparison to quasi-likelihood, we conjecture that there will be a
gain in accuracy, as quasi-likelihood is not a likelihood in the sense of
satisfying Bartlett identities. We emphasize that partial and projective likeli-
hood are likelihoods in this sense.

The reason for using the likelihood (4.2) in particular is that it is the actual
likelihood ratio that occurs with a natural family of alternative hypotheses.
Also, provided the class of probability distributions considered is sufficiently
broad, (4.2) is the only likelihood for testing against this alternative. This
issue is further discussed in Sections 7.1 and 7.2.

In addition, (4.2) is, in a sense, the most parsimonious likelihood ratio
consistent with m(6) being the desired score function (cf. Section 7.3). Admit-
tedly, this argument is an aesthetic one only.

Is (4.2) a likelihood in the first place? The requirements for L, (u) to be a
true likelihood (in w, for fixed 6,) is that L,(u) integrate to 1 under all
probability distributions P for which 6(P) = 6,, and that it should be
nonnegative [so that I, () is defined for a fixed set of w’s]. This is what is
needed for L, ( w) to be of the form dQ/dP, where @ is a probability
distribution.

Both these properties can break down (in which case the alternative
hypothesis is a signed measure rather than a probability distribution), but
not in ways that typically matter. The set where the dual log likelihood is
defined is usually data dependent [we shall take the dual likelihood itself to
be defined (and negative) even when [,(u) is not]. In fact, this can also
happen to some extent in true likelihood problems. In terms of computing the
LR statistic, the data dependent domain can be resolved as follows. There is
always a neighborhood around 0 for which L,( w) is defined. Moreover

‘9210( /“L) _ A'ni,s(o) A'nj,s(e)

I I st (1+ uAmy(0))

so l,(p) is strictly concave in this neighborhood (unless [m(8), m(6)], = 0).
Hence the “dual MLE” f is unique if one restricts consideration to this
neighborhood (which seems natural) and, in particular, the LR statistic is
given by 2(1,( &) — ,(0)) (it is zero or undefined if [m(6), m(6)], = 0).
Furthermore, the moment properties of the LR statistic only depend on the
likelihood structure through the Bartlett identities. These remain valid in
this case [cf. Mykland (1994)], whether or not the likelihood is nonnegative.
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The same consideration applies if the dual likelihood does not integrate to
1. The dual likelihood is always a local martingale [cf. page 59 of Jacod and
Shiryaev (1987)], so both the Bartlett identities and the property of integrat-
ing to 1 remain true up to stopping times. Failure to integrate to 1 is a
symptom of “knowing too much,” and can be incorporated into the theory (cf.
the end of Section 7.1).

Finally, note that we are not trying to improve the point estimate of 6. The
assumption is that m(0) is the desired score function, and our focus is only on
the accuracy of tests and confidence intervals. [,( u) is a log likelihood in pu,
but we are not estimating pu.

If the dual likelihood concept seems uncomfortable, one can alternatively
think of the dual LR statistic as just a transformation of a martingale. It can
be given a suitably neutral name, say a generalized Edgeworth—-Fisher
transform, denoted by T, defined for martingales (m,), . , ., as the maximum
of (4.3) in the relevant neighborhood of the origin. A technical advantage of
this approach is that T'(m) is defined without reference to integrability
conditions, and even for local martingales [cf., again, page 59 of Jacod and
Shiryaev (1987)]. From the likelihood argument we can predict that inference
based on T'(m) will have high accuracy, but one does not need a likelihood
rationale to define T'(m).

On balance, we have decided to stay with the likelihood name, as it does
convey some intuition. Whether it is correct to call this object a likelihood,
however, is clearly debatable.

4.3. Examples. Before further discussing the theoretical aspects of this
log likelihood, we explain what L, (6) looks like for the martingales discussed
in Section 3.

ExamPLE 1. In the case of the Nelson—Aalen estimator (still assuming the
cumulative hazard A to be continuous), let 6 = A,. Hence A,(6) = 0 and
Am, = AN,/Y,, so that

(4.4) l(w) = —pb + [n(1 + p/Y,) dN,.
0

One can now use this to set confidence intervals for 6 or, equivalently, for
(4.5) P(survival up to time ¢) = exp(—9).

To see the merits of the procedure, consider the following simulation experi-
ment.

