The Annals of Statistics
1995, Vol. 23, No. 5, 1712-1734
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MULTIPLICATIVE HAZARD MODELS FOR
COUNTING PROCESSES
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The additive-multiplicative hazard model specifies that the hazard
function for the counting process associated with a multidimensional co-
variate process Z = (W7, XT)T takes the form of At | Z) = g{ B W(#)} +
ARy IX ()}, where 6, = (BT, y{)T is a vector of unknown regression
parameters, g and 4 are known link functions and A, is an unspecified
“baseline hazard function.” In this paper, we develop a class of simple
estimating functions for 6,, which contains the partial likelihood score
function in the special case of proportional hazards models. The resulting
estimators are shown to be consistent and asymptotically normal under
appropriate regularity conditions. Weak convergence of the Aalen—
Breslow type estimators for the cumulative baseline hazard function
Ao(t) = [§Aro(uw) du is also established. Furthermore, we construct adap-
tive estimators for 6, and A, that achieve the (semiparametric) informa-
tion bounds. Finally, a real example is provided along with some simula-
tion results.

1. Introduction. Semiparametric regression models based on the haz-
ard function or intensity process provide a natural and convenient framework
for studying the influence of the covariate history on the (possibly censored)
failure time or the general counting process. The most familiar hazard-based
formulation is the Cox (1972) proportional hazards model or the multiplica-
tive hazard model, which assumes that the hazard function associated with a
multidimensional covariate process X(-) is

(1.1) M1 X) = A(t)exp[vEX(2)],

where () is an unspecified baseline hazard function and vy, is an unknown
parameter vector. A plausible alternative is the additive hazard model in the
form of

(1.2) AMEIX) = A(2) + BEX(2),

where B, is an unknown parameter vector [Cox and Oakes (1984), page 74,
Thomas (1986), Breslow and Day (1987), page 182, and Lin and Ying (1994)].
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The exponential link function in (1.1) and the linear link function in (1.2) may
be replaced by other forms.

Analysis of model (1.1) is normally based on the partial likelihood principle
[Cox (1972, 1975)]. The maximum partial likelihood estimator has been
shown to be consistent, asymptotically normal and asymptotically efficient
[Tsiatis (1981), Andersen and Gill (1982) and Andersen, Borgan, Gill and
Keiding (1993), pages 481-509, 647-650]. In addition, Prentice and Self
(1983) provided a large-sample theory for the partial likelihood analysis of
the multiplicative hazard model with a general link function.

The partial likelihood function for model (1.2), however, is intractable.
Recently, Lin and Ying (1994) presented an explicit estimator for 8, result-
ing from an analog of the partial likelihood score equation for vy,. In related
developments, Aalen (1980, 1989), Huffer and McKeague (1991) and Ander-
sen, Borgan, Gill and Keiding [(1993), VI1.4] described least-squares type
estimators for Aalen’s nonparametric additive hazard model A(¢|X) =
L(#)TX(¢) [Aalen (1980)] which is less parsimonious than model (1.2). Fur-
thermore, McKeague and Sasieni (1994) studied an additive model that is a
mixture of model (1.2) and Aalen’s model.

The additive and multiplicative hazard models postulate two rather dif-
ferent relationships between the covariate process and the hazard function.
In some applications physical rationale dictates that one model is more
adequate than the other, whereas in others the choice between the two
models is an empirical matter. The two models can hold simultaneously if
Ao(*) is time-invariant, in which case it is desirable to estimate the regression
parameters under both models as the relative risk and risk difference are
complementary measures. To enhance our modeling capability, it seems
natural to consider models which allow some covariate effects to be additive
while allowing others to be multiplicative or which allow certain covariates to
have both the additive and multiplicative effects. We therefore study the
following class of general additive-multiplicative hazard models:

(1.3) Nt 12) = g{BSW()} + Ao(£) h{vs X (1)},

where Z = (W', X™)" is a p-vector of covariates, 6, = (BT, yI)" is a
p-vector of unknown regression parameters, g and 4 are known link func-
tions and A, is an unspecified “baseline hazard function” under g = 0 and
h = 1. Obviously, (1.3) encompasses both models (1.1) and (1.2). Some com-
mon examples of the link function A are A(x) =e* and A(x) =1 + x and
those of g are g(x) = x and g(x) = e*. For g(x) = e¥, it is sensible to let the
first component of W be 1.

In the next section of this paper, we develop a class of estimating functions
for 6,, which resembles the partial likelihood score function under model
(1.1). The resulting estimators are shown to be consistent and asymptotically
normal under broad conditions. In Section 3, we establish the asymptotic
properties of the Aalen—Breslow type estimators for the cumulative baseline
hazard function A (¢) = [{Ao(w) du. Section 4 presents our simulation results
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and a real-life example. In Section 5, we construct adaptive estimators for 6,
and A, that are asymptotically efficient.

2. Estimation of 0,. In this section, we shall formulate model (1.3) in
the framework of multivariate counting processes and develop some simple
estimators for 6,. We shall be working on the finite time interval [0, 7],
although the extension to infinite 7 will be discussed in Section 2.4. We shall
use basic results from the theory of multivariate counting processes and
martingales as surveyed in Andersen, Borgan, Gill and Keiding (1993) with-
out further comment.

