
The Annals of Statistics
1996, Vol. 24, No. 5, 2108]2127

OPTIMAL BAYESIAN DESIGNS FOR MODELS
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BY HOLGER DETTE 1 AND WENG KEE WONG2

Ruhr-Universitat Bochum and University of California¨
We consider the problem of finding a nonsequential optimal design for

estimating parameters in a generalized exponential growth model. This
problem is solved by first considering polynomial regression models with
error variances that depend on the covariate value and unknown parame-
ters. A Bayesian approach is adopted, and optimal Bayesian designs
supported on a minimal number of support points for estimating the
coefficients in the polynomial model are found analytically. For some
criteria, the optimal Bayesian designs depend only on the expectation of
the prior, but generally their dependence includes the derivative of the
logarithm of the Laplace transform of a measure induced by the prior. The
optimal design for the generalized exponential growth model is then
determined from these optimal Bayesian designs.

1. Introduction. We begin by considering two design problems.

1.1. A design problem for a generalized exponential model. Suppose the
statistical model is given by

ny1
v jy s x exp yu x a x q « , x G 0,Ž . Ý j

js0

where y is the response and « is an unobservable error normally distributed
with mean 0 and variance s 2. The model parameters are aT s
Ž . na , a , . . . , a g R and u ) 0. If n and v are known, the above model is a0 1 ny1
more general exponential growth model than those studied in Chaloner
Ž . Ž . Ž .1993 n s 1, v s 0 and a known , Mukhopadhyay and Haines 1995 and0

Ž . Ž .Dette and Neugebauer 1996a, b n s 1, v s 0 and Dette and Sperlich
Ž . Ž .1994 n s 1, v G 0 . Since the above model has multiple extrema which
decrease exponentially as x ª q` and includes the commonly used exponen-
tial models, we shall call the above model a generalized exponential growth
model.

The main interest here is to find an efficient design for estimating the
Ž T .parameters a , u in the generalized exponential growth model. Special
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cases of this model like those mentioned above already have numerous
applications in the biological and agricultural sciences. For example, when
v s 0 and n s 1, we have the asymptotic regression model which is one of the
most widely used curves in applied scientific work. In agricultural research,
this is the Mitscherlich growth model frequently used to study the relation-
ship between crop yield and the amount of fertilizer; in fisheries research,
this is the Bertalanffy growth curve used for modeling the age and length of

w Ž .xfish Ratkowsky 1983 . Further applications of related exponential growth
models to poultry science and decay growth laws are amply supplied in Box

Ž .and Lucas 1959 . In light of this, studying the design problem for a general-
ized exponential growth model is useful since this model provides researchers
further flexibility in modeling problems.

1.2. A design problem for a polynomial model with partially known het-
eroscedastic structure. Consider the general problem of designing a regres-
sion experiment when it is known that the assumption of homoscedasticity is
not tenable and a precise description of the heteroscedasticity is problematic.
The model of interest here is the general linear model given by

y x s f T x k q e x , u ,Ž . Ž . Ž .
Ž . Ž .where f x is a given k = 1 vector of regression functions and y x is the

response at the x-level of the independent variable x, assumed to lie in a
Ž . Ž .given design space x . The random error incurred in observing y x is e x, u ,

Ž .where u is an unobservable nuisance parameter. The distribution of e x, u is
Ž .assumed to be normal with mean 0 and variance proportional to 1rl x, u .

Ž .The function l x, u is commonly called the efficiency function in the design
w Ž . xliterature Fedorov 1972 , page 64 . The parameters in the model are the

Ž .k = 1 vector k and the vector u .
The research question here is how to design an efficient experiment to

Ž .estimate the parameter k when the functional form of l x, u is known apart
from the values of u . This is an important design problem to address because
Ž .i almost all previous work in this area assumes u is known so that the

wefficiency function is completely determined see the monographs of Fedorov
Ž . Ž . Ž . x Ž .1972 , Pazman 1986 and Pukelsheim 1993 and the references therein ; ii
the assumption of a known efficiency function can be unrealistic in practice,
particularly if the postulated model has little or no theoretical underpinnings
w Ž . xsee Walter and Pronzato 1990 for a further discussion on this issue ; and
Ž .iii the assumption of a known efficiency function is a risky one since a slight
misspecification of the function can cause serious problems in estimating
parameters that are of interest. To illustrate the third point, consider design-

T Ž .ing an experiment to gain information about k using the model f x s
Ž n. Ž . Ž . w .1, x, . . . , x with l x, u s exp yu x , u ) 0, and the design space is 0, ` .
Suppose the true value of u is u and the experimenter misspecifies the2

Ž .efficiency function and uses exp yu x as the efficiency function instead. If1
w Ž .xj is the locally D-optimal design for u Chernoff 1953 , it can be shownu 11

�Ž . Ž .4n wthat the D-efficiency of the design j is u ru exp 1 y u ru see Karlinu 2 1 2 11
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TABLE 1
D-efficiencies of locally D-optimal designs for polynomial regression of degree n when

Ž . Ž .the value of u in the efficiency function l x, u s exp yu x is misspecified

u rrrrr u 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.02 1

n s 1 0.445 0.729 0.895 0.977 1.000 0.982 0.938 0.878 0.808 0.736
n s 2 0.198 0.531 0.801 0.955 1.000 0.965 0.881 0.771 0.654 0.541
n s 3 0.088 0.387 0.717 0.933 1.000 0.948 0.826 0.677 0.529 0.398

Ž . xand Studden 1966 , Theorem 3.3, page 330 . This D-efficiency measures the
efficiency of a design used for estimating u and will be more formally defined
in the next section.

Table 1 displays the D-efficiencies of j for selected ratios of u and u . Itu 2 11

is evident from the table that misspecification of the efficiency function can
result in serious loss of D efficiencies, and becomes increasingly severe as the
degree of the polynomial regression function increases. It is therefore crucial
to have the efficiency function specified as accurately as possible.