Data on survival times of 20 patients were generated from the unit
exponential distribution and censoring times were generated independently
from the uniform (0, 1) distribution. Pointwise confidence intervals for the
survival distribution were generated using (a) the inverted dual LR test and
(b) the baseline method, that is, the usual martingale variance estimator
setting standard errors for the Nelson—Aalen estimator [see (3.2)]. For com-
parison, we also included (c) Greenwood’s formula, setting standard errors for
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TABLE 1
Simulation of nominal 95% confidence intervals for survival probabilities*

Coverage Error (nominal — actual) (%) % Intervals
Time Dual LR Kaplan-Meier Nelson-Aalen Computed
0.5 1.8 4.3 6.6 100.
0.75 19 39 6.4 92.6
09 5.1 7.4 13.0 59.5
0.95 5.9 7.9 16.7 38.7

*20 patients, survival distribution unit exponential, censoring distribution uniform [0, 1]. Confi-
dence intervals are generated using data up to times 0.5, 0.75, 0.9 and 0.95, respectively.
Standard errors for the Kaplan-Meier estimator are set using. Greenwood’s formula; for the
Nelson-Aalen estimator they are set using the square root of formula (3.2).

the Kaplan—-Meier estimator. Note that in view of the discussion in Section 6,
the dual LR statistic is the same as the profile LR statistic in this model.
Intervals were computed using data up to times 0.5, 0.75, 0.9 and 0.95. The
nominal level is 95%. The results are given in Table 1, and it is clear that the
dual LR procedure outperforms the two other procedures, at least in this
case. [Note that intervals were only included if there were still patients under
observation at the relevant time (cf. the last column in Table 1). The number
of samples was 1000 at each time.]

To illustrate the situation further, Figure 1 gives the gq plot for the
square root of the dual LR statistic and the y distribution for survival at time
0.5 and the gg plot of the absolute value for the studentized Nelson—Aalen
estimator (the “baseline statistic”) and the y distribution at the same point
on the time axis. The qq plot for the normalized Kaplan—-Meier estimator is
very similar (in shape) to the one for the Nelson—Aalen estimator (although
the slope is slightly different).

It should be emphasized that we are not trying to improve on the
Nelson—Aalen or Kaplan—Meier estimators as point estimates, only on the
interval estimators which follow from using the point estimators in conjunc-
tion with the usual standard errors.

ExaMPLE 2. Aalen’s regression model gives rise to a dual likelihood which
is very similar to (4.4). If § = A, it has the form

(4.6) Ly(u) = —u0 + 2 [1n(1+ WTX,(s)) dN}(s),

where X(s) is column #j of the p X n matrix X and N;(s) represents
patient #j. Note that if one wishes to set a confidence interval for a scalar
component 6; of 6, one can make a dual likelihood for this component only:

(4.7) Ly(p) = —pb; + il fot]n(l + ;LXij(s)) dN;(s).
j=



406 P. A, MYKLAND

square root of
likelihood ratio statistic

0 1 2 3 4

(@) .
=
N -
w -t
o
O
absolute value of studentized
Nelson-Aalen statistic
0 2 4 6 8
O § L 1 1 1 1
P oo
8o
@ - g
O

Fic. 1. qq plots for statistics used to test the value of P(survival beyond time 0.5) in the same
experiment as in Table 1.

ExampLE 3. If the martingale evolves in discrete time, the compensator
A,(6) = 0, whence (4.3) becomes
(4.8) l(p) = X In(1+ u"Am(6)).
s<t
This covers the case of AR processes, likelihoods in discrete time and
independent data. :
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4.4. Alternative likelihood constructions. Equation (4.3) is not necessarily
the only way to achieve (4.1). To state the obvious, if m(8) is a score function
in a likelihood problem, one can, of course, take L to be the true log
likelihood. The same is true for partial likelihoods. Another likelihood con-
struction is the one of McLeish and Small (1992). In some instances, it may
also be useful to take
ly(p) = pm(8) — u*k(m(0), m(6))/2!

—ul(m(0),m(0),m(0))/3!— -,
where the k’s are the cumulant variations defined in Mykland (1994). As far
as a general procedure is concerned, however, (4.2) seems to be the most
widely applicable construction.

The log likelihoods in (4.3) and (4.9) have previously been used in Mykland
(1994) to provide part of the argument to extend the Bartlett identities
[Bartlett (1953a, b)] to martingales. This is useful in that it greatly eases the
calculation of cumulants for many martingales and it also simplifies theoreti-
cal arguments (the martingale CLT is quite easy to show with the Bartlett
identities, and the same appears to be true for martingale asymptotic expan-
sions).

