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The %k principal points of a p-variate random vector X are those
points §;,...,&, € R? which approximate the distribution of X by mini-
mizing the expected squared distance of X from the nearest of the §;. Any
set of & points y,,...,y, partitions R? into “domains of attraction”
D,,..., D, according to minimal distance; following Hastie and Stuetzle
we callyy,...,y, self-consistent if E[XX € D;] =y, for j =1,..., k. Prin-
cipal points are a special case of self-consistent points. In this paper we
study principal points and self-consistent points of p-variate elliptical
distributions. The main results are the following: (1) If % self-consistent
points of X span a subspace of dimension ¢ < p, then this subspace is also
spanned by g principal components, that is, self-consistent points of
elliptical distributions exist only in principal component subspaces. (2)
The subspace spanned by % principal points of X is identical with the
subspace spanned by the principal components associated with the largest
roots. This proves a conjecture of Flury. We also discuss implications of
our results for the computation and estimation of principal points.

1. Introduction. The % principal points of a p-variate random vector X
are those points &,,..., &, € R? that minimize the expected squared distance
of X from the nearest of the §; [Flury (1990)]. The term “principal points” was
introduced to stress their similarity with the least-squares definition of
principal components by Pearson (1901), and to distinguish them from cluster
means. Methods of cluster analysis are most often understood and presented
in terms of finite samples [Hartigan (1975)], while principal points deal with
similar questions of partitioning and optimal representation for theoretical
distributions.

Principal points have ancestors in the theory of stratified sampling; see
Dalenius (1950), Dalenius and Gurney (1951) and Cox (1957). However, these
authors studied only the univariate case. Zoppeé (1992) gives an extensive
review of the history of principal points, including their connections with
stratification and clustering.

Finding k principal points of a continuous distribution usually requires
iterative computations even in the univariate case [Rowe (1995), Zoppe
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(1992)]. However, the computations become prohibitive for multivariate dis-
tributions, and hence it is desirable to establish theoretical results that allow’
us to reduce the dimensionality. The current paper reflects the progress in
the theory of principal points since Flury (1990) published same initial
results and conjectures. Further results are given in Tarpey (1992).

Principal points have some theoretical appeal: they pose challenging math-
ematical problems with no “standard” way to solve. They are also practically
useful because they lead to new statistical procedures: Flury (1993) discusses
the application of principal points to a problem of finding optimal sizes and
shapes of protection masks. Flury and Tarpey (1993) use principal points to
define “representative curves” from a large collection of curves, similar to the
technique of Jones and Rice (1992).

Principal points are special cases of self-consistent points, a notion that
was inspired by the self-consistent curves of Hastie and Stuetzle (1989).
Self-consistent points (see Section 2 for an exact definition) are conditional
means over subsets in a partition of the support of a random variable. In the
univariate case such partitions are intervals, the endpoints of the intervals
being the midpoints between two self-consistent points. This fact can be used
for the efficient calculation of principal points of univariate distributions, as
in Dalenius (1950), Dalenius and Gurney (1951), Cox (1957), Zoppé (1992)
and Rowe (1995). Self-consistent points are an important concept because the
k-means algorithm [Hartigan (1975), Hartigan and Wong (1979)] converges
by definition to a set of self-consistent points of a sample, but not necessarily
to the set which minimizes the average squared minimal distance. It also
turns out that many results are just as easy or difficult to obtain for
self-consistent points as for principal points, as we shall see shortly.

This article is organized as follows. In Section 2 we give formal definitions,
review the relevant theory and give some preliminary results. In Section 3
we state and prove the “principal subspace theorem,” which says that self-
consistent points of elliptical distributions exist only in principal component
subspaces. In Section 4 we treat the special case of principal points and prove
that the subspace spanned by & principal points of an elliptical distribution
is the subspace of the first principal components. In Section 5 we give some
numerical results on the multivariate normal distribution and the uniform
distribution inside an ellipsoid to illustrate the theory. Finally, Section 6
offers a discussion and outlook on unresolved problems.

2. Preliminaries. Throughout this paper, X will denote a p-variate
random vector, and F(-) its distribution function. Whenever needed, it will
implicitly be assumed that all first or second moments are finite. The Eu-
clidean norm of x € R? will be denoted by |x| = (x'x)/2.