2.1. Formulation of the model. Let Ny(t),...,N,(¢) be n independent
counting processes adapted to a filtration {7: ¢ € [0, 7]} satisfying the usual
conditions as described in Andersen, Borgan, Gill and Keiding [(1993), 11.4].
We allow each N, to take multiple jumps, although in the classical survival
setting there is at most one jump for each subject. Associated with each N.(¢)
is a (p-dimensional) covariate process Z;(¢) = {(W,7(¢), X7 (#)}" that is Z-
predictable. Suppose that the compensator for N,(¢) takes the form
JoYi(s)Ns | Z;)ds, where M¢|Z) is given by (1.3) and Y,(¢) is a {0,1}-
valued left-continuous process adapted to 7. Thus,

M,(2) = Ni(t) = [Yi(s)[8{ BTWi(s)) + h(3§Xi()}o(s)] ds

is an F-martingale. Furthermore, we assume throughout Section 2 that there
exists 8, > 0 such that

[n"l inf i Yi(t)h{'yTXi(t)}]_ =0,(1).

t<mlly—voll<é, ;=1

2.2. Estimating functions for 0,. If the baseline hazard function A, is
known, then the likelihood for 6, = (87, yI) is proportional to

| ilf[l { [IACt! Zi)dN""’}exp{—fOTY}(t)A(t 1Z,) dt}]

i<t

[Andersen, Borgan, Gill and Keiding (1993), pages 58—59]. The corresponding
(p-dimensional) score function is

e g BTWAIW()
1) L L, a5 W] X (0

i/’ h,{YTXi(t)}Xi(t)’\o(t)
=170 {BTWi(8)} + h{y"X,(¢)}Ao(2)

dM,(0,1),

(2.2) dM,(0,¢),
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where
Mi(0,¢) = Ni(2) = ['Yi(s)[&{ BTWi(s)} + A(y"Xi(5)}Ao(5)] ds.

Since M (6,,t) = M,(¢), the above score function is a martingale integral at
9= 0,.

In order to develop inference procedures for 6, with A, being completely
unspecified, we shall modify (2.1) and (2.2) to eliminate A, from the estimat-
ing functions. First, we replace the integrands in (2.1) and (2.2) by a (p-
dimensional) predictable process, denoted by D;(6,¢), which is a smooth
function of Z; and 6 not involving A,. Second, we replace Ap() dt in M (6, ¢)
by dAy(6, ¢), where A,(6,, t) is the Aalen—Breslow type estimator for Ao(t)
with known 6, namely,

A SN (s) = Yi(8)g{ BIW(5)) ds]
(2.3) Ao(oo, t) =/(; ”=1Yi(s)h{ngi(s)} .

We then obtain an ad hoc ( p-dimensional) estimating function S(0, 7) free of
Ay, where

S(0,t)

Y ['Di(0, 5)[dNi(s) - Yi(s)el BTW,(5)) ds
i=1"0

~Yi(s)h{y"X,(s)} dAy(6, 5)]

= ¥ [{Di(0,5) = D(8, 9)}[aN(s) = Yi(5)g(B7Wi(5)) ds],

with D(0, t) = '\ Y(O)h{y"X ()DL, t) /T2 Yi(£)h{yTX (2)).
Since Z,_I{D(O s) — D(o, s)}Y(s)h{'yTX(s)} 0, we observe that

S(6,t) = ._Elfo{D"(G’ s) — D(6,s)} dM,(6,s),

which indicates that S(6,,¢) is a martingale. The fact that S(6,,t) is a
martingale is not a great stroke of algebraic luck, but is instead a natural
consequence of the underlying mathematical structure in our construction.
First, the replacement of the integrand in a martingale integral by a different
predictable process does not destroy the martingale nature. Second,

Li_1dM;(2)
LiaYi() {vg X,(2)}

provided that L!_,Y;(#)h{yl X;(¢#)} > 0; in fact, (2.3) was derived from the
martingale equation YdM(¢) = LdN;(t) — LY, ()l g{BIW,(2)} dt +
MyIX ()} dAy(1)] by setting the noise to 0. Therefore, the replacement of
dAO(t) in M,(6, t) by dA (0, ¢) will yield a different martingale integral at
0 = 6,. The martlngale representations for S(6,, ¢) and A,(6,, ¢) will enable
us to establish weak convergence and simplify variance calculation.

The following assumptions are required for subsequent developments.

dAo(8,,t) — dAy(t) =
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STABILITY CONDITION 1. There exists an integrable function v such that,
for every t € [0, 7],

n
n=t ¥ Y(0)[g{ BSWi(2)} + A{vs Xi()}Ao(2)]
i=1
= ®2
X{D;(85,t) = D(8,,t)}  —p v(t).
Here and in the sequel, a®2 denotes the out-product aa” of a column vector a.
NEGLIGIBILITY CONDITION. For any £ > 0,

n T —
n~! ‘ZlfollDi(oo»s) — D(8,, 3)”21(||D,-(oo,s)~17(oo,s)||2>ns)Yi(s)
=

x [g{ BEW(5)} + h{y§X,(5)}Ao(5)] ds =5 O.

REMARK 2.1. The above two conditions are analogous to the variance—
covariance stability and Lindeberg conditions of the classical multivariate
central limit theorem for sum of independent zero-mean random vectors. The
negligibility condition is clearly satisfied when {D,(8,, ¢)} are bounded uni-
formly in i and ¢. Further discussions will be provided in Section 2.4.

THEOREM 2.1. Suppose that stability condition 1 and the negligibility
condition hold. Then n=*/28(0,, - ) converges weakly in 20, 7] to a zero-mean
Gaussian process with independent increments and with variance function

V, = [¢v(s) ds.