(4.9)

5. Asymptotics of the dual likelihood ratio statistic.

5.1. First order properties. As far as first order asymptotic behavior is
concerned, the dual LR statistic has the same properties as the corresponding
score-type statistic, at least as far as asymptotic laws and Pitman efficiency
are concerned.

To see this, let m? = m}(9), 0 <t <t,, be a triangular array of martin-
gales (or even local martingales) and let LR, be the corresponding dual LR
statistic, that is, LR, = 2sup, /,(u), where the supremum is taken in the
neighborhood of zero where L,( ) is nonnegative, and where Ly(u) is given
by (4.2) or, more generally, by (8.2). Also, let the score statistic be given by

T _
S, = (m}) [m",m”]tnlm;‘"

and let A, be the smallest eigenvalue of [m™, m"]tn. We then have the
following result.

THEOREM 1. Suppose that S, is tight and that Sup05t5t"||Am?||2 /A, =
0,(1). Then
(5.1) LR, =S, +0,(1).

The second regularity condition guarantees that the jumps of (m}) are
asymptotically negligible. The proof is in Section 8.

Since (5.1) remains true under contiguous alternatives, our remarks about
Pitman efficiency also follow from the theorem. As far as limit laws are
concerned, one can now apply one’s favorite martingale central limit theo-
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rem [from, e.g., Hall and Heyde (1980), Rebolledo (1980), Helland (1982),
Jeganathan (1982), Jacod and Shiryaev (1987)] to get that

(5.2) LR, - sz

in law. The references cited cover all the data structures discussed in Section
3. In the survival analysis examples, see also Aalen (1977, 1978, 1980, 1989),
Fleming and Harrington (1991) and Andersen, Borgan, Gill and Keiding
(1993).

Theorem 1 also means, of course, that the dual LR statistic and the score
statistic fail to have asymptotic y2 distribution in the same instances. This
is, for example, the case when 6 = 1 in the AR(1) process
(53) Xn+1 = 0Xn + €n+1;
compare Chan and Wei (1988).

The fact that these two types of statistic fail at the same time does not
mean, however, that they behave equally badly at points in the parameter
space which are close to singularities. It is usually the hope that the LR
statistic behaves better in such cases. This is partially based on numerical
experience [cf. Table 1, for example, and also the remarks on page 189 in
McCullagh (1987)] and partially on second order asymptotics.

5.2. Higher order asymptotics. It is here that the two types of statistics
part company. The dual LR statistic will tend to inherit the Bartlett cor-
rectability of the ordinary parametric LR statistic [cf. Lawley (1956) and also
McCullagh (1987), Chapter 7]. A rigorous statement to this effect can be
made in the one parameter case, in view of the calculations in Chapter 7 of
McCullagh (1987) and of Theorem 7 in Mykland (1995); see below. We have
not investigated rigorous conditions in the multiparameter case, but the
discussion in McCullagh (1987) suggests that these would be quite weak (if
one is willing to ignore lattice issues).

Even if one does not actually carry out the Bartlett correction, the accuracy
properties are quite nice. Arguably, this can be seen from the fact that the
Bartlett factor is then the main error term. Also, the y? approximation tends
to hold up well in the tail of the distribution, in view of the connection to the
saddlepoint approximation and Barndorff-Nielsen’s formula; see, for example,
Barndorff-Nielsen and Cox (1984), McCullagh (1987) and Reid (1988). We
have not, however, investigated the conditions for this property to be inher-
ited by the dual LR statistic.

To state a rigorous result on Bartlett correction, let

(5.4) F,(x) —P(LRn/E(LRn) <x)
and let xZ(x) be the cdf of the x? distribution with 1 degree of freedom. As is
generally the case for Edgeworth expansions for martingales, it is not known

how to show general pointwise results [cf. the discussion at the end of Section
1 of Mykland (1992)]. In this instance, we shall show that

(5.5) Je(x) d(Fy(%) — xi(x)) =o(n™")
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for all sufficiently smooth g [specifically ones that have five continuous
derivatives and vanish outside a compact set; the exact requirements on g
are, of course, quite irrelevant, the point being that one can assert something
like (5.5) at all under broad martingale conditions]. The regularity conditions
are those of Theorem 7 of Mykland (1995) and, in addition, that

(5.6) E([m®, m", m", m"]; /n)’ = O(1).