The following is a summary of relevant definitions and preliminary results
from Flury (1990, 1993). For a set of & points W = {y,,...,y,}, all y; € R?,
the minimal distance of x € R? to W is denoted by d(xly;,...,y;) =
min, _;_,llx — y,ll. The vectors &,,...,§, € R? are called k principal points
of X if they minimize the expected squared minimal distance over all sets of %
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points in R”. We will write Px(k) := E[d*(X|§,,...,&;)] for the minimum,
which may be considered as the loss in approximating the distribution of X by
its k principal points. For a set W = {y,,...,y,}, the domain of attraction D,
of y; consists of all x € R? which have y; as their nearest point in W; the
boundary of a domain of attraction is also known as the Voronoi or Dirichlet
polygon. Since we consider only continuous distributions in this article, we
will not worry about the boundaries between different domains of attraction,
because they have probability zero. A set W ={y,,...,y,} is called self-
consistent for the random vector X if E[XX Dj] =y; forall j=1,...,k.
Thus a set of & points is self-consistent if each of the points is a conditional
mean, given that X is in the respective domain of attraction. For simplicity
we will often refer to the points y; as self-consistent, meaning that the set is
self-consistent. Principal points are self-consistent [Flury (1993)], but the
converse is not necessarily true. If X has m different sets of & self-consistent
points, then those sets which minimize the expected squared minimal dis-
tance are sets of principal points.

Our first lemma generalizes a result of Flury [(1990), page 38] from
principal points to self-consistent points.

LEmmA 2.1. If X is a p-variate random vector with a self-consistent set of
points {yy, ..., ¥}, then E[X] is in the convex hull of y,,...,¥;.

Proor. Let U ;5": , D; denote a partition of RP?, then E[X] =
Tf_1 Jp,x dF(x) = L}_, mE[X[X € D)1, where m; = PrX € Dj]. If the D; are
domains of attraction associated with % self-consistent points y;,...,y;, then
E[XX € D;] =y;, and E[X] = Zf=1 m;y;. O

Thus the linear manifold spanned by % self-consistent points has dimen-
sion at most £ — 1.

LEmMmA 2.2. Let X, denote a p-variate random vector, and let X, = & +
pHX, for some & € R?, p € R and some orthogonal matrix H of dimension
P Xp.

(@) If{y1,..., ¥} is a set of k self-consistent points of X,, then 8 + pHy;,
J=1,...,k, form a set of k self-consistent points of X,.

() If &,,...,&, are principal points of X,, then & + pH§,, j=1,...,k,
are principal points of X,, and Py (k) = PZle(k)-

The proof is omitted [see Tarpey (1992), page 64]. The lemma allows us to
assume, without loss of generality, that E[X] = 0 and that the covariance
matrix of X is diagonal. Henceforth we shall always assume E[X] = 0, which
means that the linear manifold spanned by & self-consistent points is a
subspace of dimension at most & — 1.

LEMMA 2.3 [Tarpey (1992)]. Let X denote a p-variate random vector with
mean 0. Suppose y,,...,y, are k self-consistent points of X, and y,,...,y;
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span a subspace of dimension q < p. Let a,,...,a, € R? denote an orthonor-
mal basis of this subspace, and set A, =[a;:" @ q]. Then the random

vector A;X has a set of k self-consistent points A y;,...,A,y,.

Proor. Let D; c R? denote the domain of attraction of y;, and let D} < R?

denote the domain of attraction of A;y;, j = 1,..., k. Then X € D; is equiva-
lent to A;X € D¥, and therefore E[A;X|A X € D¥] = A,y;. O

The converse of Lemma 2.3 is in general not true, as the following example

shows. Let X denote a %(0,[2 f]) random vector, k=2,q=1 and A, =

[(1)] Then +(2/7)Y? are two self-consistent points of X, = A;X [see Flury

(1990)], but +(27)1/2 ((1) are not self-consistent points of X unless p = 0.

It is interesting (and also simplifies the proofs of the main results) to study
discrete distributions defined on sets of self-consistent points or principal
points. Here, Y will denote a p-variate discrete random vector, distributed
jointly with X, and S(Y) will denote the support of Y.

DEFINITION 2.1. The random vector Y is a best k-point approximation to
X if S(Y) contains exactly k& distinct points y,,...,y,, and E[|X — Y|?] <
E[|IX — Z|*] for all Z whose support has at most % points.

LEmMA 2.4. If Y is a best k-point approximation to X, then the following
two conditions hold:

@ X - Yl <IX - y,ll as. forall y; € SY).
(i) E[X[Y] =Y a.s.

Proor. If (i) does not hold, define a discrete random vector Z by Z = y; if
X € D;, where D, is the domain of attraction of y;. Then E[|IX - Y|?]
> E[|IX — lez], which contradicts the assumption of the lemma. Condition (ii)
follows from self-consistency of the y;. O

Hence each set W = {y,,...,y,} of self-consistent points defines a k-point
random variable Y, up to a set of probability zero, according to Pr[Y = y;] =
Pr[X € D,], satisfying (i} and (ii). Using this setup, Lemma 2.1 follows from
E[X] = E'f E{X|Y}]; Y is a best k-point approximation exactly if W is a set of &
principal points.

3. Self-consistent points of elliptical distributions. Suppose the p-
variate random vector X is partitioned into ¢ and p — ¢ components as X
‘Pll W12
Y1 ‘1’22)

= (;{1), with mean vector p = (::;) and covariance matrix ¥ = (
2
partitioned analogously. If X follows an elliptical distribution with finite
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second moments, then the following two properites hold:

(a) E[X,X;]=p, + ¥, ¥;'X, — n,) (provided ¥, is positive definite);

(b) for a matrix A of dimension p X m, A'X is elliptical. [See Fang, Kotz
and Ng (1990) and Muirhead (1982), Chapter 1.5.]

The following theorem was first proved by Tarpey (1992) and called the
principal subspace theorem.

THEOREM 3.1. Suppose X is p-variate elliptical with E[X] = 0 and Cov(X)
= W, If 7 is the subspace spanned by a self-consistent set of points{y,,...,¥:}
of X, then 7" is spanned by a set of eigenvectors of W.

ProOF. Define a k-point random vector Y with support S(Y) = {y,,..., ¥y}
as at the end of Section 2, and let ¢ = dim 7. Let A = (A, :A,) denote an
orthogonal p X p matrix such that the ¢ columns of A; span 7. By self-
consistency, we have E[A,X[Y] = A,Y = 0 a.s. Using properties (a) and (b) of
elliptical distributions,

E[A2X|Y] = E[E{A’2XIA’1X}IY]
= E[A,WA,(A,VA,) A, XTY]
= A, WA (A,WA,)'AY as.

Since S(Y) spans 7", S(A,Y) spans R?, and therefore A, WA, = 0. Writing
P = A, A, for the projection matrix associated with 77, this implies
v - a M O |a'=PwP+A,A,WALA
- 0 AWA, 7T T A28 TA
and VA, = PVA |, that is, the columns of A, are spanned by g eigenvectors
of ¥. O

A cautionary remark is perhaps in order. In the foregoing proof it is
assumed that A PA, is nonsingular, although ¥ itself may be singular.
However, it is tacitly assumed that no self-consistent points are allowed to be
outside S(X) (such points would have domains of attraction with associated
probability zero). Thus the subspace spanned by the columns of A; will
always be such that Cov(A,;X) is nonsingular. Note also that multiple eigen-
values do not affect the proof.

Before discussing the consequences of Theorem 3.1, we present another
useful result.

THEOREM 3.2. Let X denote an elliptically distributed random vector with

mean 0 and covariance matrix ¢ = BAB', where B = [B,:---:B,] is orthog-
onal and A is diagonal. Suppose the k vectors y,,...,y, span the same
subspace as the q eigenvectors B, ..., B, (which are not necessarily ordered).

Let B, ==[B,:-:B,l, and X* =B, X If the z; =By;, j=1,...,k, are
self-consistent points of X*, then y,,...,y, are self-consistent points of X.
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Proor. The proof follows standard arguments; see also Tarpey [(1992),
page 47], who proves the result for a larger class of symmetric distribu-
tions. O

Theorems 3.1 and 3.2 have important consequences for the computation of
self-consistent points. Suppose for instance that X is p-variate elliptical,
p = 4, and we wish to find sets of £ = 4 self-consistent points. By Lemma 2.1,
we need to look at subspaces of dimension at most 3. By Theorem 3.1, it

suffices to look at all (’3’ ) subspaces spanned by three different eigenvectors

to find three-dimensional patterns, all (’2’) subspaces of dimension 2 to find

two-dimensional patterns, and finally, all one-dimensional sets can be found
by computing four self-consistent points of a single principal component. By
Theorem 3.2, each such pattern found determines a set of four self-consistent
points of the p-variate distribution. Although this may still be a considerable
amount of work, it is typically much less work than finding sets of four
self-consistent points in dimensionp. We will give an illustrative example in
Section 5.