PROOF. As stated above, n~1/2S(6,, - ) is a martingale integral. It suffices
to verify conditions (2.5.1) and (2.5.3) of Andersen, Borgan, Gill and Keiding
[(1993), Theorem I1.5.1 (Rebolledo’s central limit theorem)]. The second condi-
tion is clearly implied by our negligibility condition. The first one is also
satisfied since the predictable variation process of n~1/2S(6,, ¢) is

nt En:l fot{Di(Oo’ s) — D(8,, s)}®2

x Y,(s)[&{ B Wi(s)} + R{viXi(s)}Ao(s)] ds,
which converges in probability to V, by stability condition 1. O

2.3. Asymptotic properties of OA.A In light of Theorem 2.1, we can use S to
estimate 6,. Specifically, define 6 as a root to S(6,7) = 0. We make the
following assumption:

STABILITY CONDITION 2. There exists a p X p matrix A such that

w B [HO(Di00,1) - D0u, ) (BT WO (0,

h'{?’gXi(t)}XiT(t))\o(t)] dt »p A.
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THEOREM 2.2. Suppose that the negligibility condition and stability condi-
tions 1 and 2 are satisfied. Suppose also that A is nonsingular and that the
family of partial derivatives (with respect to 0) of D,(0,¢), g{ BTW.(¢)} and
MyTX ()}, as functions of 0, is equicontinuous in a neighborhood of 0,. Then
there exists a neighborhood of 0, within which, with probability tending to 1
as n — =, the root 6 of S(0,7) = 0 is uniquely defined and n'/%(6 — 6,) —,,
MO0, A lV AT,

ProOF. The Taylor expansion of S(§, ) around 0, yields

. a8(6*,7)\ "'
n2(9— 6,) = {-n—lT} n=1/28(8,,7),

where 6* is on the line segment between 6 and 6. Thus, by Theorem
2.1, n¥%(§— 0,) =, M0, A"V, A ") provided that 6 =, 6, and —n~! X
38(0y,7)/36 »p A, which are verified below.

We first show that —n~! 4S(8,, 7)/36 —p A. Clearly,

dS(6,y, T no . _
— ot (ao ) _ 1 i;oni(t){Di(Go’t) — D(6,, 1))
(2.4) NGO +az{v§Xi(t)}Ao(t)] "

Di(8,¢) — D(6o,)}
a0

o £

Stability condition 2 implies that the first term on the right-hand side of (2.4)
converges to A. The second term is 0,(1) because it is a martingale integral
whose predictable varlatlon at 7 is O,(n~ D=o (1), noting that the summa-
tion is scaled by n ! rather than the usual n -172

From the equicontinuity assumptions, it follows that for any ¢ > 0 we
can choose & > 0 such that, for all =, [n"! S(0,7)/90 — n~! 38(8,, 1)/ 6|l
< & whenever |6 — 6,|| < 8. This result together with the fact that —n~! X
3S8(0,, 7)/360 —p A implies that
1 3801

a0

Now, Theorems 4.1 and 4.2 of Goffman [(1965), pages 89-91] assert that if
f(x), x € RP, is continuously differentiable at x, and df(x,)/dx is nonsingu-
lar, then there exist 8, and &, such that f is a one-to-one mapping on
B(x,; 8,), the ball centered at x, with radius §,, and f(B(x;8,)) D
B(f(x,); £y). Furthermore, it is evident from the proofs of the two theo-
rems that the results hold simultaneously for a family of such functions
with common 8, and ¢, as long as their derivatives at x, are sufficiently
close. In view of these results and (2.5), we conclude that there exist 6, and
g, such that n 'S is a one-to-one mapping from the B(6,;5,) to

dM,(t).

(2.5) P{ sup

>2g) >0 asn — o,
16— 6yll<d
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n~'S(B(6,; 8,), ), which contains B(n~'S(,, 7); £,). Since n~' X
S(6y,7) —p O, B(n 'S(6,, 7); &,) contains 0 for all large n; therefore, 6 exists
and is unique in B(6,; §,), and § —p 6,. O

Theorem 2.2 only ensures the existence and uniqueness of the root of S
locally. The following result pertains to the global uniqueness.

COROLLARY 2.3. In addition to the assumptions of Theorem 2.2, suppose
that the equicontinuity condition in Theorem 2.2 is satisfied on a compact
region G whose interior contains 0, and n~*S(0,7) —>p ¥(0) for each 6 € G.
Then, with probability tending to 1 as n — », the estimating function S(6, 1)
has a unique root in G if 0, is the only root of y(6).

PrOOF. Because of the boundedness (uniformly in 8) of the derivative of
n~18(6, 7), the convergence of n1S(6, 7) to (6) is uniform on G. Thus, with
probability tending to 1, n"1S(6, ) stays away from O outside any fixed
neighborhood of 6,. Combining this result with Theorem 2.2, we get the
desired global asymptotic uniqueness. O

The assumption that 6, is the only root of (6) is satisfied in the special
cases of models (1.1) and (1.2). The following example illustrates that the
global uniqueness also holds in other nontrivial settings.

ExampLE 2.1. Suppose that the counting processes are generated by the
failure times T}, that is, Ni(t) = 1y, .,y and Y;(¢) = 1,1, ,,. Suppose also that
(T, W,, X,) are Jomtly id. d and W, and X, are independent. In addition, let
g(x) =x, h(x) =e® and DT = (WT X, For notational simplicity, assume
that W; and X, are one-dimensional and time-independent. Finally, let D,,
S, and ¢,, £ = 1,2, denote the £th components of D, S and ¢. In our
setting, E{Y;(¢) | Z;} = exp(— B W;t)exp{—exp(y,X;)A,(¢)}. This entails that
D,(0,t) converges to d,(t) = E{W, exp(— B,W,t)}/E{exp(— B,W,¢)}, which in-
volves neither B nor y. Thus, ¢,(0) is a linear function of B only and
therefore has a unique root, which must be B,. Hence, to show that (6) has
a unique root, it suffices to show that ,( B, ¥) has a unique root. Note that

Su(Bo,yim) = X [ = Dy, O} ldN(0) ~ Y 0) BV, )

where D, does not involve 8. The fact that dM,(¢) = dN(t) — Y,(£)B,W, dt —
Y (#)exp(y, X;)Ao(¢) dt implies that n~1S,(B,, v; 7) has the same limit as

n18y(Bory) =0t X [ X~ Daly T )exp(v0 X)) Mo(8) .

i=1
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It is easy to show that

_ 984(Bos) _ ffz,-zl{xi ~ Dy(v, 1)) exp(yX)Yi(t)
dy 0 £, exp(vX;)Y;(t)

x li ¥,(£)exp(vo X)) Ao(t) dt,
=1

which is always nonnegative. Since 5( By, v,) = 0 and 9y, ( By, ¥y)/dy # O,
v, must be the unique root.

REMARK 2.2. In practice, whenever there are multiple roots for S(8, 7), we
face the problem of choosing the right one. A convenient solution is to
construct another estimating function, say, S*(9, 7), using a different set of
{D,} and then to choose the root of S(6, ) which makes S*(0, 7) closest to 0.
The rationale is that both S(0, 7) and S*(0, 7) have mean 0 at 6, so the root
identified by the above criterion is likely to be the consistent one.

_ It is natural to estimate the limiting covariance matrix of nl/2(f — 6,) by
A 1(HIV(H)A1(6)T, where

Aoy =n" igfoic(t){niw,t) - D(o,1)}
x[g'(BTWi()}W]" (2) de, b ("X, (1)) X7 () dAo(6,1)],
V(6) =n1 é fOT{D,.(O, t) — D(0,1))°" dN,(2).
Because the covaril;nce matrix estimator involves f&o(é, -), we shall defer the
proof of its consistency to Section 3 after establishing the asymptotic proper-

ties of A,.

2.4. Some special cases. One possible choice of D;(6, t) is

W.(0,0) | _ [g'{ BTW()}Wi(2) /h{y"Xi(2))
X,(0,t)

R {y"X;(8))X:(2) /h{y"X(2)}
Obviously, W, and X, will be good approximations to the integrands in (2.1)

l

and (2.2) if A, is roughly constant and g is small relative to A A,. Here,
Us(0)

S(6,7) = u (o) |

where
n

Us(0) = Z/ {(Wi(0,¢) — W(0,0)}[dN(t) ~ Y.(¢)g( B"W,(¢)} dt],

S

U0) = X [[{%0,0) = X(0.0)}[dN,(8) = Vi) BTWi(0)} ],



1720 D. Y. LIN AND Z. YING

with
_ _ ZY(8)A{y"Xi(8)}W,(6,2)
S S O LA 0)
and
= ZY()R{Y'X(8)}X(0, 1)
0D = OO
In addition,
As) = f},g,g(e) f}ﬁy(f)) ’
Aws(e) A, (0)

where

n

Ay (0) =070 T [HORGTXONT(0,0) = W(o,0)" a,

S

T

Ag(0) =n7" L [ V(R X(O}i(0,0) — W(6,1))

x(X,(0,¢) - X(0,))" dAy(6,t),

Ap(0) =n7 B [ V(MY X (0){Xi(0,8) - X(0,0))

S

x{W,(0,t) - W(e,t)}T dt,
~ noor - — ®2 A
A,(0) =n7t T [ V(O X(DHXi(0,6) - X(0,0)} " dho(0,0).
ie

If Z = X, then U, becomes the partial likelihood score function under the
multiplicative hazard model; if Z = W and g(x) = x, then Uj reduces to the
ad hoc estimating function of Lin and Ying (1994) for model (1.2), which
produces an explicit estimator.

To provide further insights into the conditions imposed in the previous
developments, we consider the situation of i.i.d. {N,("), Y;("), Z,(")},i = 1,..., n.
We make the following assumptions:

(A1) |1Z,()Il < K, a nonrandom constant;

(A2) g and A are continuously differentiable and {4D;(-,¢)/4d8, t € [0, 7],
i > 1} is equicontinuous in a neighborhood of 6,;

(A3) supy_,., Ay(t) < = for every 7 < 7%, where 7* = inf{t: EY,(¢) = 0};

(A4) [T EY, (11 + A1)} dt < .

Due to the law of large numbers, assumptions (A1)-(A3) ensure that the
negligibility condition and stability conditions 1 and 2 required in Section 2.2
are satisfied for any 7 < 7*. Thus, under assumptions (A1)—-(A3), we have the
conclusion of Theorem 2.1 for any 7 < r*. Furthermore, the conclusion of
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Theorem 2.2 holds under an additional assumption on the nonsingularity of
the slope matrix A. If assumption (A4) is also satisfied, then we may extend
the convergence to [0, 7*]. The proof for this extension can be found in our
technical report [Lin and Ying (1993)].

3. Estimation of A ,(-). Given §, we may estimate A () by

o (Z11[dN(s) — Yi()g{ BTW,(5)) ds]
(3.1) Ao(8,8) =]0 OIS A0) :

It is convenient to introduce the notation

n_Yi(¢)g{ BIWi(t)}

%) = T Y ORX (D)
P (GTALAONAG:

%) = e ORI (D]

ap(t) = Y ()R {vs X, ()} X, ()

L Y(Oh{ve X))

ag(t) =nt '_ilyi(t)h{ygx,.(t)},

i-1Yi(2) &{ By Wi(£)}Di( 90, 2)
LY (OryiXi()) 7

i= 1Yi(t)h{7’g‘Xi(t)}Di(90’ t)
1Y () h{vi Xi(2))

(3.2)

aDg(t) =

ap(t) =

THEOREM 3.1. Suppose that all the assumptions in Theorem 2.2 are
satisfied and that a,(t),...,ap(t) defined by (3.2) converge in probability to
@, (t),...,ap(t) for every t < . Then n'/*{Ay(6,-) — Ay(-)} converges weakly
in 2[0, 7] to a zero-mean Gaussian process with covariance function

t,\s{dg(u) + /\O(u)}du
o=, &)

+dT(t)A‘lj:{dDg(u) — G (u)ap(u)}du

+aT(t) A"V, A Va(s)

+dT(s)A'1fOt{dDg(u) —a,(u)dp(u)}du,
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where
t
6, (u)d
foag (u) du
fotdh,(u) Ao(u) du

a(t) = —

PrROOF. We decompose n'/2{A (8, ) — Ay(2)} as

1/2{ o(, t) — 0(90”5)} + n1/2{ o(8o,2) — A*f)(t)}

(3.3)
+nl2{N5(t) — Ao(2))},

where

t
AG(t) = '[0 1[2{‘=1Y,(s)h(y(7,'X,(s))> 0] Ao(s) ds.