It transpires that the optimal design for the generalized exponential model
can be obtained from a general optimal strategy for design problems in
models with heteroscedastic errors. We will therefore consider the latter
design problem first. Only nonsequential designs are considered here, and so

Ž .the sequential approach described in Fedorov 1972 , Section 4.5, is not
applicable. Throughout, we will use a Bayesian approach by incorporating a
prior distribution on the parameter u . This is different from most work in
optimal Bayesian designs where a prior distribution is placed on the parame-

Ž .ter vector k and errors are assumed to be homoscedastic; see Chaloner 1984
Ž .and Pilz 1991 and the references therein.

Our methodology enables us to find many analytical optimal Bayesian
designs supported on a minimal set of support points for a large class of
priors in a fairly general setting. This is an interesting situation, since it is
generally known that analytical results hardly exist for nonlinear design

w Ž .xproblems with a nondegenerate prior Chaloner 1993 . Our basic technique
relies on expansion of the Stieltjes transform of a probability measure as a

w Ž . Ž .xcontinued fraction Studden 1980, 1982 and Lau and Studden 1988 , and
some key properties of the transform are briefly reviewed in the Appendix. Of
course, an advantage of an analytical description of the optimal design is that
properties of the design can be examined more fully.

In the next section we provide the setup for our design problem for
estimating parameters in a heteroscedastic polynomial model and discuss the
optimality criterion and the scope of the problem we seek to solve. Section 3
contains our main results and gives the optimal Bayesian designs for the
polynomial regression model under various assumptions on the heteroscedas-
tic structure. The methodology is illustrated in Section 4 with two examples,
followed by, in Section 5, a revisit to the design problem for the generalized
exponential growth model.
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Ž .2. Optimality criterion. Let x be a given design space, f ? be a known
Ž .k = 1 vector of regression functions defined on x and l x, u be known except

Ž .for the values of u . Let p u be a prior distribution on u with support on a˜
given set Q. Here and throughout, only approximate designs in Kiefer’s sense

w Ž .xare considered Kiefer 1960 . This means an arbitrary design j on x is
treated as a probability measure on x . If we assume the number of observa-
tions is fixed at the onset of the experiment, then these observations are
taken at the support points of the probability measure and the number of
observations at each of these points is proportional to the mass of the
probability measure at each of its support points.

Given a design j and a known value of the parameter u , the information
matrix for the model in Section 1.2 is given by

M j , u s l x , u f x f T x dj x .Ž . Ž . Ž . Ž . Ž .H
x

This measures the information contained in j and is frequently used in the
Ž . Ž .literature; see Fedorov 1972 and Pazman 1986 . When u is unknown,

which is the case here, this information matrix is still meaningful. The
integrand of this matrix corresponds to the upper left k = k submatrix in the

Ž .block diagonal Fisher information matrix for k , u at the point x derived in
Ž .Atkinson and Cook 1995 , equation 6:

l x , u f x f T x 0Ž . Ž . Ž .
T2 y1 y1 ,l x , u ­l x , u ­l x , uŽ . Ž . Ž .

0� 0ž /2 ­u ­u

where they considered a more general heteroscedastic model. The lower right
block submatrix in their information matrix is irrelevant here because we are
only interested in estimating k and u is treated as a nuisance parameter.
Hence, in designing an experiment to gain maximal information on k , it is

Ž .reasonable to choose a design which maximizes the determinant of M j , u
or some function thereof, after averaging out the plausible values of u by a
prior.

The optimality criterion of interest here is, for a given prior p ,˜
1rpprk< <M j , uŽ .

2.0 F j s dp u , y` - p F 1,Ž . Ž . Ž .˜Hp ½ 5½ 5< <M j , uŽ .Q u

with the interpretation that the case p s 0 corresponds to

< <1 M j , uŽ .
F j s exp log dp u .Ž . Ž .˜H0 ½ 5½ 5< <k M j , uŽ .Q u

w Ž .xHere j is the locally D-optimal design Chernoff 1953 for the problemu

when u is the true parameter. The optimal design j is the one whichp, p̃

Ž .maximizes F j over the set of all designs on x and is called Bayesianp
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F -optimal with respect to the prior p . The optimal design within the class of˜p
all k-point designs is called a Bayesian F -optimal k-point design withp

Ž .respect to the prior p . When the prior p u is a degenerate distribution and˜ ˜
Ž .p s 1, F j gives the D-efficiency of j .1

Ž .The criterion 2.0 is motivated largely as a robust criterion in the sense
that we are averaging the usual D-optimality criterion with respect to some
prior distribution. This seems to be a common practice for studying nonlinear

Ž .models; see Ford, Titterington and Kitsos 1989 and Pronzato and Walter
Ž . Ž .1985, 1988a . The case p s 0 gives the criterion considered in Lauter 1974¨
and may be the most interesting case from the Bayesian point of view, in the
sense that the optimal design maximizes the expected increase in Shannon

Ž .information provided by the experiment; see Chaloner and Larntz 1989 and
Ž .Chaloner 1993 . The limiting case p s y` gives the maximum criterion

Ž . Ž .studied in Pronzato and Walter 1988b . See also Walter and Pronzato 1990
for a more detailed discussion of this type of criteria, including the cases
p s 1 and p s y1. The other values of p are less interpretable and they are

w Ž . xincluded to resemble Kiefer’s L -class of criteria Pazman 1986 , page 94 .p
T Ž .In this work we focus on the polynomial regression function f x s

Ž 2 n. Ž .1, x, x , . . . , x and choose l x, u to be one of several classes of efficiency
functions commonly used for modeling heteroscedasticity; see, for example,

Ž . Ž .Fedorov 1972 , page 88, and Pazman 1986 , page 179. They are:

i l x , u s exp yu x , x G 0, u ) 0;Ž . Ž . Ž .
ii l x , u s x aexp yb x , x ) 0, u T s a , b , a ) 0, b ) 0;Ž . Ž . Ž . Ž .

a b Tiii l x , u s 1 y x 1 q x , y 1 - x - 1, u s a , b ,Ž . Ž . Ž . Ž . Ž .
a ) 0, b ) 0;

iv l x , u s exp yu x 2 , y` - x - `, u ) 0.Ž . Ž . Ž .