Figure 1 gives an illustration for subspaces of dimension at most 2
spanned by four self-consistent points of a multivariate normal. Each of the

0

P
BE

FiG. 1. Patterns formed by four self-consistent points of a bivariate normal distribution.
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two two-dimensional patterns in the lower half of Figure 1, applied to a
two-dimensional principal component subspace of a multivariate normal
variable X, generates a set of four self-consistent points, as Theorems 3.1 and
3.2 show. We currently have no proof (besides numerical evidence) that
patterns other than the four shown in Figure 1 can occur for the bivariate
normal.

4. Principal points of elliptical distributions. In this section we
state and prove a theorem conjectured by Flury [(1990), pages 40—41].

THEOREM 4.1. Suppose X is p-variate elliptical with E[X] = 0 and Cov(X)
= W. If a set of k principal points of X spans a subspace 7" of dimension q,
then ¥ has a set of eigenvectors B,...,B, with associated ordered eigenval-
ues A, = -+ > A, such that 7" is spanned by By,...,B,.

ProOOF. Without loss of generality (see Lemma 2.2) assume that ¥ = A =
diag(Ay, ..., A,), where the \; are not necessarily ordered. Assume also that
all A, > 0 (otherwise see the remark following Theorem 3.1, and reduce the
dimension to the rank of A). By Theorem 3.1, 7" is spanned by ¢q standard
basis vectors of R?, and without loss of generality we can assume that these
are the first q basis vectors. Thus we must show that A; > A, for all j <gq
and all m > q. Assume for the moment that X = (X;,..., X)) has a unique
set of & principal points, and let Y = (Y3,...,Y,)" denote a best k-point
approximation to X (which is uniquely determined by X up to a set of
probability zero). Let W = (W, ..., W)’ = A"1/?X, and Y* = (Y},...,Y*) =
A-1/2Y. Setting a, = E(W, — ¥/)2], i = 1,..., p, we have E[IX — Y|*] =
TP, ANa;. If i > g, then Y; = 0 a.s., and therefore o; = 1 for all i > q. For
i < q, Lemma 2.4(ii) shows that E[Y,(X; — Y;)] = 0, and therefore E(X?) =
E[(X; — Y,)?] + E[Y;?], which implies E[Y?]=A,(1 - «a,). If @, =1, then
Y, = 0 a.s., which contradicts the assumption that dim "= q. Hence a; <1
fori=1,...,q.

Consider now a permutation 7 of {1,..., p} transposing j and m. Let
W,=W,4,..., W, and note that W, has the same spherically symmet-
ric distribution as W. Define Z; = (A;/A,)"/?Y,;, i=1,...,p. Then Z =
(Z,,...,Z,) is a k-point random vector, and

p
E[IX - zI?] = ¥ LE[(W, - ¥,
i=1

AiE[(Ww(w - Y,,*(i))2]

p
)y
i=1
p
21 A O
Thus E[IX — Z|®] - E[IX — YII’] = (1 — a;XA; = A,,)). If A,, > A;, then this
expression would be negative, which contradicts the assumption that Y is a
best k-point approximation. Hence A; > A,,.
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If X has more than one set of principal points, the same proof can be
applied to each such set, by defining a best k-point approximation Y accord-
ing to the particular choice of the principal points. O

Ellipticity of X is a sufficient condition, but not a necessary one, for the
conclusion of the theorem to hold. It is currently not known what the
necessary conditions are. It is easy, though, to find (discrete or continuous)
examples of nonelliptical distributions such that the subspace spanned by %
principal points is not a subspace spanned by eigenvectors of the covariance
matrix.

Besides its theoretical appeal, Theorem 4.1 is useful because it allows us to
restrict further the search for principal points. By Lemma 2.1, £ principal
points span a subspace of dimension at most 2 — 1, and hence at most 2 — 1
subspaces with dimensions 2 — 1, £ — 2 and so on must be searched. (Multi-
ple eigenvalues may lead to unpleasant computational difficulties, which we
do not elaborate upon in this article). For 2 < p + 1, one may start out by
searching for all sets of %2 self-consistent points that span the same subspace
as the first £ — 1 eigenvectors of Cov(X), and then reduce the dimension step
by step, eliminating one eigenvector at a time. If in any given step the
expected squared minimum distance increases, the procedure can stop.

5. Numerical example. Omitting details of the algorithms used, we
report some results found by numerical calculations in which the respective
continuous distributions were approximated by discrete distributions on ap-
proximately 500,000 equispaced gridpoints inside an ellipsoid. The two distri-
butions chosen were the trivariate normal with mean 0 and covariance
matrix A = diag(4,2, 1), and the trivariate uniform distribution inside the
ellipsoid x2/4 + x2/2 + x2 = 5, which has the same covariance matrix A.
All calculations were done for 2 = 4 points. For both distributions, no sets of
four self-consistent points spanning R were found. In the subspace of the
first two variables, both the normal and the uniform examples yielded a
“cross”-pattern of the form (+a, 0,0) and (0, + b, 0) and a “rectangle”-pattern
of the form (+c, +d), see the bottom part of Figure 1. The numerical
calculations yielded a = 2.613 and b = 1.306, for the normal, and a =
2.522 and b = 1.511, for the uniform. The expected squared minimum dis-
tance was 2.987 for the normal and 2.642 for the uniform. In both cases the
rectangle-pattern yielded a larger expected squared distance, as did the
one-dimensional solutions with four points along the first axis. Thus the
numerical evidence suggests that in both cases the sets of £ = 4 principal
points form a cross-pattern with coordinates as indicated.

It is interesting that no three-dimensional patterns of four self-consistent
points could be found. So far we have not been able to prove that such a
pattern does not always exist, but it is clear that it exists in special cases. For
instance, if A is proportional to I;, then any four points in R® spanning a
tetrahedron centered at the origin define a partition of R? into four domains
D, according to minimal distance. All D; have equal shape, and the four
points yj = E[XX e Dj] are self-consistent. Numerical calculations indicate
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that the tetrahedron spanned by the y; has side length approximately 1.94
for X normal with covariance matrix I;. Evidently, any rotation of the four
self-consistent points in R® will yield another set of self-consistent points in
this case.

6. Discussion and outlook. Principal points originated in a problem of
determining optimal sizes and shapes of gas masks, as described in Flury
(1993). In the same article, methods of estimation of principal points were
defined using our Theorem 4.1, which at that time was a conjecture. Thus the
current article gives a late theoretical justification for earlier work.

Principal points and self-consistent points have much in common with
k-cluster means [Hartigan (1975)]; k-cluster means of a sample are strongly
consistent estimators of £ principal points of a distribution [Pollard (1981)].
Methods of cluster analysis are typically viewed as purely data-oriented, with
no statistical model in the background, with the pragmatic purpose of finding
optimal partitions of observed data. Principal points, on the other hand, find
optimal partitions of theoretical distributions. To our knowledge, only homo-
geneous theoretical models have been studied so far, with the exception of
some univariate examples [Flury (1990), Zoppe (1992)]. It would be interest-
ing to study principal points of theoretical distributions that reflect group
structure, such as finite mixtures, for which cluster analysis is meant to
work. Future developments in the theory of principal points may help to
understand cluster analysis better. Alternatively, principal points may be
used to define best k-point approximations to continuous distributions, as in
Definition 2.1. This approach is interesting in itself and does not need any
justification in terms of clustering or stratification.

Many challenging problems remain open. For instance, despite strong
numerical evidence it is not known whether the two-dimensional patterns in
Figure 1, formed by four self-consistent points of elliptical distributions, are
the only possible ones, and whether the cross-pattern is always better than
the rectangle-pattern. There appears to be no easy way to prove uniqueness
or existence of high-dimensional patterns. Only in the univariate case are
sufficient conditions for uniqueness of principal points known [Tarpey (1994)].
Other challenging problems arise in estimation of principal points: all results
obtained so far refer to univariate distributions and %k = 2 points [Tarpey
(1992), Chapter 6]. Again, no standard methodology seems to be available to
generalize these results.
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