The third term is asymptotically negligible. The second term is

Lsn vos s Xr_,dM (s
(54) w4 {Ro(00,) = M3(0)) = 7 [ AR O A UL

0 Z?=1Yi(3)h{ OXi(s)}
By the Taylor expansion, the first term of (3.3) is

1/2{ o(6,t) — o(eo’t)} = {———aAO(;O’t)} n1/2(§— 00)

+0,(n'2016 - 6,ll),

where o, is uniform in ¢ < 7. Note that

t
A (s)d
dAo(0,,1t) foag (s) ds
o ) ay(s)
[O‘ah,(s),\o(s) ds +n lzggljot{ a’;(s) } dM,(s)
By the triangle inequality,
dho(0y,8) ”
s — —a(t
Oslills)‘r a6 a( ) .
(3.5) < fOT{IIag,(t) — G, (O + llay (2) — @y ()lINg(2)) dt
1 h( )
+n! sup f Z dM,(s)|.
O<t<r

The first term on the right-hand side of 1nequa11ty (8.5) is 0,(1) by the
convergence of a,. and a, to 4, and d,. The second term is also 0,(1) by
Lenglart’s inequality [Andersen, Borgan, Gill and Keiding (1993), page 86]. It
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follows from these results and the asymptotic expression for n!/2(6 — 6,)
derived in the proof of Theorem 2.2 that, uniformly in ¢,

nV2{Ao(8,8) — Ao(8o,t)} = a7(t) A~ 1n"1/28(6,,7) + 0,(1),
which together with (3.4) implies that, uniformly in ¢,

V2R o(8,8) - Ag(t))

_ n1/2f Ei=1dMi(Ts)

(3.6) 0 Z:7=1Yi(S)h{YoXi(S)}

GT(¢) A 1n 12 é fOT{Di(BO, s) — D(8,,5)} dM,(s) + 0,(1).

As in the proof of Theorem 2.1, the desired weak convergence now follows
from Rebolledo’s central limit theorem together with a straightforward co-
variance calculation. O

REMARK 3.1. In the ii.d. case discussed in Section 2.4, the conclusion of
Theorem 3.1 holds for any 7 < 7* provided that A is nonsingular. This is

because the a’s in (3.2) converge to the @’s by the law of large numbers.

It is natural to estimate the covariance function £(¢, s) by

tAs Qg (6,u) du + dAy(6,u)
£(t,9) _[ ao(6,u)

+a”(8,t)A"1(6)V(8)A-(6) a(b,s)

+aT(6, t)A‘l(é)f()s<aDg(é, u) — ag(é, u)ap(0, u)} du

+ aT(é,s)A'l(é)j:{aDg(é,u) — ay(8,u)ap(d,u)} du,

where

ftag,(é,u) du
a(é,t) =-| , 0 ,
[ an(8,u) dho(6,u)

and a (0 £),...,ap(6, t) are obtained from a,(¢),..., aD(t) defined in (3.2) by

substltutlng 0 for 0,. Note that A and V were defined in Section 2.3. The

followmg corollary establishes the consistency of £ as well as that of
A~1(6)V(6)A1(6)T proposed in Section 2.3 to estimate A=V, A~ ",

COROLLARY 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied
and that the total variations of D,(6,, t) and Z, (t) are bounded uniformly over
all i. Then A~Y(0)V()A1(6)T -, A"'V. A~ and £, ) —»p £@t, ).
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PROOF. Since § — p 05, the smoothness of D;, g and A implies that
T n —_—
Ad) = [ L Y(0){Di(0s, 1) = D80, 1))

x [ g {BIW()W (¢) dt, k' {v§X,(1))X] () dAo(8,0)] + 0,(1).
Furthermore, the integrand in

[t EXO(D00, ) = D0, O (X)X (1) dAo(d, 1)

is of bounded variation and, by Theorem 3.1, Ay(6,t) converges to A(t)
uniformly. Thus integration by parts yields A(f) = —n~! 38(0,,7) /30 +
0,(1), which of course converges to A. Such arguments together with a
s1mple use of Lenglart’s inequality, show that V(6) converges to V.. Likewise,
the consistency of £(¢, s) can be verified. The details are omitted. O

REMARK 3.2. Estimator (3.1) may not always be nondecreasing in ¢.
A simple modification which ensures the monotonicity is A (0, t) =
SUpg. <, Ag(6,5). It can be shown that n'/2{A%(6, ) — A,(-)} converges
weakly to the same limiting Gaussian process as nl/ 2(Ay(6, ) — Ay()} [Lin
and Ying (1993)]. In the special setting where the counting process takes at
most one jump, one may construct approximate confidence bands for A (-) by
using a Monte Carlo technique described in Lin, Fleming and Wei (1994).

4. Numerical results. In this section, we present some results from our
numerical studies on the methods developed in the previous two sections.

4.1. Simulation studies. Monte Carlo experiments were conducted to as-
sess the adequacy of the proposed large-sample approximations for practical
sample sizes. Table 1 displays some typical results. For this table, failure
times were generated from the additive-multiplicative model Az | W, X) =
BoW + Ay(t)exp(y,X) and censoring times from the uniform (0, ) distribu-
tion, where W and X are independent uniform (0, 1) variables, A, has a
Weibull distribution and « is chosen to ensure a desired censoring probabil-
ity; the estimating function [UB’ Uy] described in Section 2.4 was used. It is
evident that the estimators are nearly unbiased and the associated tests and
confidence intervals have proper sizes and coverage probabilities provided
that the number of uncensored failure times is not too small.

4.2. A real example. We now illustrate the proposed methods with the
lung cancer data presented by Ying, Jung and Wei (1995). One hundred
twenty-three patients with small cell lung cancer were randomly assigned to
two treatment regimens, the first of which administered cisplatin followed by
etoposide and the second of which administered etoposide followed by cis-
platin. By the end of the study, 49 of the 64 patients on treatment 1 and 51 of
the 59 patients on treatment 2 had died. The investigators were interested in
relating the survival time to the treatment variable Z; (indicating, by the
value 0 versus 1, whether the patient was on treatment 1 or 2) and the age at
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TABLE 2
Regression analyses of the lung cancer data

Cox Additive-
Parameters model multiplicative model

Treatment

Est. 0.463 0.00052

S.E. 0.202 0.00026

Est./S.E. 2.29 2.02
Age

Est. 0.0278 0.0350

S.E. 0.0127 0.0174

Est./SE. 2.18 2.01

study entry Z,. The left side of Table 2 shows the results for the Cox model
Nt |1 Z) = A(Bexp(yg1Z, + Yo2Z,). Goodness-of-fit analysis revealed that the
proportional hazards assumption might not be completely satisfied with
respect to Z;: the hazard ratio appears to be larger early on and smaller
toward the end. In general, if A,(-) is increasing over time (as is often the case
with chronic diseases) and the hazard ratio is decreasing over time, then it
may be more appropriate to postulate an additive rather than a multiplica-
tive covariate effect. Thus, we also fit the additive-multiplicative model
ME | Z) = BoZ, + Ay(t)exp(yyZ,); the right side of Table 2 displays the re-
sults based on [Up, U, ] of Section 2.4. As a rough check on the goodness of fit,
Figure 1 compares the model-based estimates of survival probabilities with
the local Kaplan—Meier estimates. (For the graphical analysis, we di-
chotomized Z, at its median value 63.) The figure suggests that both models
provide fairly good summarization of the data, but the models seem to
underestimate the treatment difference for ¢ < 600. A plot of the cumulative
hazard function estimates (not shown here) indicated that A,(¢) is roughly
constant, although slightly decreasing for small values of ¢ and slightly
increasing for large values of ¢. In short, treatment 1 is more beneficial than
treatment 2, and younger patients have better prognosis than older ones; the
treatment difference appears to be a bit larger in the early stage of therapy
than in the late stage, with an average risk ratio of about 1.6 and an average
risk difference of about 0.0005.

5. Asymptotic efficiency. Sections 2 and 3 provided some simple esti-
mators for 6, and A,. In this section, we shall assess the asymptotic
efficiency of those estimators and construct estimators that are asymptoti-
cally efficient. To avoid introducing stability conditions, we assume that
(N, Y,(8), Z,(¢), t €0, 7]}, i = 1,...,n, are ii.d. In addition to assump-
tions (A1) and (A2) made in Section 2.4, we further assume that the following
hold: () A, is continuous; (ii) there exists a constant & > 0 such that, with
probability 1,

Jnf min[a{ygX,(2)}, { BTWi(1)} + R{YTXA()}ho(¥)] = &,

(iii) Efinf,_,_, (&)} > 0.
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F1c. 1. Survival probability estimates based on the Kaplan—Meier method, the Cox model and
the additive-multiplicative model, shown by the solid, dashed and dotted curves, respectively,
for four risk groups: (a) treatment 1, (age) < 63; (b) treatment 1, (age) > 63; (c) treatment 2,
(age) < 63; (d) treatment 2, (age) > 63.

5.1. Efficient estimation of 6,. It is convenient to introduce the following
notation:

g'{BTWi(£)}Wi(2)

W}i(o;t) = h{’}’TXi(t)} ’ Vf,t(t) = W’i(oo;t);
AT
X,(6;t) = Avia0)00 Xi(2) = Xi(0031);

h{VTXi(t)} ’
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hz{‘YTXi(t)}

BTW, ()} + h{y"X,(2)}N(2)’

i i (0, A )Y, (£)W;(85t)

wi(0,A5t) = P wi(t) = (0o, Ag5t);

W(0,A;t) = : w,(t) = lim W,(6,, Ao;1);
A0 ) = (6 M OYi(0) Du8) = Jim W0, A3 t)
_ om0, 40)Y.(2) X,(6;5¢) _

X(0,rt) = X = li it);

5 W,(6;t) . )
Z,(0,A;t) = [X(O't))\(t)]’ Z(t) =Z,(0,, A3 t);
T w0, L 0)Yi(8)Z,(0, A5t)

T m(0, A 8)Y(¢t) ’

Z,(0,x1) = 2,(t) = lim Z,(6o, Ag;?).

Due to assumptions (ii) and (iii), the denominators in the above expressions
are nonzero for all ¢ € [0, 7], 6 sufficiently close to 6, and n sufficiently large.
Hence, all the quantities are well defined.

To derive the information bound for estimating 6,, consider the following
parametric submodel:

Mt12;0,m) = g{BTW()} + h{y"X()}| do(){1 + iz, ()} + i m,(1)],

where n = (9], n])7. Note that, in this model, § and 7 are unknown parame-
ters whereas A,(-) and {9?#(-), iv'ﬂ(-)} are fixed functions. The (2 p-dimensional)
likelihood score function for (67, n”)” evaluated at 6 = 6, and 1 = 0 is

no o Zi(8) pi(t)
———— dM,(¢),
ig ‘/;) h{'Yg‘Xi(t)} )
22, () mi(2)
Z L wbax oy @40
The corresponding Fisher information matrix (normalized by n) is
~ ®2
Lyy I, nooor| Z(¢) u2(t)
=E|ln"t Y [ ey Yi(9)
[In(? Inn i=1‘/;) z#(t) hZ{VgXi(t)}

x[g{ BEW;(£)} + {¥IX.(£)}ho(2)] dt

®2

2Oy (e .

z,(1)

=E/:
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Thus, the information for 6, is

1 T, ~ _ ®2
I, =1, - Io,,I,mI,w—EfO {Zy(t) —2.0)) Yi(t)m(t) dt,

and I;! is the information bound for estimating 6, in the above parametric
submodel [Bickel, Klaassen, Ritov and Wellner (1993), page 28]. By defini-
tion, the information bound for an infinite-dimensional model is the supre-
mum of the information bounds among all regular parametric submodels
[Bickel, Klaassen, Ritov and Wellner (1993), page 46]. Therefore, if we can
construct a regular semiparametric estimator whose asymptotic covariance
matrix (normalized by n) is I;!, then we can claim that I; ! is the (semipara-
metric) information bound for estimating 6, when Ay(:) is completely unspec-
ified and that the estimator so constructed is asymptotically efficient [Bickel,
Klaassen, Ritov and Wellner (1993), pages 76-77].

To ease our theoretical analysis, we shall employ the so-called sample-
splitting technique to construct an asymptotically efficient estimator for 6,.
We randomly partition the entire sample into two groups, the first one
containing (the first) [n/2] (the largest integer less than or equal to n/2)
subjects. Let 6 denote an initial n'/?-consistent estimator of 6, on the
basis of the first group of the data by using an inefficient estimating equation
given in Section 2. We can then apply the kernel smoothing method of
Ramlau-Hansen (1983) to the estimator of A, given in Section 3 to obtain a
consistent estimator A(l) of A,. Note that to guarantee consistency we can
choose bandwidth to be n~1/% and make constant extrapolation on [0, 2n~1/3]
and [7 — 2n~'/3, 7]. Likewise, we can construct consistent estimators 6@
and A from the second group of the data.

leen the initial consistent estimators 8% and A{", k = 1, 2, we define

[n/2]
Swi(0) = L [ { (B, v, 39;t) - ZO( B, v, AP;t))

{YTXi(t)}

n T ~ A )
' i=[n§2]+1'/;) {Z ( B(l) ¥ A%l); t) B Zl(tz)( BY, v, /\E)l); t)}

U ane) - vy gl BTWL(0)) de]

i BD, v, AP;¢)

h{YTXi(t)}

[dN,(2) - Yi(¢)&{ BT Wi(¢)} dt],
where
TPu (0, A; 8)Yi(8)Z(6, A; 8)
TP, (6, A 8)Y(2) ’
X ny2+1 (05 A5 )Y (t)Z,(0, A;t)
Z?:[;;/2]+1 (0, A;t)Y;(2)

7(1 . —
Z;)(O,A,t) =

7(2 . =
Z2(0,1t) =
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A simple algebraic manipulation yields

[n/2]
Sept(0) = Z f{ (B®,7,405¢) —ZO(B®, v, 30;¢))

( B®, vy, A®; t)

Ty dM,(6,t)
(5.1) {n X’(t),}
+i=[r§2]+1f0 {Z( By, 31 - Z2( B, , )\%‘);t)}
Mi(é(l)’,y’ X%l);t)
A0 B

From (5.1) we can see heuristically that S,pt should result in an asymptoti-
cally efficient estimator, that is, an estimator whose asymptotic covariance
matrix is approximately (nI,)”'. The following theorem formalizes this
heuristic.

THEOREM 5.1.  Suppose that the assumptions made at the beginning of this
section are satisfied and that the information matrix I, is nonsingular. Then
there exists a neighborhood of 0, within which, with probabzltty tending to 1
asn — o t{ze root O, of S4(8) = 0 is uniquely defined and n'/ 2(B,p, — 60)

-, MO, I;H).

PrROOF. Let
mi(0,A51)
r{y" X, (1)}’

Then the derivative at 6 = 6, for the first summation on the right-hand side
of (5.1) is

Ry(0,A;8) = {Z,(0, 15¢) — ZO(0, &; t)} i=1,...,n.

rOR,(B®, vy, AD;t)
Iy
[n/2] OM,(0,,t
8 ) a2

The first term is O (nl/ 2) because it is a sum of integrals of predictable
processes with respect to the martingales {M,(¢); i = 1,...,[n/2]}, where the
o-filtration 7V is generated by

{M(s)’Yi(s t),2(s+);s <t 1<ix< [%]}

[n/2]
; f dM,(¢)

and

{Nj(u),Yj(u),Zj(u);O <u< T[g] <j< n}
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Since @ and A® are consistent, the second term is approximately

(/21 ; M, (6,,t)
R.,(6y, Ay;t) d———,
El/o (89, Ao t) d——

which is easily seen to be —(n/2)I; + 0,(n) by the law of large numbers.
Thus

(n/2] faR.(é@’) ¥ X(z).t)
-1 i s /0> 0 »
n dM;(¢
z f p” ()

(n/21 . . aM,(6,,t) I
+ R(BD, vy, A®;¢)d—22 ) ) — 2,
i§1'/(.) z(.B Yo o ) 90 P 9

With a similar result for the second sum in (5.1) we get n™! 98,,,(6,)/90 —p
— I,. Therefore, by the arguments given in the proof of Theorem 2.2, there
exists aAneighborhood of 6, within which, with probability tending to 1 as
n — «, 6, is uniquely defined and converges to 6,. By the Taylor expansion
of S,i(6,,) at 6y, we get

nl/z(éopt - 00) = {IJI + Op(l)}n_l/zsopt( 00)

n T ~ Mt(t)
5.2 =Iyn"1/? Z(t) —2,(t) ) = dM(t
(52) ) PIYRCAORE ) aTx (o] M)
+ 0,(1),

where the second equality comes from

[n/2] 3(2) @).

_ T ~ A A —_ A A Ml(B ,’Yo,)\o ’t)
1/2 Z(BD, vy, AD:t) — ZO( BD, y,, AD;t

n ig,l'/;) { z(B Yos Ao ) u (B Yos Ao )} R(7IX,(2))

= _ ,U»i(t)

and a similar approximation for the second sum in (5.1). It follows from (5.2)
that n'/2(8 — 6,) -, A0, I5'). O

dM(t) = 0,(1)

REMARK 5.1. The ad hoc estimating function suggested at the beginning
of Section 2.4 will be close to S, if A, is roughly constant and g is small
relative to 4 A,. By the arguments given in the proof of Corollary 3.2, I, can
be consistently estimated by Vopt(éopt), where ‘?opt(o) is obtained from V(6)
defined at the end of Section 2.3 with obvious changes of the integrands.
For moderate-sized samples, it is more accurate to estimate the limiting co-
variance matrix of n'/%(§,, — 6g) by A (8,,)Vp(6,,) Ast(6,,)" than by
‘}o_p:( éopt), where Aopt(o) is the obvious modification of A(6).

5.2. Efficient estimation of A,. In this section, we discuss the efficient
estimation of a, = Ay(¢,) for a given time point t, along the lines of
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Andersen, Borgan, Gill and Keiding [(1993), VII1.2.4 and VIII.4.3]. To moti-
vate our procedure, suppose for the moment that the regression parameters
B, and vy, are known. Consider the following class of estimators for a,:

Ao, ) = [T OLINC) — V() el B Wi(1)) ]
oo 0 it h{ys X, (1) }Yi(2) ’
where {c;(-)} are positive predictable processes.

It is easy to see that f&c( 0, t,) is asymptotically unbiased with approxi-
mate variance

[ £, c2(1)[g{ BEW(2)) + A{¥EX(1)o(2)] Yi(2) dt
0 (£ e () A {(¥E X, ()} Yi(2)]”
‘y dt
2 S mT

where the equality holds if c,(¢) = u;(¢)/h{yfX,(+)}. Writing y,(8) =
E{ u,(£)Y,(¢)}, we next show that [foy, '(¢)dt is actually a lower bound for
the variance (normalized by r) of any regular estimator of A,(¢,) (when 6, is
known). To this end, we introduce a one-parameter submodel

AgCast) = Ao(2) + (@ = ag) ro(2),

where f,(t) = 1, _,,/{5.()[§°y, '(s) ds}. Clearly, A(a;ty) = a. It is
straightforward to show that the Fisher information (again normalized by n)
for a at a, is {/joy, "(£) dt}~". X

Since the unknown 6, can be efficiently estimated by 6,,, it is natural to
speculate that

N W Zi10,(8) [aNi(2) - V() g{ BEW (1)) dt
Al to) = [ 1w (6) A (35 X ()] Yi(2) ’

with w;(¢) = u,(¢)/MyIX,(t)}, should be asymptotically optimal. Analogously
to (3.6),
n1/2{f\w(éopt, to) — Ao(to)}
=n1/2fto Lo, (t) dM (1)
o Zo(t)r{ys X,()}Yi(t)

_/O“’zg(t) dtI:in 17 é /O’{z',.(t) = Z,(t) ay(t) dM(t) + 0,(1),

the limiting variance being v, = [0y, '(¢) dt + [§oZ1(¢) dt I Y[§°Z,(¢) dt.
We claim that v, is the optimal variance for the estimation of A (¢,). We
shall establish this claim by providing a one-parameter family whose Fisher
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information is vy!. Define
- to_ 1= -
Ao((a;2) = Ag(2) + (@~ aO){l(tsto)yﬂ.l(t) + _/(.)oz:(s) dsl, 1z;l,(t)}v01’

0=20,— (a— ao)Io“lftoE#(s) dsvgt.
0

Obviously, a = [{'Ao(a;?)dt. The likelihood score function at «, can be
shown to be

Y s _ ()
vo ! Elfolasto)yﬂ 1(t)mdMi(t)

to_rp -1 “ (s — /’Li(t)
fo 27 (¢) dt I El/o {Zi(r) - 2,(0)) TTE(] dM,(t)|.
Thus the normalized Fisher information converges to vy ®.

We may approximate the unknown optimal weights w;(¢) = u,(2)/
h{yIX,(t)} by applying the sample-splitting technique again. Let w,(6, A;¢) =
w6, A;8)/h{yTX,(¢)}, and let 6®, A®), k =1, 2, and 5opt be as defined in
Section 5.1. In addition, define

(/21w (6, A5 t)[dN,(2) - Yi(¢)g{ BTW,(2)} dt]

A,.(0,8) = —
el 0:0) Elfo 25wy (82, AP; ¢ ) h{yTX,(£)}Y;(2)

no o (00, AP ¢)[dN(2) - Yi(2)g{ BTW(t)) dt]
i=[n/2]+1 0 2Z?=[n/2]+1wi(é(1)a)A‘(ol);t)h{YTXi(t)}Yi(t)

By the arguments given in the proofs of Theorems 3.1 and 5.1, we can show
that n'/2{A (6., to) — Ao(£))} = A0, vy). The details can be found in Lin
and Ying (1993).

+
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