These efficiency functions have different shapes that are sufficiently versa-
tile to accommodate many efficiency functions that may be of practical
interest. For example, monotone decreasing efficiency functions are repre-

Ž . Ž .sented in i , while unimodal efficiency functions are richly embedded in ii
Ž . Ž .and iii . The ubiquitous bell-shaped curves are represented by iv . For these

Ž .efficiency functions, we determine the Bayesian F -optimal n q 1 -pointp
Ž .designs for all prior distributions. The question whether these n q 1 -point

designs are also optimal within the class of all designs depends on the specific
prior. We will demonstrate this in Section 4. As will be seen, the Bayesian

Ž .F -optimal n q 1 -point designs depend on the prior p with varying degree;˜p
the case with p s 0 depends only on the expectation of p , whereas other˜
cases depend on the derivative of the logarithm of the Laplace transform of a
measure induced by the prior. In all cases analytic solutions are found
although they rarely exist in a compact form. The support points of these
optimal designs are roots of certain orthogonal polynomials whose coefficients
depend on the prior distribution.
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3. An equivalence theorem and main results. In order to simplify
our statements of the main results, it is helpful to identify each prior
distribution p with an associated prior p defined by˜

< <yq3.0 dp u s M j , u dp u ,Ž . Ž . Ž . Ž .˜u

where j is the locally D-optimal design for u in a polynomial model of degreeu

n and q s prk. Note that if p s 0, p s p and p is still a proper prior. The˜
Ž . Ž .effect of 3.0 is to transform 2.0 into an equivalent formulation, where the

task now is to find a design which maximizes

1rq
q˜ < <F j s M j , u dp u , y` - q F 1rk ,� 4Ž . Ž . Ž .Hq ½ 5

Q

Ž . Ž .over the set of all designs on x . To compute dp u for a given prior dp u , it˜
< Ž . <is necessary to calculate M j , u . For the efficiency functions in Section 2,u

closed-form formulas exist for the locally D-optimal designs and their deter-
minants. They are found using arguments similar to Karlin and Studden
Ž .1966 , page 330.

Ž .LEMMA 3.1. Suppose l x, u is one of the efficiency functions in Section 2,
T Ž . Ž n.and the regression function is f x s 1, x, . . . , x defined on x . If ju

denotes the locally D-optimal design for the problem, the determinant of the
Ž .information matrix M j , u for fixed u is:u

n
yn Žnq1. 2 jŽ .i u j exp yn n q 1 if l x , u s exp yu x , u ) 0;Ž . Ž . Ž .Ł

js1

n
nqa jqay1yŽnq 1.Žnqa . jŽ .ii b nqa j jqay1 exp y nq1 nqaŽ . Ž . Ž . Ž .Ł

js1
if l x , u s x aexp yb x and u T s a , b , a ) 0, b ) 0;Ž . Ž . Ž .

n nq1
jqay1 jqby1Žnq1.Žnqaqb . jŽ .iii 2 j j q a y 1 j q b y 1Ž . Ž .Ł Ł

js1 js1

y1nq1
jqny1qaqb

= j q n y 1 q a q bŽ .Ł½ 5
js1

a b Tif l x , u s 1 y x 1 q x , u s a , b , a ) 0, b ) 0;Ž . Ž . Ž . Ž .
n

Ž .y nq1 nr2 j 2Ž .iv 2u exp 1 j if l x , u s exp yu x .Ž . Ž . Ž .Ž . Ł
js1

We are now ready to state our main results. Let p be a given prior with˜
Ž .finite first moment, p be its associated prior defined in 3.0 and q s prk.
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The following result gives us a practical way of checking if a design is
F -optimal with respect to the prior p . The proof relies on standard argu-˜p

w Ž . Ž .xments used in optimal design theory Pazman 1986 and Pukelsheim 1993
and is thus omitted.

Ž . Ž .THEOREM 3.1 Equivalence theorem . Let 1 G p ) y`, f x be a k = 1
Ž .vector of known regression functions defined on a given design space x , l x, u

be a known efficiency function apart from the values of u and q s prk. If p is˜
Ž .the prior for u on a given set Q and p is its associated prior defined in 3.0 ,

then the design j is F -optimal with respect to the prior p if and only if˜p, p p˜

< <q T y1g x , j s M j , u l x , u f x M j , u f xŽ . Ž . Ž .�Ž . Ž . Ž .Hp , p p , p p , p˜ ˜ ˜
Q3.1Ž .

q< <yk M j , u dp u F 0 for x g x .Ž .4Ž .p , p̃

Note that the special case with p s 0 yields q s 0, p s p and j is˜ 0, p̃

F -optimal with respect to the prior p if and only if, for all x g x ,˜0

l x , u f T x My1 j , u f x dp u y k F 0,Ž . Ž . Ž . Ž .Ž . ˜H 0, p̃
Q

Ž .a result due to Lauter 1974 .¨
In the rest of the paper, our interest will be in polynomial models of degree

Ž .n, and so we have k s n q 1. Theorems 3.2]3.5 give the F -optimal n q 1 -p
point designs for each of the efficiency functions described earlier. The proofs
are deferred to the Appendix.

w . T Ž . Ž 2 n. Ž .THEOREM 3.2. Let x s 0, ` , f x s 1, x, x , . . . , x , l x, u sn
Ž . Ž .exp yu x and Q s 0, ` . Assume that p is a prior on Q and p is its˜

Ž . Ž .associated prior defined in 3.0 such that, for q s pr n q 1 ,
`

i exp yu qx dp u - ` for all x ) 0,Ž . Ž . Ž .H
0

and, if q ) 0,
1rq

`
nŽnq1.ii lim x exp yu qx dp u s 0.Ž . Ž . Ž .H½ 5xª` 0

Ž .Then the F -optimal n q 1 -point design with respect to the prior p has˜p
equal mass at the 0’s of the polynomial

n n q 1 xŽ .
Ž1.xL .n ž /z

Ž1.Ž .Here L x is the nth generalized Laguerre polynomial of degree n orthogonaln
Ž .with respect to the measure x exp yx dx, and z is a positive root of the

equation

3.2 zF qz s yn n q 1 ,Ž . Ž . Ž .
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where

` `

F x s y u exp yu x dp u exp yu x dp u .Ž . Ž . Ž . Ž . Ž .H H
0 0

Ž .If q F 0, the solution of 3.2 is unique.

Ž .REMARK 3.0. The function F x is the derivative of the logarithm of the
Ž .Laplace transform of the measure dp u , and plays a crucial role here and

throughout.

Ž .REMARK 3.1. It is straightforward to show that assumption ii holds
whenever the infimum of the set of support points of the associated prior p is

Ž .positive independently of q F 1r n q 1 .

Ž . T Ž . Ž 2 n. Ž .THEOREM 3.3. Let x s 0, ` , f x s 1, x, x , . . . , x , l x, u sn
a Ž . T Ž . Ž . Ž .x exp yb x , u s a , b and Q s 0, ` = 0, ` . Assume that p is a prior˜

Ž . Ž .on Q and p is its associated prior defined in 3.0 such that, for q s pr n q 1 ,

i x aqexp ybqx dp a , b - ` for all x ) 0,Ž . Ž . Ž .H
Q

and, if q ) 0,

1rq
nŽnq1. a qŽnq1.ii lim x x exp yq b x dp a , b s 0.Ž . Ž . Ž . .H½ 5xª` Q

Define, for i s 1, 2,

F x , x s y u exp yu x y u x dp u , uŽ . Ž . Ž .Hi 1 2 i 1 1 2 2 1 2
Q

y1

= exp yu x yu x dp u , uŽ . Ž .H 1 1 2 2 1 2½ 5
Q

3.3Ž .

Ža .Ž .and let L x be the nth generalized Laguerre polynomial orthogonal withn
a Ž . Ž .respect to the measure x exp yx dx. Then the F -optimal n q 1 -pointp

design with respect to the prior p has equal mass at the 0’s of the polynomial˜

LŽyF1Žyq y , q z .y1. yF yqy, qz x ,Ž .Ž .nq1 2

Ž .where y, z is a solution of the simultaneous equations

zF yqy, qz s n q 1 F yqy, qz y n ,Ž . Ž . Ž .2 1

n z i
y s log q .Ý ½ 5n q 1 F yqy, qzŽ .2is0

3.4Ž .

Ž .If q F 0, the solution in 3.4 is unique.

Unlike previous results, the next theorem does not require side conditions.
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Ž . T Ž . Ž 2 n. Ž . ŽTHEOREM 3.4. Let x s y1, 1 , f x s 1, x, x , . . . , x , l x, u s 1 yn
.a Ž . b T Ž . Ž . Ž . Ž .x 1 q x , u s a , b and a , b g Q s 0, ` = 0, ` . If p is a prior for˜
T Ž . Ž .u s a , b on Q and p is its associated prior defined in 3.0 , then the

Ž .F -optimal n q 1 -point design with respect to p has equal mass at the 0’s of˜p
Ž m , n .Ž . Žthe Jacobi polynomial P x orthogonal with respect to the measure 1 ynq1

. mŽ .n Ž . Ž .x 1 q x dx, where m s yF yqz, yqy y 1, n s yF yqz, yqy y 1,1 2
Ž . Ž . Ž .F x , x is as defined in 3.3 , i s 1, 2, and z, y solves the simultaneousi 1 2

equations

n n y j q m q n q 2
z s logÝ ½ 52n y 2 j q 3 q m q njs1

nq1 n y j q 2 q m
q log ,Ý ½ 52n y 2 j q 4 q m q njs1

3.5Ž .

nq1 n y j q 2 q m
z s y q log .Ý ½ 5n y j q 2 q njs1

Ž .Moreover, the solution of 3.5 is unique if q F 0.

REMARK 3.2. This result simplifies, if we have an associated prior p for a
Ž . Ž .and b such that F x , x s F x , x . In this case, the support of the1 1 2 2 1 2

Ž . Ž m, m .Ž .optimal n q 1 -point design is given by the 0’s of P x , where m snq1
Ž .yF yqz, yqz y 1 and z solves the equation1

n n y j q 2 q 2m
z s log y n q 1 log 2.Ž .Ý ½ 52n y 2 j q 3 q 2mjs1

Ž . T Ž . Ž 2 n. Ž .THEOREM 3.5. Let x s y`, ` , f x s 1, x, x , . . . , x , l x, u sn
Ž 2 . Ž .exp yu x and Q s 0, ` . Assume that p is a prior on Q and p is its˜

Ž .associated prior defined in 3.0 such that:

`

i exp yu qx dp u - ` for all x ) 0,Ž . Ž . Ž .H
0

and, if q ) 0,

1rq
`

nŽnq1.ii lim x exp yu qx dp u s 0.Ž . Ž . Ž .H½ 5xª` 0

Let

` `

F x s y u exp yu x dp u exp yu x dp uŽ . Ž . Ž . Ž . Ž .H H
0 0

Ž .and let H x be the Hermite polynomial of degree n orthogonal with respectn
Ž 2 . Ž .to the measure exp yx dx. Then the F -optimal n q 1 -point design withp
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respect to p has equal mass at the 0’s of the polynomial˜
n n q 1Ž .

H x ,(nq1 ž /4 z

where z is a positive solution of
3.6 4 zF 2 qz s yn n q 1 .Ž . Ž . Ž .

Ž .Moreover, if q F 0, then the solution of 3.6 is unique.

COROLLARY 3.1. If p and p are two prior distributions for u such that˜ ˜1 2

dp u s dp cu for some c ) 0,Ž . Ž .˜ ˜2 1

Ž .then the support points of the Bayesian F -optimal n q 1 -point design withp
respect to the prior p can be obtained by multiplying the support points of the˜ 2

Ž .Bayesian F -optimal n q 1 -point design with respect to the prior p by:˜p 1

Ž .i c in Theorem 3.2;
'Ž .ii c in Theorem 3.5.

Corollary 3.1 is deduced by observing how the z ’s in the theorem changei
from one prior to the other. For example, in Theorem 3.2, it is readily shown

2Ž . 1Ž .from the relationship between p and p , we have F x s F xrc rc,˜ ˜2 1
where

` `
iF x s y u exp yu x dp u exp yu x dp u , i s 1, 2.Ž . Ž . Ž . Ž . Ž .H Hi i

0 0

Ž . Ž .Consequently, the solutions z and z of 3.2 corresponding to F x and1 2 1
Ž . Ž . Ž .F x satisfy z s cz and Corollary 3.1 i holds. Likewise, Corollary 3.1 ii2 2 1 ' Ž .follows by observing that z s c z . Note that Corollary 3.1 i includes an2 1

analogous result for Theorem 3.3 if the parameter a is assumed to be known.
These corollaries are quite intuitive since multiplying the parameter u with a
constant c may be interpreted as corresponding to a rescaling of the design

'spaces in Theorems 3.1 and 3.5 with 1rc and 1r c , respectively. Therefore,
the designs change in a predictable way.

Ž .Theorems 3.2]3.5 provide a necessary condition for an n q 1 -point design
Ž .to be Bayesian F -optimal within the class of all n q 1 -point designs. Thesep

conditions are also sufficient if the solutions of the equations in the corre-
sponding theorem are unique. This can be proved if q F 0. However, if q ) 0,

Ž . Ž . Ž . Ž .there could exist more than one solution in 3.2 , 3.4 , 3.5 and 3.6 , in
Ž .which case the optimal n q 1 -point design has to be found among these

candidates. In the examples of Section 4, the solution of the nonlinear
equations in Theorems 3.2]3.5 are also unique when q ) 0.

Before we present examples, several comments are in order. First, Theo-
wŽ . xrems 3.2]3.5 reduce to the results in Fedorov 1972 , page 88 , when the

prior distribution on Q is degenerate, corresponding to the case when the
efficiency function is completely specified. For instance, if a degenerate prior

Ž . Ž .at u s 1 is used in Theorem 3.2, then 3.2 gives z s n n q 1 , which0
Ž . Ž .coincides with case iii in Fedorov 1972 , page 89. Second, F -optimalp
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Ž .n q 1 -point designs always have equal mass at each of the support points.
wŽ .This fact can easily be shown using the same argument in Silvey 1980 ,

x Ž .page 42 . Third, when p s 0, the F -optimal n q 1 -designs depend only on0
the mean of the prior distribution. This can be seen, for example, in Theorem

Ž .3.3, where the Bayesian F -optimal n q 1 -point design has equal mass at0
ŽE1Ža .y1.Ž Ž . .the 0’s of L E b x . Likewise, in Theorem 3.4, the support of thenq1 2

Ž .Bayesian F -optimal n q 1 -point design is given by the 0’s of0
ŽE1Ža .y1, E2Ž b .y1.Ž .P x , where E denotes the expectations of the marginalnq1 i

distributions of p , i s 1, 2. Finally, we emphasize that Theorems 3.2]3.5˜
produce designs which are optimal within the class of all designs supported
on a minimal set of support points. To check if this optimal design is also

Ž .optimal within the class of all designs, condition 3.1 must be invoked and
checked. For example, an optimal design found from Theorem 3.5 is Bayesian
F -optimal with respect to the prior p if˜p

g x , j F 0 for all x g R .Ž .p , p̃

Here
`

q 2 T y1< <g x , j s M j , u exp yu x f x M j , u f xŽ . Ž . Ž .�Ž . Ž . Ž .Hp , p p , p n p , p n˜ ˜ ˜
0

< <qy n q 1 M j , u dp u ,Ž . Ž .4Ž .p , p̃

Ž .and p is the associated prior of p defined in 3.0 .˜
Ž .In general, analytic verification of 3.1 is rather difficult especially for

Ž .continuous priors; see Dette and Neugebauer 1996a and Dette and Sperlich
Ž .1994 where they proved some two-point Bayesian designs are optimal

Ž .within the class of all designs. In practice, 3.1 is checked graphically by
Ž .plotting the function g x, j over the design space.p, p̃

4. Examples. In this section we illustrate our method with two exam-
Ž . Ž . Ž . Ž 2 .ples where the efficiency function is i exp yu x , u ) 0, and ii exp yu x ,

T Ž .u ) 0. In the first example, when the regression function is f x s
Ž n.1, x, . . . , x , we show that a more detailed description of the Bayesian

Ž .F -optimal n q 1 -point design is possible with a gamma prior density on u .p
Ž .In the second example, numerically Bayesian F -optimal n q 1 -point de-p

TM w Ž .xsigns are computed using Mathematica Wolfram 1988 for the quadratic
regression model. Our numerical results provide some insight into the robust-
ness properties of these designs with respect to the choice of the prior

Ž .distribution. The prior distribution on u may have several known parame-
ters, but sometimes it is not necessary to vary all their values to study how
these optimal designs behave when the values of the parameters are changed.
This is demonstrated in Example 4.1.

w . T Ž . Ž n. Ž . Ž .EXAMPLE 4.1. Let x s 0, ` , f x s 1, x, . . . , x , l x, u s exp yu x
Ž . Ž .and u ) 0. Suppose a gamma prior p u with parameters r, s is used, that˜

is,
˜ ry1 rdp u s u s exp ysu durG r , u ) 0.Ž . Ž . Ž .
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Ž .To find the optimal design, first note q s pr n q 1 and use Lemma 3.1 to
verify that the associated prior p induced by the gamma prior is also a

Ž .gamma distribution but with parameters pn q r, s . In order to ensure that
Ž . Ž .conditions i and ii of Theorem 3.2 apply, we require q G 0. Further algebra

Ž . Ž . Ž . Ž . Ž .shows F x s y r q pn r s q x and the unique solution of 3.2 is given
by

sn n q 1 sn n q 1Ž . Ž .
z s s .

pn q r y qn n q 1 rŽ .

Ž .This shows that the Bayesian F -optimal n q 1 -point design with respect top
Ž .the gamma prior with parameters r and s depends on the prior mean rrs

Ž .and does not depend on p. By Theorem 3.2, the Bayesian F -optimal n q 1 -p
Ž1.Ž .point design has equal masses at the 0’s of the polynomial xL rxrs , wheren

Ž1.Ž .L x is the nth Laguerre polynomial defined byn

n1 exp x dŽ .
Ž1. nq1L x s x exp yx .� 4Ž . Ž .n ž /n! x dx

Ž1.Ž . Ž1.Ž . Ž 2 .The first three polynomials are L x s 2 y x, L x s x y 6 x q 6 r21 2
Ž1.Ž . Ž 3 2 . Ž .and L x s yx q 12 x y 36 x q 24 r6; see Szego 1959 . Alternatively,¨3

TM Ž .they can be computer-generated from Mathematica 1988 .

Note that, in this example, we can study changes in the Bayesian F -opti-p
Ž .mal n q 1 -point design with respect to the parameters of the prior very

easily. We calculate the optimal design for the gamma prior with parameters
Ž .1, 1 . By Corollary 3.1, if a different scaling parameter s is used, the support
points of the resulting optimal design have to be multiplied by s. More

Ž .generally, if the mean of the gamma prior rrs is changed to d rrs for some
positive constant d , then the support points of the resulting optimal design
have to be divided by d .

Ž . T Ž . Ž 2 . Ž . Ž 2 .EXAMPLE 4.2. Let x s y`, ` , f x s 1, x, x , l x, u s exp yu x
Ž . w xand u ) 0. Suppose the prior on u is p u s U 1: t , a discrete uniform˜

probability distribution on the integer points 1, 2, . . . , t. Table 2 shows the
characteristics of the Bayesian F -optimal three-point designs, includingp

Ž .their support points and the criterion value F j for p s 1, 0 and y1,p p, p̃

and t s 2 and 10. An asterisk on the criterion value column indicates the
Bayesian F -optimal three-point design is not universally optimal.p

This example demonstrates whether the Bayesian F -optimal design foundp
wfrom our procedure is optimal within the class of all designs i.e., satisfies

Ž .x3.1 depends on the prior distribution and the value of the parameter p.
When p s y1, 0 and 1 and the prior is uniformly supported on the points 1
and 2, the Bayesian F -optimal designs are all universally optimal. However,p
when the prior is uniformly supported on the points 1, 2, . . . , 10, only the
Bayesian F -optimal design is universally optimal. A more in-depth study of1
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TABLE 2
Numerically Bayesian F -optimal three-point designs for quadratic regressionp

2Ž . Ž .model using various uniform priors on u and l x, u s exp yu x , u ) 0

Criterion value
( )z Support points F jp p, p̃

Ž . w x Ž .p u s U 1: 2 uniform two-point prior at 1 and 2˜

p s 1 0.995063 "0.99753, 0 0.94290
p s 0 1.00000 "1.00000, 0 0.94281
p s y1 1.00399 "1.00199, 0 0.94274

Ž . w x Ž .p u s U 1: 10 uniform 10-point prior at 1]10˜

p s 1 0.254875 "0.50485, 0 0.774595
p s 0 0.272727 "0.52223, 0 0.705004*
p s y1 0.293427 "0.54169, 0 0.795368*

*These cases do not satisfy the equivalence condition of Theorem 3.1, and so the
optimal three-point designs are not optimal within the class of all designs.

the robustness properties of these Bayesian F -optimal designs with respectp
to choice of criterion and model and prior assumptions is currently underway
and the results will be reported in another paper.

5. An application to exponential growth models. We now show that
the results in Section 3 can provide an optimal strategy for taking observa-
tions to estimate the parameters in a generalized exponential growth model
described at the beginning of this paper.

Recall that the generalized exponential growth model is given by

5.0 y s f x , u , a q « ,Ž . Ž .

where
ny1

v jf x , u , a s x exp yu x a xŽ . Ž . Ý j
js0

and « is normally distributed with mean 0 and constant variance. For the
Ž .generalized exponential growth model 5.0 , observe that, at the point x G 0,

1¡ ¦
x
..T .­ ­

vf x , u , a , f x , u , a s x exp yu x s Ag x , u ,Ž . Ž . Ž . Ž .ny1T xž /­u­ a
ny1

jq1y a xÝ j¢ §
js0
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T Ž . v Ž .Ž n.where g x, u s x exp yu x 1, x, . . . , x and

1 0 0 ??? 0 0
0 1 0 ??? 0 0
??? ??? ??? ??? ??? ???A s .
0 0 0 ??? 1 0� 0
0 ya ya ??? ya ya0 1 ny2 ny1

The Fisher information matrix of a design j is given by

M j , u , a s A g x , u gT x , u dj x ATŽ . Ž . Ž . Ž .H½ 5
and its determinant is

< < 2 < <5.1 M j , u , a s a N j , u ,Ž . Ž . Ž .ny1

Ž . Ž . T Ž . Ž .where N j , u s H g x, u g x, u dj x . Let p denote a prior for the param-˜
Ž T .eters a , u with marginal distribution p for u and let j denote the˜ 2 u

Ž . Ž .locally D-optimal design for the model 5.0 . By 5.1 , this design does not
depend on the linear parameter a. The Bayesian F -optimal design withp

Ž .respect to the prior p for the model 5.0 maximizes˜
1rpŽ .pr nq1< <M j , u , aŽ .

dp u , aŽ .˜H ½ 5½ 5< <M j , u , aŽ .u

1rpŽ .pr nq1< <` N j , uŽ .
s dp uŽ .˜H 2½ 5½ 5< <N j , uŽ .0 u

and depends only on the marginal distribution p for the parameter u .˜ 2

Ž .THEOREM 5.1. Assume p is a prior on u which satisfies assumptions i˜ 2
Ž . Ž .and ii of Theorem 3.3. The Bayesian F -optimal n q 1 -point design withp

Ž .respect to p in the model 5.0 has equal mass at the 0’s of the polynomial˜ 2

2 n q 2v n q 1Ž . Ž .
Ž2 vy1.L x if v ) 0nq1 ž /z

and

2n n q 1Ž .
Ž1.xL x if v s 0.n ž /z

Ža .Ž .Here L x denotes the nth generalized Laguerre polynomial orthogonal withn
a Ž .respect to the measure x exp yx dx and z is a solution of

5.2 zF qz s y n q 1 2v q n ,Ž . Ž . Ž . Ž .2
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Ž .where q s pr n q 1 ,

` `

F x s y u exp yu x dp u exp yu x dp uŽ . Ž . Ž . Ž . Ž .H H2 2 2
0 0

Ž . Ž .and p is the associated prior of p defined in 3.0 , that is, dp u s˜2 2 2
pŽnq2 v . Ž . Ž .u dp u . In addition, if q F 0, the solution of 5.2 is unique.˜ 2

PROOF. Consider the case v ) 0 and the situation of Theorem 3.3 for the
Žprior d m p , where d is the Dirac measure at the point 2v i.e., a s 2v˜2 v 2 2 v

.is assumed to be known and p is a prior for the parameter b. By Theorem˜ 2
Ž .3.3, the optimal n q 1 -point design has equal masses at the 0’s of the

polynomial

n q v n q 1Ž . Ž .
Ž2 vy1.L x ,nq1 ž /z

Ž .where z is a solution of 5.2 and p is the associated prior of p . Because the˜2 2
Ž .optimal design problem for the model 5.0 with respect to the prior p̃ 2

coincides with the problem in Theorem 3.3 with respect to the prior

dp u s dp ur2 ,Ž . Ž .ˆ ˜2 2

the assertion of the theorem follows. The case v s 0 is treated in the same
way using Theorem 3.2. I

Ž .COROLLARY 5.1. The Bayesian D-optimal n q 1 -point design for the model
Ž .5.0 with respect to the prior p puts equal mass at the 0’s of the polynomial˜ 2
Ž2 vy1.Ž Ž . . Ž1.Ž Ž . . Ž .L 2 E u x if v ) 0 and xL 2 E u x if v s 0. Here E u denotes thenq1 2 n 2 2

expectation with respect to the prior distribution p for the parameter u .˜ 2

Ž .EXAMPLE 5.1. Assume that n s 1, v G 0. From Szego 1959 , we obtain¨
Ž2 vy1.Ž . � 2 Ž . Ž .4 Ž1.Ž .L t s t y 2 2v q 1 t q 2v 2v q 1 r2, L t s 2 y t and Corollary2 1

5.1 shows that the best two-point design with respect to the Bayesian D-
optimality criterion has equal mass at the points

' '2v q 1 y 2v q 1 2v q 1 q 2v q 1
and .

2 E u 2 E uŽ . Ž .2 2

This provides an alternative proof of a result in Mukhopadhyay and Haines
Ž . Ž . Ž . Ž .1995 , Dette and Neugebauer 1996a v s 0 and Dette and Sperlich 1994
Ž .v G 0 .

APPENDIX

Since the proofs of Theorems 3.2]3.5 are similar, we supply the proof of
Theorem 3.2 only. Before this can be done, we first briefly review some basic
results from the theory of continued fraction expansion and orthogonal
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polynomials. Some useful references for background reading are Shohat and
Ž . Ž .Tarmarkin 1943 and Wall 1948 . For proving Theorems 3.3]3.5, the work

Ž .of Lau and Studden 1988 is helpful.
It is known that the Stieltjes transform of any probability measure j on

w .0, ` with existing moments can be written as a continued fraction expan-
sion, commonly denoted by

< < < < <` dj x 1 d d d dŽ . 1 2 2 n 2 nq1
C z s s y y y ??? y y y ???Ž . H < < < < <z y x z 1 z z 10

where d G 0 for all j. The Stieltjes transform is defined for all complex zj
Ž .outside of 0, ` and is an analytic function in this area. Moreover, the

continued fraction on the right-hand side converges uniformly on every
Ž .compact complex subset with positive distance from the nonnegative line

w Ž .xPerron 1954 .
If j is supported at n q 1 support points, this expansion terminates at the

Ž .2n q 1 term with d ) 0 for j F 2n and d G 0, and the above expan-j 2 nq1
Ž . Ž .sion simplifies to a rational polynomial P z rQ z . The degrees of thesen nq1

polynomials are n and n q 1, respectively, and their coefficients can be
expressed in terms of the d ’s. They can also be found using recursivei

w Ž .xrelationships Lau and Studden 1988 . The support points of the design j
Ž .are given by the roots of Q x s 0 and the mass of j at the support pointnq1

x is given byj

P xŽ .n j
<z y x C z s .Ž . Ž . zsxj j <drdz Q zŽ . Ž . zsxnq1 j

We are now ready to prove Theorem 3.2.

PROOF OF THEOREM 3.2. Since we are interested in seeking an optimal
design j with n q 1 support points, the Stieltjes transform of j has a
continued fraction expansion of the form

< < < < <` dj x 1 d d d dŽ . 1 2 2 n 2 nq1
A.1 s y y y ??? y y ,Ž . H < < < < <z y x z 1 z z 10

with d ) 0 for i F 2n and d G 0. From the results of Lau and Studdeni 2 nq1
Ž . Ž .1988 , the determinants M j , u can be expressed in terms of the d ’s if j isi

Ž .an n q 1 -point design, that is,

n 2 nq1
ny iq1< <M j , u s d d exp yu d .Ž . Ž .Ł Ý2 iy1 2 i i

is1 is1

Ž . w Ž .x Ž .Thus, if optimization in 2.0 or, equivalently, 3.1 is restricted to n q 1 -
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Ž .point designs, the optimality criterion in 3.1 can be rewritten as

1rqn 2 nq1`ny iq1˜A.2 f j s d d exp yu q d dp u ,Ž . Ž . Ž . Ž .Ł ÝHq 2 iy1 2 i i
0is1 is1

Ž .where the integral exists by assumption i of Theorem 3.2. If d ª 0, wej
˜ Ž . Ž .have f j ª 0, j s 1, . . . , 2n, and, in the case d ª `, assumption iiq j

˜ ˜Ž . Ž .implies that f j ª 0, j s 1, . . . , 2n. Consequently, f j is maximized forq q
Ž . Ž .2 nsome point d , d , . . . , d g 0, ` and d s 0. From the theory of1 2 2 n 2 nq1

w Ž . xexponential families Lehmann 1986 , page 59, for example and assumption
˜Ž . w Ž .xi , it follows that log f j is differentiable with respect to d , d , . . . , dq 1 2 2 n

with partial derivatives

2nq1­ n y i q 1˜log f j s q F q d , i s 1, 2, . . . , n ,Ž . Ýq iž /­ d d2 i 2 i is1

2nq1­ n y i q 1˜log f j s q F q d , i s 1, 2, . . . , n ,Ž . Ýq iž /­ d d2 iy1 2 iy1 is1

where

` `

F x s y u exp yu x dp u exp yu x dp u .Ž . Ž . Ž . Ž . Ž .H H
0 0

Putting z s Ý2 nq1 d , the optimal d , d , . . . , d have to satisfyis1 i 1 2 2 nq1

n y i q 1
A.3 d s d s y , i s 1, 2, . . . , n and d s 0.Ž . 2 iy1 2 i 2 nq1F qzŽ .

From the definition of z, we obtain that z is a root of the equation

n n n q 1Ž .
z s d q d s y ,Ž .Ý 2 iy1 2 i F qzŽ .is1

Ž . Ž .which gives 3.2 . Furthermore, by A.3 ,

n y i q 1 zŽ .
A.4 d s d s , i s 1, 2, . . . , n and d s 0.Ž . 2 iy1 2 i 2 nq1n n q 1Ž .

If j has support points x , x , . . . , x with masses j , j , . . . , j and corre-0 1 n 0 1 n
Ž .sponding continued fraction expansion A.1 , then it is easy to see that, for

˜g ) 0, the measure j with support points g x , g x , . . . , g x , and masses0 1 n
Ž .j , j , . . . , j has the continued fraction expansion A.1 , where the d ’s in0 1 n i

˜ ˜Ž .A.1 have to be replaced by d s g d , i s 1, 2, . . . , 2n q 1. The measure ji i
corresponding to the sequence

˜ ˜ ˜A.5 d s d s n y i q 1, i s 1, 2, . . . , n and d s 0Ž . 2 iy1 2 i 2 nq1
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˜can be obtained as follows. For the Stieltjes transform of j , we obtain by an
w Ž .x Ž .odd contraction Perron 1954 from A.1 that

˜` dj xŽ .
C z sŽ . H z y x0

˜ ˜ ˜ ˜ ˜< < <1 d 1 d d d d1 2 3 2 ny2 2 ny1s q y y ??? y½ 5z z ˜ ˜ ˜ ˜ ˜ ˜< < <z y d y d z y d y d z y d y d1 2 3 4 2 ny1 2 n

G z q nG zŽ . Ž .n ny1s ,
zG zŽ .n

Ž . w Ž .xwhere the polynomial G x is defined recursively by see Perron 1954n

˜ ˜ ˜ ˜G x s x y d y d G x y d d G xŽ . Ž . Ž .ž /kq1 2 ny2 ky1 2 ny2 k k 2 ny2 k 2 ny2 kq1 ky1

s x y 2k y 2 G x y k k q 1 G x , k s 1, 2, . . . , n y 1,Ž . Ž . Ž . Ž .k ky1

Ž . Ž .with G x s 1 and G x s x y 2. Observing the recurrence relation for the0 1
Ž1.Ž . w Ž .Laguerre polynomials L x see, e.g., Abramowitz and Stegun 1964 , Sec-n

x Ž . Ž .n Ž1.Ž .tion 22.7.12 , it follows that G x s y1 n! L x and for the Stieltjesn n
˜transform of j ,

LