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ESTIMATION OF PROPORTIONAL COVARIANCES IN THE
PRESENCE OF CERTAIN LINEAR RESTRICTIONS

BY SØREN TOLVER JENSEN AND JESPER MADSEN

University of Copenhagen and Statens Serum Institut

Proportionality of covariance matrices of n independent p-dimensional
normal distributions with the same type of linear restrictions of the inverse
covariances is considered. Conditions for existence and uniqueness of the
maximum likelihood estimator are obtained through the development of
general results for scale-invariant natural exponential families.

1. Introduction. Let X1, . . . ,Xn be independent and p-dimensional nor-
mally distributed random variables such that E(Xi) = 0 and V(Xi) = λi�,
i = 1, . . . , n, where (λ1, . . . , λn) ∈]0,∞[n and where � is positive definite. This
model is known as the model of proportional covariances, and the problem of
maximum likelihood estimation of the unknown parameters (λ1, . . . , λn) and �

has been treated by several authors; see, for example, Flury (1986), Eriksen (1987)
and Jensen and Johansen (1987). (To obtain a one-to-one parametrization of the
model, a constraint like

∏n
i=1 λi = 1 should be imposed.)

In Jensen and Johansen (1987), it was proved that when the likelihood function
is maximized over � then the negative logarithm of the profile likelihood function
is strictly convex with probability 1 as a function of (log(λ1), . . . , log(λn))

if n > p.
In this paper, we consider an extension of the model as we further shall assume

(i) that θ = �−1 ∈ M , where M is a subspace of Sp (≡ the vector space of all
p × p symmetric matrices) and (ii) that (log(λ1), . . . , log(λn)) ∈ U , where U is
a subspace of Rn. We present a general necessary and sufficient condition for
convexity of the profile likelihood function (Theorem 2.1), and we prove that in
the special case where M is a Jordan algebra, that is, I ∈ M and AB + BA ∈ M

for all A,B ∈ M , the condition is fulfilled for all observations for which the
profile likelihood function exists (Theorem 2.2, Corollary 2.2, Theorem 3.1).
Moreover, in this case, we prove that the profile likelihood function in fact (a) is
strictly convex with probability 1 and that, in this case, the maximum likelihood
estimator exists; (b) is constant with probability 1; or (c) does not exist for any
observations (Theorem 3.2). In Section 4, an algorithm to find the maximum
likelihood estimator is discussed, and, finally, in Section 5, we conjecture that the
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only possible situations where a unique solution to the likelihood equations [for
the unknown parameters (λ1, . . . , λn) and θ ] exists with probability 1 are those
where M is a Jordan algebra.

For practical applications, note that the assumption of zero means is not
essential. In fact, we can assume that µi = E(Xi) ∈ L, i = 1, . . . , n, where L is
a subspace of Rp such that

∀ θ ∈ M : θL = L.(1.1)

[This can be justified as follows. The condition (1.1) implies that the orthogonal
complement to L w.r.t. the inner product on Rp given by θ is independent
of θ . For (log(λ1), . . . , log(λn)) ∈ U and θ ∈ M fixed, the maximum likelihood
estimator for (µ1, . . . ,µn) is then given as µ̂i = PXi , i = 1, . . . , n, where P is
the orthogonal projection matrix of Rp onto L (w.r.t. all θ ∈ M). The profile
likelihood function obtained by substitution of (µ1, . . . ,µn) by (µ̂1, . . . , µ̂n) is
then proportional to the likelihood function based on the residuals (Y1, . . . , Yn) =
((I − P )X1, . . . , (I − P )Xn). Here we have E(Yi) = 0 and V(Yi) = λi�, where
� = (I − P )�(I − P ), and since linear restrictions on θ = �−1 imply linear
restrictions on �−1, we are thus faced with an estimation problem similar to the
one stated above.]

Applications of models with the type of restrictions (i) are, for example,
situations with observation vectors X1, . . . ,Xn from independent, balanced
orthogonal designs of the same type. The restrictions imposed by random factors
of a balanced orthogonal design are linear in the inverse covariance (except for the
constraints of nonnegative variance components); see Section 3. In this case, the
hypothesis of proportional covariances is equivalent to the additional assumption
that correlations between observations are equal across the n designs but the
variances (≡ the sum of all variance components) can vary freely.

Hypotheses of this type occur in problems related to quantitative genetics [see
Lynch and Walsh (1998)], where the simplest example is to consider measurements
of some quantitative trait in two independent populations of animal offsprings in a
so-called paternal half-sib design: a number (say m) of males are sequentially
mated to a number (say r) of females (i.e., no two males are mated with the
same female), and one representative from each litter of offsprings is selected.
Offsprings thus occur in clusters of half-sibs of size r .

We therefore have the two observation vectors X1 = (X1jk | j = 1, . . . ,m, k =
1, . . . , r) and X2 = (X2jk | j = 1, . . . ,m, k = 1, . . . , r), where Xijk is the value of
the quantitative trait of the offspring in the ith population, i = 1,2, that stems from
the kth mating of the j th male to a female. The statistical assumption is that

Xijk = µi + Yij + εijk,

where {Yij ∼ N(0, σ 2
ig)}, {εijk ∼ N(0, σ 2

ie)} are independent variables and µi ∈ R,

σ 2
ie, σ

2
ig > 0 are the unknown parameters.
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The components σ 2
ig and σ 2

ie are in genetics theory interpreted as the parts of
the total variation in the trait across the ith population, i = 1,2, due to genetic
and environmental causes, respectively, and the ratio σ 2

ig/(σ 2
ig + σ 2

ie) (≡ the
intraclass correlation between half-sibs) is called the heritability. The hypothesis
of proportionality between the covariances of the two observation vectors X1 and
X2 then corresponds to the hypothesis of equal heritabilities in the two populations.
[The “genetic” component of variance σ 2

ig can by the theory of genetics be
split into two parts, the additive genetic variance σ 2

ia and the dominance genetic
variance σ 2

id , and sometimes the heritability is defined as σ 2
ia/(σ

2
ig +σ 2

ie), i = 1,2;
see Lynch and Walsh (1998) or the Encyclopedia of Biostatistics, pages 1905 and
1906. In this case, the hypothesis of equal heritabilities does not coincide with that
of proportional covariances.]

Applications of models with the type of restrictions (ii) could be the (common)
situation where U is a regression subspace given by vectors of covariates
z1, . . . , zn ∈ Rr in which case

V(Xi) = exp(β ′
izi)�,

where βi ∈ R
r , i = 1, . . . , n. In the one-dimensional case (p = 1), this type of

relationship among variances has previously been studied; see Cook and Weisberg
(1983) and Aitkin (1987).

2. Convexity of the profile likelihood function. In this section, a necessary
and sufficient condition for convexity of the profile likelihood function is derived.
Since the condition does not involve the subspace U [which determines the
restrictions on (log(λ1), . . . , log(λn))], we shall in the following assume that
U = Rn (eventually see Remark 2.2 for further details).

For computational convenience, we shall formulate the model in the context of
natural exponential families [cf., e.g., Morris (1982), Casalis (1996) or Pace and
Salvan (1997)]. Therefore, in the following let Y denote a random vector taking
values in Rk , k ∈ N, and assume that the distribution of Y belongs to a natural
exponential family (NEF) (Pθ | θ ∈ �) of order k; that is, there exists a σ -finite
measure ν on Rk such that, for y ∈ Rk ,

dPθ

dν
(y) = 1

L(θ)
e〈θ,y〉,

where 〈·, ·〉 denotes the standard inner product on Rk , that is, 〈θ, y〉 = θ ′y, θ is
the canonical (natural) parameter, L(θ) is the norming constant (≡ the Laplace
transform of ν) and � is the canonical (natural) parameter space (≡ {θ ∈ Rk |
L(θ) < ∞}). We shall assume that the NEF is regular; that is, � is an open
nonempty set.

For θ ∈ �, we denote by τ (θ) the mean value parameter, that is, τ (θ) = Eθ (Y ),
and by V(θ) the variance parameter, that is, V(θ) = Vθ (Y ). We denote by C the
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convex support of ν. We can, without loss of generality, assume that the family
is minimal [cf. Barndorff-Nielsen (1978), page 112], that is, int(C) 	= ∅. In this
case, τ is one-to-one, τ (�) = int(C) and V(θ) is nonsingular for all θ ∈ �. We
shall denote the inner product on Rk associated with V(θ)−1 by 〈·, ·〉V(θ)−1 , that is,
〈y1, y2〉V(θ)−1 = 〈y1,V(θ)−1y2〉 = y′

1V(θ)−1y2 for y1, y2 ∈ Rk.
In the following, we shall assume that the NEF is scale invariant; that is, if Y has

the distribution Pθ , then, for all λ > 0, λY has the distribution Pθ/λ (θ ∈ �).
First, we note that, due to the scale invariance, C is a cone, that is, λy ∈ C

for λ > 0 and y ∈ C. This can be seen as follows: in general (for exponential
families), we have that the convex support of Pθ equals C for all θ ∈ �. If y has
the distribution Pθ , the convex support of the distribution of λy is λC. On the other
hand, due to the scale invariance, the distribution of λy is Pθ/λ, implying that the
convex support is C.

Furthermore, for scale-invariant NEF’s we have the following lemma.

LEMMA 2.1. For θ ∈ �,

τ (θ) = −V(θ)θ.

PROOF. It follows from the definition that

τ

(
θ

λ

)
= λτ(θ),(2.1)

and by differentiation of (2.1) w.r.t. λ we get

− 1

λ2
V

(
θ

λ

)
θ = τ (θ)(2.2)

for λ > 0. The lemma now follows by evaluating (2.2) at λ = 1. �

Next, we consider independent observations y1, . . . , yn such that yi has the
distribution Pθ0/λi

, i = 1, . . . , n, where θ0 ∈ � is unknown and λ1, . . . , λn are
unknown positive scalars. To obtain a one-to-one parametrization, we assume that∏n

i=1 λi = 1. Since yi ∈ C with probability 1, i = 1, . . . , n, we shall assume that
this is the case. The negative logarithm of the likelihood function becomes

l(θ0, λ1, . . . , λn) =
n∑

i=1

log
(
L

(
θ0

λi

))
− θ ′

0

(
n∑

i=1

yi

λi

)
,

θ0 ∈ �, (λ1, . . . , λn) ∈]0,∞[n and
∏n

i=1 λi = 1. The following lemma gives
a necessary and sufficient condition for the existence of the profile likelihood
function.
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LEMMA 2.2. For (λ1, . . . , λn) fixed, l has a unique minimum θ̂0 if and only if
(1/n)

∑n
i=1 yi ∈ int(C). In this case, θ0 is given by the likelihood equation

τ (θ̂0) = 1

n

n∑
i=1

yi

λi

.(2.3)

PROOF. It is well known [cf. Barndorff-Nielsen (1978), page 151] that, for
(λ1, . . . , λn) fixed, l has a unique minimum θ̂0 if and only if (1/n)

∑n
i=1 yi/λi ∈

int(C) and that, in this case, θ̂0 is given by the likelihood equation (2.3). We
shall show that, if (1/n)

∑n
i=1 yi ∈ int(C), then (1/n)

∑n
i=1 yi/λi ∈ int(C) for all

(λ1, . . . , λn) ∈]0,∞[n.
We can write

1

n

n∑
i=1

yi

λi

= α
1

n

n∑
i=1

yi + (1 − α)
1

n

n∑
i=1

µiyi,

where α ∈]0,1[ is chosen such that α < min(1/λ1, . . . ,1/λn) and µi =1/(1− α)×
(1/λi − α), i = 1, . . . , n. Since yi ∈ C, i ∈ 1, . . . , n, and C is a convex cone we
must have (1/n)

∑n
i=1 µiyi ∈ C. The lemma now follows from the standard the-

ory for convex sets [cf. Rockafellar (1970), Theorem 6.1] since, by assumption,
(1/n)

∑n
i=1 yi ∈ int(C). �

The following result then gives a necessary and sufficient condition for
convexity of the profile likelihood function. We consider an arbitrary vector of
observations (y1, . . . , yn) such that the profile likelihood function exists, that is,
(1/n)

∑n
i=1 yi ∈ int(C) (cf. Lemma 2.2).

THEOREM 2.1. The profile likelihood function l̂(λ1, . . . , λn) = l(θ̂0, λ1,

. . . , λn) is convex as a function of (log(λ1), . . . , log(λn)) if and only if
n∑

m=1

∑
j : m<j

(cm − cj )
2
〈
ym

λm

,
yj

λj

〉
V(θ̂0)

−1
≥ 0(2.4)

for all c = (c1, . . . , cn) ∈ Rn and all (λ1, . . . , λn) ∈]0,∞[n, where
∏n

i=1 λi = 1.

PROOF. The profile likelihood function l̂ is given by

l̂(λ1, . . . , λn) =
n∑

i=1

log
(
L

(
θ̂0

λi

))
− θ̂ ′

0

(
n∑

i=1

yi

λi

)
.

By differentiation,

∂̂l

∂λj

=
n∑

i=1

τ

(
θ̂0

λi

) ′ ∂θ̂0

∂λj

1

λi

− τ

(
θ̂0

λj

)′ θ̂0

λ2
j

− ∂θ̂ ′
0

∂λj

(
n∑

i=1

yi

λi

)
+ θ̂ ′

0
yj

λ2
j

= θ̂ ′
0

(
yj

λ2
j

− τ (θ̂0)
1

λj

)
,
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where (2.1) and (2.3) are used, and by setting βj = log(λj ), we get

∂̂l

∂βj

= θ̂ ′
0

(
yj

λ2
j

− τ (θ̂0)
1

λj

)
λj

= θ̂ ′
0

(
yj

λj

− τ (θ̂0)

)
,

(2.5)

j = 1, . . . , n. Differentiation of (2.3) yields

∂τ (θ̂0)

∂λj

= −1

n

yj

λ2
j

,(2.6)

but, on the other hand, by successive differentiation,

∂τ (θ̂0)

∂λj

= V(θ̂0)
∂θ̂0

∂λj

,(2.7)

and thus combining (2.6) and (2.7) yields

V(θ̂0)
∂θ̂0

∂λj

= −1

n

yj

λ2
j

,(2.8)

j = 1, . . . , n. Then, by differentiation of (2.5),

∂2 l̂

∂λj ∂βj

= ∂θ̂ ′
0

∂λj

(
yj

λj

− τ (θ̂0)

)
− θ̂ ′

0

(
yj

λ2
j

+ ∂τ (θ̂0)

∂λj

)

= τ (θ̂0)
′V(θ̂0)

−1 yj

λ2
j

− 1

n

y′
j

λ2
j

V(θ̂0)
−1 yj

λj

,

where (2.6), (2.8) and Lemma 2.1 have been used. Hence,

∂2 l̂

∂β2
j

= ∂2 l̂

∂λj ∂βj

λj

= τ (θ̂0)
′V(θ̂0)

−1 yj

λj

− 1

n

y′
j

λj

V(θ̂0)
−1 yj

λj

,

(2.9)

j = 1, . . . , n. Analogously, we get

∂2 l̂

∂βm ∂βj

= −1

n

y′
m

λm

V(θ̂0)
−1 yj

λj

(2.10)

for m 	= j , m,j = 1, . . . , n.
To prove convexity of the profile likelihood function, we shall show that

the matrix D2 l̂ determined by (2.9) and (2.10) is positive semidefinite for
all (λ1, . . . , λn) ∈]0,∞[n. For notational convenience we let zj = yj/λj ,
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j = 1, . . . , n. Note that τ (θ̂0) = (1/n)
∑n

i=1 zi by (2.3). For c = (c1, . . . , cn) ∈ Rn,
we then have

c′(D2 l̂ )c =
n∑

m=1

n∑
j=1

cm

∂2 l̂

∂βm ∂βj

cj

=
n∑

m=1

c2
mz′

mV(θ̂0)
−1

(
1

n

n∑
i=1

zi

)
− 1

n

n∑
m=1

c2
mz′

mV(θ̂0)
−1zm

− 1

n

n∑
m=1

∑
j : j 	=m

cmcjz
′
mV(θ̂0)

−1zj

= 1

n

n∑
m=1

n∑
j=1

c2
mz′

mV(θ̂0)
−1zj − 1

n

n∑
m=1

n∑
j=1

cmcjz
′
mV(θ̂0)

−1zj

= 1

n

n∑
m=1

∑
j : j 	=m

(c2
m − cmcj )z

′
mV(θ̂0)

−1zj

= 1

n

n∑
m=1

∑
j : m<j

(cm − cj )
2z′

mV(θ̂0)
−1zj ,

and, hence, the theorem follows. �

COROLLARY 2.1. The profile likelihood function l̂(λ1, . . . , λn) = l(θ̂0, λ1,

. . . , λn) is convex as a function of (log(λ1), . . . , log(λn)) if

∀ θ ∈ � ∀m < j : 〈ym,yj 〉V(θ)−1 ≥ 0.(2.11)

PROOF. If (2.11) is fulfilled, then clearly (2.4) is fulfilled for all c =
(c1, . . . , cn) ∈ Rn and all (λ1, . . . , λn) ∈]0,∞[n. �

REMARK 2.1. If the inequality in (2.4) is strict for all c = (c1, . . . ,

cn) ∈ Rn where not all coordinates are equal and all (λ1, . . . , λn) ∈]0,∞[n, where∏n
i=1 λi = 1, then the profile likelihood function is strictly convex.

In the following, Sp denotes the vector space of all symmetric p × p matrices,
Pp the cone of all positive-definite p×p matrices and PSp the cone of all positive-
semidefinite p × p matrices (p ∈ N). In our specific case study, we consider, as
the underlying exponential family model, the normal distributions N(0,�) on Rp ,
with the restriction �−1 ∈ M+ ≡ M ∩Pp , where M denotes a subspace of Sp such
that M+ 	= ∅. For � ∈ Pp , we denote the inner product on Sp associated with the
Kronecker product � ⊗ � by 〈·, ·〉� , that is, 〈A,B〉� = tr(A�B�), A,B ∈ Sp ,
and we denote by Q� the orthogonal projection onto M w.r.t. 〈·, ·〉� . We let
〈·, ·〉 = 〈·, ·〉I (≡ the standard inner product on Sp) and Q = QI .



226 S. T. JENSEN AND J. MADSEN

The density of N(0,�) w.r.t. the Lebesgue measure on Rp can be written as

1

(2π)p/2 det(�)1/2 exp
{〈

−1

2
�−1,Q(xx′)

〉}
,

where x ∈ Rp . As the NEF in the above context, we thus consider instead the
family of (generalized Wishart) distributions of y = Q(xx′), where x is distributed
according to N(0,�) and �−1 ∈ M+. (In the simple case where M = Sp , y = xx′
is the Wishart distribution with one degree of freedom.) We have thus that the
canonical parameter is θ = −1

2�−1, the canonical parameter set is � = −M+, the
mean value parameter is

τ (θ) = Eθ

(
Q(xx′)

) = Q
(
Eθ (xx′)

) = Q(�) = −1
2Q(θ−1),

and the variance function is (by differentiation of τ ) given by

V(θ)(B) = Dτ (θ)(B) = 1
2Q(θ−1Bθ−1)(2.12)

for B ∈ M , θ ∈ �. Furthermore, int(C) = τ (�) = Q(M−1+ ). Note that since τ is a
mapping from −M+ to Q(M−1+ ) ⊆ M , V(θ) defines a linear mapping of M onto
itself (θ ∈ �).

First, we give an equivalent algebraic condition for the case where (2.11) is
fulfilled for all (y1, . . . , yn) ≡ (Q(x1x

′
1), . . . ,Q(xnx

′
n)), xi ∈ Rp , i = 1, . . . , n.

THEOREM 2.2. For θ = −1
2�−1 ∈ �, the conditions

Q�(PSp) ⊆ PSp,(2.13)

∀x1, x2 ∈ R
p : 〈Q(x1x

′
1),Q(x2x

′
2)〉V(θ)−1 ≥ 0(2.14)

are equivalent.

PROOF. Let θ = −1
2�−1 ∈ �. For x2 ∈ Rp , we define A(x2) = V(θ)−1 ×

Q(x2x
′
2), that is, A(x2) ∈ M and Q(x2x

′
2) = 1

2Q(θ−1A(x2)θ
−1), and (2.14) is thus

that tr(Q(x1x
′
1)A(x2)) = tr(x1x

′
1A(x2)) = x′

1A(x2)x1 ≥ 0 for all x1, x2 ∈ Rp or,
equivalently, that A(x2) is positive semidefinite for all x2 ∈ R

p . But for x2 ∈ R
p

we have

tr
(
�A(x2)�B

) = tr
(1

4Q
(
θ−1A(x2)θ

−1)
B

)
= tr

(1
2Q(x2x

′
2)B

) = tr
(1

2x2x
′
2B

) = tr
(
�(2θx2x

′
2θ)�B

)
for all B ∈ M , which implies that A(x2) = Q�(2θx2x

′
2θ) = Q�(2(θx2)(θx2)

′).
From this expression, it then follows that A(x2) is positive semidefinite for all
x2 ∈ Rp if and only if Q�(PSp) ⊆ PSp. �

For an arbitrary vector of observations (x1, . . . , xn) for which the profile likeli-
hood function exists, that is, Q((1/n)

∑n
i=1 xix

′
i ) ∈ Q(M−1+ ) (cf. Lemma 2.2), we

then obtain the following corollary directly from Theorems 2.1 and 2.2.
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COROLLARY 2.2. If Q�(PSp) ⊆ PSp for all �−1 ∈ M+, then the profile
likelihood function is convex as a function of (log(λ1), . . . , log(λn)).

REMARK 2.2. Due to the fact that the restriction to a linear subspace of a con-
vex function is convex, all results about convexity of the profile likelihood function
for the investigated model hold as well for the case where (log(λ1), . . . , log(λn))

is restricted to vary in some subspace U of Rn (we still impose the restriction∏n
i=1 λi = 1 in order to obtain a one-to-one parametrization).

3. The Jordan algebra case. In this section, we consider the case where M is
a Jordan algebra, that is, I ∈ M and AB + BA ∈ M for all A,B ∈ M . This
general type of covariance hypothesis was introduced by Jensen (1988), who gave
a complete characterization of the corresponding normal models. It turns out that
the models correspond to products of i.i.d. normal models where the observations
have a covariance matrix with real (≡ the unrestricted case), complex or quaternion
structure, or a parametrization given by means of the Clifford algebra. Products of
normal models with covariances given by any of the first three cases coincide with
the so-called group symmetry models [for a brief introduction, see Andersson and
Madsen (1998), Appendix A].

The condition that M is a Jordan algebra can equivalently be formulated as
M−1+ = M+. Note that, in particular, when M corresponds to restrictions given
by random factors of a balanced orthogonal design, M is a Jordan algebra.
This follows from the fact that M in this case can be parametrized as M =
{α1Q1 +· · ·+αmQm | (α1, . . . , αm) ∈ Rm}, where Q1, . . . ,Qm are the orthogonal
projection matrices of a partition of R

p , that is, Q2
i = Qi and QiQj = 0 for i 	= j ,

i, j = 1, . . . ,m [cf. Tjur (1984)].
First, we prove that the assumption in Corollary 2.2 is fulfilled.

THEOREM 3.1. If M is a Jordan algebra, then Q�(PSp) ⊆ PSp for all
�−1 ∈ M+.

PROOF. For A ∈ Sp and � ∈ Pp , we have, in general, that 〈A,B〉� =
〈Q�(A),B〉� for all B ∈ M . Now let �−1 ∈ M+. Since M is a Jordan algebra,
� ∈ M+, and, furthermore,

�B� = 1
2

(
(�B + B�)� + �(B� + �B) − (B�2 + �2B)

)
,

that is, �B� ∈ M for B ∈ M . Thus, on the other hand, for A ∈ Sp,

〈A,B〉� = 〈A,�B�〉 = 〈Q(A),�B�〉 = 〈Q(A),B〉�
for all B ∈ M , implying that Q�(A) = Q(A). Hence, Q� = Q for all �−1 ∈ M+.
It therefore suffices to show that Q(xx′) ∈ PSp for all x ∈ Rp . But Q(xx′) ∈ C

and since

int(C) = 1
2Q(M−1+ ) = 1

2Q(M+) = 1
2M+ = M+ ⊆ Pp,
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we must have Q(xx′) ∈ PSp , x ∈ Rp . �

Thus, in particular, it follows from Corollary 2.2 that in the case where M is
a Jordan algebra, the profile likelihood function [for observations (x1, . . . , xn)

for which it exists] is convex as a function of (log(λ1), . . . , log(λn)). We shall
now prove that, in fact, the profile likelihood function (a) is strictly convex with
probability 1, (b) is constant with probability 1 or (c) does not exist for any
observations.

THEOREM 3.2. If M is a Jordan algebra, then either the profile likelihood
function exists with probability 1 or it never exists for any observation (x1, . . . , xn).
In the case where the profile likelihood function exists, it is either strictly convex
as a function of (log(λ1), . . . , log(λn)) with probability 1 or it is constant for
all observations. Furthermore, the maximum likelihood estimator exists with
probability 1 if the profile likelihood function is strictly convex.

PROOF. First note that, when M is a Jordan algebra, the variance function
(2.12) becomes

V(θ)(B) = 1
2θ−1Bθ−1

since θ−1Bθ−1 ∈ M , and thus

V(θ)−1(A) = 2θAθ

for A,B ∈ M , θ ∈ �.
From Jensen (1988), it follows that the model corresponds to a product of i.i.d.

normal models where the observations have a covariance matrix with real (≡ the
unrestricted case), complex or quaternion structure, or a parametrization given by
means of the Clifford algebra. The profile likelihood function therefore becomes
a sum of the profile likelihoods for the factors in the product. In the real case,
the profile likelihood function does not exist for n < p (this follows directly from
Lemma 2.2). For n = p, it is constant, since in this case [by (2.5)]

∂̂l

∂βj

= −p

2
tr

((
p∑

i=1

xix
′
i

λi

)−1(
xjx

′
j

λj

− 1

p

p∑
i=1

xix
′
i

λi

))

= −p

2

(
x′
j

λj

( p∑
i=1

xix
′
i

λi

)−1
xj

λj

− 1

)
= 0,

where the last equation is due to the fact that, in general,

z′
j

( p∑
i=1

ziz
′
i

)−1

zj = 1
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for z1, . . . , zp ∈ Rp , j = 1, . . . , p.
For n > p, we let � denote the set of observations (x1, . . . , xn) for which

any subfamily (xi1, . . . , xir ) of size r ≤ p is linearly independent. Clearly, an
observation (x1, . . . , xn) belongs to this set with probability 1, and we shall show
that the profile likelihood function for such an observation is strictly convex. Thus,
assume that, for (x1, . . . , xn) ∈ �, the profile likelihood function is not strictly
convex. Then, by Remark 2.1, there exists c = (c1, . . . , cn) ∈ Rn where not all
coordinates are equal and (λ1, . . . , λn) ∈]0,∞[n where

∏n
i=1 λi = 1, such that

0 =
n∑

m=1

∑
j : m<j

(cm − cj )
2〈zmz′

m, zjz
′
j 〉V(θ̂)−1

= 1

2n

n∑
m=1

∑
j : m<j

(cm − cj )
2 tr

(
zmz′

m

(
n∑

i=1

ziz
′
i

)−1

zj z
′
j

(
n∑

i=1

ziz
′
i

)−1)

= 1

2n

n∑
m=1

∑
j : m<j

(cm − cj )
2

(
z′
m

(
n∑

i=1

ziz
′
i

)−1

zj

)2

,

where zi = xi/
√

λi , i = 1, . . . , n. This equation implies that

z′
m

(
n∑

i=1

ziz
′
i

)−1

zj = 0,

whenever cm 	= cj , that is, zm ⊥ zj w.r.t. the inner product on Rp given by(
n∑

i=1

ziz
′
i

)−1

.

Let I1, . . . , Ir be the partitioning of I = {1, . . . , n} in nonempty sets such that
i, j belong to the same set Il if and only if ci = cj , i, j = 1, . . . , n, l = 1, . . . , r .
The corresponding families (zi1)i1∈I1, . . . , (zir )ir∈Ir are thus linearly independent.
Since n > p, there exists an l, l = 1, . . . , r , such that the vectors (zi)i∈Il

are linearly
dependent, and we must have |Il| > p since any subset of {z1, . . . , zn} of size less
than or equal to p is linearly independent. For the same reason, we must have
dim(span{zi : i ∈ Il}) = p, contradicting the fact that r ≥ 2.

In the complex (quaternion) case, we consider observations x1, . . . , xn ∈ R2p

(R4p) that have a one-to-one correspondence to observations y1, . . . , yn ∈ C
p

(Hp) [see Andersson (1975) or Andersson, Brøns and Jensen (1983)]. In this case,
the symmetric 2p × 2p (4p × 4p) matrix Q(xix

′
i) corresponds to the Hermitian

p × p matrix yiy
′
i , i = 1, . . . , n, and thus the above considerations for the real

case apply in this situation too, since these only use basic results about finite-
dimensional vector spaces (over arbitrary fields). In the case of the Clifford alge-
bra, it follows from Jensen [(1988), Theorem 4] that Q(x1x

′
1), . . . ,Q(xnx

′
n) are
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all positive definite with probability 1, except for four cases where (dim(M),p) =
(3,2), (4,4), (6,8) or (10,16). Thus, in this situation, the inequality in (2.4) is
strict for all c = (c1, . . . , cn) ∈ R

n where not all coordinates are equal, and hence
the profile likelihood function is strictly convex for all n ≥ 2. The four exceptional
cases can all be handled as the two-dimensional complex normal distribution, and
it is seen that the profile likelihood function is constant for n = 2 and strictly con-
vex for n ≥ 3.

By a similar inspection of the above cases, it can be seen that the maximum
likelihood estimator exists with probability 1 if the profile likelihood function is
strictly convex. �

4. Calculation of the maximum likelihood estimator. For the model given
at the beginning of the Introduction, the likelihood equations are

λi = tr(�−1XiX
∗
i )/C,(4.1)

where i = 1, . . . , n and C = ∏n
i=1 tr(�−1XiX

∗
i ), and

Q

(
n∑

i=1

XiX
∗
i /λi

)
= nQ(�).(4.2)

For a specific model, the problem is to solve (4.2) in �. By Lemma 2.1, the
solution is unique if it exists.

The equation is also given in Anderson (1969, 1970) and can, in general,
be solved by the Newton–Raphson iterative process; see Anderson (1970),
(4.7)–(4.9).

In the Jordan algebra case, one has the linear equation

� = Q

(
n∑

i=1

XiX
∗
i /λi

)/
n.

For a decomposable covariance selection model, an explicit solution is given
by Lauritzen [(1996), Proposition 5.9], and for a general covariance selection
model, the equation can be solved by an IPS algorithm; compare Lauritzen (1996),
Theorem 5.4.

The iterative process given in Eriksen (1987), Theorem 3.2, can then be
generalized by successively solving (4.1) and (4.2). If the maximum likelihood
estimator exists and there is a unique solution to the likelihood equations, the
algorithm converges to the maximum likelihood estimator. If the likelihood
function has several local maxima, the algorithm may converge to any one of them
depending on the starting value.

For a decomposable covariance selection model, however, there might be
several solutions to the likelihood equations (4.1) and (4.2).
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5. Further investigations. In this section, we present two additional conjec-
tures, which, unfortunately, we have not been able to prove, except in the case
dim(M) = 2. The first is purely algebraic and concerns the converse of Theo-
rem 3.1.

CONJECTURE 1. If Q�(PSp) ⊆ PSp for all �−1 ∈ M+, then M is a Jordan
algebra.

Note that, for � ∈ Pp , the condition Q�(PSp) ⊆ PSp can be formulated
alternatively that the cone M is self-dual [see Faraut and Korányi (1994)] w.r.t.
the inner product 〈·, ·〉� on Sp .

The second conjecture states that the only cases where a unique solution to
the likelihood equations for the unknown parameters (λ1, . . . , λn) and θ exists
with probability 1 are those where M is a Jordan algebra. Thus, in particular
(if the conjecture holds), we cannot have existence and uniqueness of the ML
estimator with probability 1, except in the case where M is a Jordan algebra. In
this situation, the profile likelihood function is then strictly convex as a function of
(log(λ1), . . . , log(λn)) (cf. Theorem 3.2).

CONJECTURE 2. If there exists an n0 ∈ N such that, for all n ≥ n0, there
exists a unique solution to the likelihood equations for the unknown parameters
(λ1, . . . , λn) and θ with probability 1, then M is a Jordan algebra.
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