The theorem is then as follows (the proof is in Section 8).

THEOREM 2. Under the regularity conditions stated above, (5.5) holds for
the specified class of functions g.

A similar argument would show that the signed square root of the dual
likelihood ratio statistic [with the sign of dl,(u)/du)] can be mean and
variance adjusted to be N(0,1) + o(n~!) (again with a suitable convergence
type).

If one practically wishes to use correction factors for the LR statistic or its
signed square root, one would normally have to estimate the relevant quanti-
ties. We have not investigated how to do this. For the i.i.d. case, estimates can
be found in DiCiccio and Romano (1989) in the context of empirical likelihood
(cf. the next section).

6. Dual and nonparametric LR statistics. An interesting feature of
both (4.4) and (4.8) is that the dual LR statistic coincides with LR statistics
derived from nonparametric likelihood considerations. In the case of discrete
time, if the increments are independent, the dual and empirical [see, e.g.,
Owen (1988a, 1990)] LR statistics are the same. Specifically, if there are n
observations, the dual LR statistic coincides with the supremum of
—2(X In(p;) + n In(n)) subject to p; > 0,

(6.1) Zpi Am;(6) =0
and
(6.2) Ypi=1,

this being the empirical likelihood for an estimating function with increment
Am(0) [e.g., Am,(0) could be (X, 6) for independent X,’s; for discussions of
empirical likelihood with estimating functions, see Kolaczyk (1994) and Qin
and Lawless (1994)]. The equality between the empirical and dual LR statis-
tics remains, of course, true for nonindependent martingale increments if one
defines the empirical likelihood as if the increments were independent. It is,
however, unclear what the likelihood rationale for such a construction would
be.

In the case of (4.4), the dual LR statistic is the same as the nonparametric
LR statistic based on the point process likelihood from Jacod (1975) [see
also Jacod and Memin (1976), Gill and Johansen (1990), Greenwood and
Wefelmeyer (1990) and Andersen, Borgan, Gill and Keiding (1993)] under the
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assumption that the cumulative hazard is continuous (this is the same

likelihood which makes the Nelson—Aalen estimator the nonparametric MLE;

the LR statistic corresponding to the likelihood for which the Kaplan—Meier

estimator is the MLE is given in Thomas and Grunkemeier (1975)].
Specifically, the nonparametric log likelihood has the form

3 . dA o=
(6.3) I(A,A) =f01nﬁ(s) dN, — fOYs(dA(s) — dA(s)),

where A and A are two cumulative hazards to be compared. If one lets A be
the Nelson—Aalen estimator and if A maximizes !/ subject to the constraint
A, = 0, the resulting value of [ is the same as the maximum of (4.4) with
respect to u.

In both the above instances, the dual parameter u is the Lagrange
multiplier in the optimization problem arising from the nonparametric likeli-
hood. In the case of (6.3), the Lagrangian is

(64) I(A,A) — w(A, — 60);

it is readily verified that for given u, the maximum of (6.4) subject to A, = 0
is (4.4). For empirical likelihood, p is proportional to the multiplier of the
constraint (6.1); compare with statements (2.10) and (2.11) in Owen [(1990),
page 100].

These connections give rise to a certain mutual validation between the
nonparametric and dual likelihoods. They also suggest the possibility of
substantial feedback between the two approaches.

An immediately obvious example of this is that the existence of a Bartlett
correction for the empirical and point process LR statistics can now be seen to
follow as a corollary to the existence of such a correction for the parametric
LR statistic [the existence of corrections in the empirical likelihood case has
been proved directly in DiCiccio and Romano (1989) and DiCiccio, Hall and
Romano (1991); the same result is (as far as we know) previously not known
in the point process case].

Another example is that the computation of the empirical LR statistic has
been studied, inter alia, in Owen (1988b). These results clearly carry over to
the dual LR statistic based on discrete time martingales. Software for empiri-
cal likelihood can similarly be used in this case.

A question which naturally presents itself is whether there is a universal
“primal” likelihood which in every case gives the same LR statistic as the
dual likelihood. It is at the moment not obvious what such a construction
would be like.

7. The alternative in dual likelihood.
7.1. The alternative hypothesis. Suppose we want to test a null hypothe-

sis that @ = 6, with the dual LR statistic. Set m, = m(6,). The alternative
induced by the dual likelihood implies the following. Set dP,/dP = Ly ( ),
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where P is consistent with the null hypothesis [i.e., 8(P) = 6,]. Under P,, it
then holds that

(7.1) m, —{m,m); p
is a (local) martingale; (m, m) is the predictable quadratic variation, alias

the compensator of [ m, m] (in particular, it is a p X p matrix, where p is the
dimension of 6 and w).

EXAMPLE 4. If m is given by formula (2.2) (i.e., lives in discrete time), the
predictable quadratic variation is given by

n
(7.2) (m,md, = X E(Am; Am{|F;_,),
i=1
where () is the filtration describing the history of the process. In the case of
a one-dimensional estimating function ¢ based on ii.d. data Xj,..., X,,, that
is,

it has the form
(7.4) (m,my, = nEy(X, 6,)".
Hence, under the alternative,
(7.5) Ey(X,6,) = nEy(X, 6,)",
which by reparametrization means
(7.6) Ey(X,0y) = u'.
Similarly, in the case of the time series (3.7),
n
(7.7 (m,m),=0% ), X ,XF.
k=1

Statement (7.1) is now the same as m(6 + o %), the martingaleness of which
.is compatible with a model

P
(7.8) Y, =) (0i + 0'2p,i)Xi’n + &,,
i=1

where the ¢, are martingale increments.
In the case of the Nelson—Aalen estimator, we are outside the framework
of (7.2). Here,

(7.9) (m,my = [Y;dA,.
: 0

There are the “usual” caveats to the description above, relating to integra-
bility and to possible negativity of the dual likelihood. The latter is easy to get
around, as the concepts of martingale and local martingale have a natural
extension to finite signed measures that integrate to 1. As far as integrability
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is concerned, one needs to require that (m, m), is defined under P. A little
stochastic calculus then yields that (m, — {m, m); p)L,( ), is a local mar-
tingale under P [cf. Doléans-Dade (1970) and Lenglart (1977); see also
Section L4f of Jacod and Shiryaev (1987), pages 58-61]. Hence, suitably
localized, (7.1) is a martingale under P,. Formally, one can assert the
following theorem.

THEOREM 3. Suppose that (m,),_. ., is a martingale under P. Then,
there is a sequence of stopping times {7,}, P(r, =t) — 1,"so that dP{"”/dP =
Ly (), (the dual likelihood ratio evaluated at time 7,) defines a ﬁmte szgned
measure satisfying P™(Q) = 1, where () is the entire sample space. If, in
addition, {m,m)s)y s, is deﬁned under P, then m, — {m, m)s u is a local
martingale under P,f") for 0<s<m, (ie,mg ,, — (m, m)s, ar, i is a local
martingale).

The result follows from the above discussion and from further use of
" Theorem 1 of Doléans-Dade (1970) or Theorem 1.4.61 of Jacod and Shiryaev
[(1987), page 59].

7.2. Extremality, and the uniqueness of the alternative. The interesting
fact is that there is a partial converse to the result of the previous section: Let
M, be the class of probability measures P consistent with the null hypothe-
sis that 6 = 6,, that is, for which 6(P) = 6,. If the class M, is sufficiently
big, then the dual likelihood (4.2) is the only possible likelihood for testing
against the alternative (7.1). To be precise, “sufficiently big” means that M,
contains extremal elements from the set M of probability measures under
which (m,), ., ., is a local martingale with m, = 0 [M and M, are defined
with reference to the filtration (#),_,., generated by the data or, more
generally, the history of the process]. Before proceeding with the formal
result, here are some examples.

ExAMPLE 5. For a one-dimensional estimating equation based on i.i.d.
data, let the martingale increments be given by (7.3). M is given by

(7.10) M = {P: Eply(X, 6,)| < @, Epyr(X, 6,) = 0}.

Extremal elements of M include the distributions which are degenerate at
x’s for which #(x, 6,) = 0 and ones which are concentrated at pairs (x,, x,)
which are not zeros of (-, 6y), but for which ay(x,, 6,) + (1 — a)y(x,, 6,)
= 0 for some a € (0, 1).

Hence, if, for example, M, is the subset of M for which Ep (X, 6,)* < ,
then M, contains extremal elements from M and is therefore covered by
Theorem 4 below.

EXAMPLE 6. For the Nelson—Aalen estimator, let M be the set of probabil-
ity measures P so that m, , . is a martingale, where m, is given by (3.1) and
7 is the time when the last patient ceases to be under observation. Extremal
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elements of M include all probabilities P for which the censoring times are
nonrandom. This follows by combining Theorem 11.2 in Jacod [(1979), page
338] with Theorem 12.35 in Elliot [(1982), pages 146-147].

We now proceed to the uniqueness result (the proof is in Section 8).

THEOREM 4. Suppose that P € M, is extremal in M and that %, only
contains sets of P-probability 0 or 1. Let T be a stopping time and let Q be a
finite signed measure on ¥., absolutely continuous with respect to P. If
my — {m, m);u is a local martingale under @ for 0 <s < t, then

aqQ
EP? = LOO( /‘l‘)'r

7.3. Alternative alternatives. If one wants to consider alternatives other
than the ones consistent with (7.1) being a martingale, additional options are
obviously available. For simplicity, we confine our discussion to alternatives
which are probability measures and to a one-dimensional (m ).

Suppose one has a family of probabilities {@,} for which @, ~ P and set
Z(p) =dQ,/dP. Let Z(u) = Ep(Z,(w)lZ). One can then set

(7.11) n(w) = [ ‘271 ) dz,.

The (»,(w))’s are local martingales under P. Z,(u) is now the Doléans-Dade
exponential martingale based on »,( u) [cf. Theorem 1 of Doléans-Dade (1970)
or Chapter I.4f of Jacod and Shiryaev (1987)] and one can now use Z,(u) as a
likelihood, similar to the dual likelihood. Under Q,,

(7.12) my — (m, v( )

is a local martingale [cf. Lenglart (1977)]. Subject to regularity conditions,

d
(713) R Zw)| =30,
d2
(714) d—#‘zln Zs( ”’) 4m0 == s(O) - [V(O)’ V(O)]s
and
d3
(7.15) —mZ(w)| = 0 - 3[50),50)],
12 pn=0

+2[#(0),7(0), #(0)],,

where [#(0), #(0), #(0)], is the optional cube variation of #(0) [cf. Section 6 of
Mykland (1994)]. Hence, if one wishes a likelihood whose score function at
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w=0 is m,, then one must have #,(0) = m,. If one further wishes the
observed information at 0 to be —[m, m] " then ,(0) = 0. In other words,

1
(7.16) v ) = w5 5(0) + O, ut)

and

(7.17) InZ,( ) = o) + 5r4* 5(0) + Op( ).

In some sense, therefore, v,(u) = um, [which makes Z,(u) the dual likeli-
hood] is a quadratic approximation to an arbitrary alternative consistent
with the martingale score statistic.

In particular, it is worth pointing out that if »,(u) = um,, then i = m.In
the discrete time case, for example, one cannot preserve efficiency properties
by using a dual likelihood of the form

n
(7.18) Y In(1 + pe; Am(6)),
i=1
where the cs are constants that are different from 1. Doing so would,
instead, correspond to using an estimating equation of the form

(7.19) an c;Am;(6),

i=1

which would amount to a reweighting the observations.

8. Of null sets and infinite variation. Before winding up the paper,
we propose to entertain the reader with some technical remarks.

First of all, a general local martingale (m,), ., ., may have infinite total
variation. To see the structure of the dual likelihood in this case, note that
there is a unique decomposition (if m, = 0)

(8.1) m, = mé + mg,
where m¢ is continuous and m¢? is purely discontinuous [cf. Theorem 1.4.18 of

Jacod and Shiryaev (1987), pages 42 and 43]. The dual likelihood is now in
the form

exp( u'm§ — s (m°, meiu)
X exp( u" mt)l—[(l + uT Am,)exp(—pu" Am,)

[cf. Doléans-Dade (1970) or Chapter 1.4f of Jacod and Shiryaev (1987), pages
58-61]. Except when otherwise explicitly stated, the results and comments of
this paper apply equally to (8.2); all the statements in Sections 5 and 7 hold,
and if one has occasion to compute the LR statistic in this more general
framework, the dual log likelihood is still convex.

The reason why we have not otherwise discussed martingales with contin-
uous components is that such martingales must have infinite total variation.

(8.2)



DUAL LIKELIHOOD : 415

This is bound to be a highly unusual situation when dealing with real data.
Note that also m? may have infinite total variation, which is the reason why
(8.2) looks different from (4.2) even when m¢ = 0. If m? has finite variation,
then it is of the form (2.1), and the dual likelihood has the form (4.2).

A more arcane point is that we are making the “usual assumptions”
relating to null sets [cf. Definition I.1.3 of Jacod and Shiryaev (1987), page 2].
Specifically, whenever we are dealing with a probability measure P, we
implicitly replace the original filtration (%) with the augmented filtration
(# ) [cf. 1.1.4 of Jacod and Shiryaev (1987), page 3]. The usual assumptions
are probably not necessary [see Jacod (1979), von Weiszéacker and Winkler
(1990) and Andersen, Borgan, Gill and Keiding (1993)], but they make it
possible to draw on a larger body of sources relating to stochastic calculus.

We now turn to the proofs.

PROOF OF THEOREM 1. Write [m”, m"], = Q1D,@Q,, where D, is diagonal
and Q, is orthogonal, and set U, = D, '/*Q,m} . Define

(8'3) ie( w) = lo(QZDn_ 1/2#)

and

(8.4) v, =( sup IIAm;‘II)/A}/Z.
0<t<t,

Observe that for || ull < (sup, .., llAmZID~?,

3
(85) Iy(m) = /JuTm?n — LT[ m*,m" ]+ 35 ) (;LTAm:) —

s<t

whence

ly( ) — u'm} + 3u"[m", m"],, ul

8.6
(8.6) < wTm®, ], wf(ll sup Iamsl),
0<t<t,

where
(8.7) f(x) = —(In(1 —x) + x)/x2 - 1.
Hence, for || ull < v, 1,
(8-8) llp( 1) — u"U, + 30"l < wuf(l ullv,).

It is then immediate that ji, (the MLE) is tight if U, is tight [by convexity of
1,() and hence /,(-)], and it follows that (5.1) holds. O

Proor OF THEOREM 2. The real work of this proof is dene in Lawley
(1956); see also McCullagh [(1987), Chapter 7.4]. What needs to be done to
"show Theorem 2 is to control the remainder term in formula (7.11) of
McCullagh [(1987), page 211] and then to show that the right-hand side of
that formula has an Edgeworth expansion of the required type (note that
unlike McCullagh, we only consider the one-dimensional case). The latter is a
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straightforward consequence of Theorems 5 and 6 of Mykland (1995) and it is
derived in much the same way as Theorem 7 of that paper.

To control the remainder term, we shall suppose that we are in a set &, of
the sample space, which we shall gradually define. &, will be made to satisfy

(8.9) P(%,)=1-o0(n1)
and it is enough to show that
(8.10) ER,I; = o(n71),

where R, is the remainder term and I is the indicator function for %.
First suppose that on %,

(8.11) | fu,lsuplAm?| < k,,

where k, is nonrandom and o(1). It is then easy to show that, for u); between
0 and i,
(8.12) IO(ut) = (~D (k- D! [m",...,m"], (1 +w,),

— -

k times

where |w,| <c, and c, is nonrandom and o(1) (c, depends on k). Here
[m”",...,m"] is the kth order variation of m"; see Section 6 of Mykland
(1994). Set 5, = fi,Vn . The LR statistic is then given by

LR, = 8,(my /Vn) — 382 [m", m"],,/n

(8.13) +183[ m*, m*, m*],, /n®?
— 18! m", m", m" ] (1 + w) /n?,
whereas the likelihood equation yields
m? /Vn — §,[mr, m*]. /n + 82[m*, m", m"],,/n®?

(819 — 8 m*, m", m", m"*](1 + w!)/n? = 0.
For our purpose, it is easiest to work with (8.13) — 58(8.14), that is,
LR, = 38,(mi/Vn) — §83[m", m", m"],, /n®/?

lé“[m" m", m", m"], (1 + w))/n%

34

(8.15)

Suppose that we let 5 be the stochastic expansion of §, up to o(n~:/2),
so that, for example 8(0) = py 2(m? /Vn), where us , — E[m", m"], . Also
suppose that on %,

m*, m"
(8.16) ¢ > Lm?,m™]e, ¢,
n
where ¢}, and ¢, are nonrandom and bounded away from 0 and infinity,
respectlvely Replace 6 by 8(‘) in (8.15), where i is chosen minimal in each
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term to create an approximation up to 0,(n '), and where the second term on
the right-hand side of (8.15) is considered as two terms by decomposing

(8.17) [m", m", m"],, =[m", m", m"],, —nps , +np;,.

Then (8.10) holds, in view of our assumptions, provided

(8.18) lm? /Vnll, = 0(1),
(8.19) |n(82 - 8,)15, |, = o(1)
and

(8.20) |n22(8® - 8,)1, | =

where p™' + ¢ ' <1, p '+ 2r ! <1, r>3and p > 12. This is because, in
analogy to (8.14),

(8.21) m;‘"/\/; - 8,[m", m"]; (1 +w!)/n =0.

By operating on (8.14), (8.21) and the analogous expansion up to the
[m", m", m"], term, it is easy to see that (8.20) holds provided

m? Z[m",m",m"]tn
(8.22) - - Iy | =0(1).
Similarly, (8.19) holds if
( m} )4( [m", m", m"], )2
n Ig
n n "llq
3
m? [mn,mn’mn]tn [mn’mn]tn
8.23 + 2 - I
( ) ‘/;) n \/77( n Mo n|le, .
m? 8 [m*, m", m", m"],
— "I | =o0(1).
n "llq

Since, on &,, [m", m", m"1? < nc![m", m", m" m"]t [Cauchy-Schwarz and

(8.16)], (8. 22) and (8 23) follows from our assumptlons provided p > 12.
Suppose we can take p = 12. We now argue that one can assume (8.11)
and (8.16). Let ¢}, = u, ,/2 and ¢, = 3pu, ,/2:

m*, m"
-pfi )
n
(8.24) _, _[[m", m],, 2 (| [m*, m"],, ,
S((’Jn) 2E — M2 p I n — M2 n >cn

=o(n1).
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Let €V be the set where (8.16) holds and where sup, |[Am7| < c’n'/3. In view
of (5. 6) ¢” can be chosen such that it is nonrandom and 0(1) and so that
P(gM) = 1- o(n1). This is because

P(supIAmtI >cin 1/3)

8.25
( ) -12 [mn,mn’mn’mn]tn ?
<(ct)"°E ” I{ sup|Am?| > cin 1/3}
¢
Clearly, it follows that
(8.26) P(lp,l < n % and &) =1 —o(n™1),

since, for example,
P(i(n7'/%) > 0 and &)
<P(m} —n Y [m", m"];,(1 - f(c})) > 0and &)

<2 [e,1 - Fe)] " m 7
=o(n71).

Hence the set @, exists.

It remains to show that one can take p = 12 in (8.18). This can be assumed
without loss of generality by stopping m} once [m”, m"], exceeds nc;. If this
stopping time is called 7,, then P(r, # t,) = o(n™") by (8.24), and ¢, A 7, can
clearly replace ¢, in our entire argument. On the other hand,

[mn> mn]tnATn °
n

E < 2(c")® + 2Esup|Am?|*?/n®
t

- o(1)

by (5.6). Hence (8.18) can be assumed (with ¢, A 7, replacing ¢,) in view of
Burkholder’s inequality. O

PROOF OF THEOREM 4. Define the process (Z,), . , ., through
aQ
dpP

(Z,) is clearly a local martingale under P and we shall use the cadlag version
of the process. Since P is extremal, it follows from Theorem 11.2 in Jacod
© [(1979), page 338] that

(8.27) Zsp. =

s/\7

(8.28) Z,=1+ [ fIdm,,
0

where (f,) is a predictable p-dimensional process.
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On the other hand, (m,,, — (m, m)s »,uw)Z, is also a P-local martingale.
Using Itd’s formula [see, e.g., Theorem 1.4.57 of Jacod and Shiryaev (1987),
page 57] on this process yields (for s < 7)

d(m, — {(m,m);pn)Z,
= d(local martingale) + d{Z, m), — Z,_d{m, m), .
By Proposition 1.4.50 of Jacod and Shiryaev [(1987), pége 53],

(8.29)

(8.30) (Z,m), = LsZu_d<m,m>uu,

which combined with the above representation for (Z,) gives
(8.31) jos”d<m, mY( uZ, f,) = 0.

Hence, for s < 71,

(8.32) Z, =1+ joszu_d( um,).

The result now follows from Theorem 1 of Doléans-Dade [(1970), page 183]
(cf. also Chapter 1.4f of Jacod and Shiryaev [(1987), pages 58-61]. O
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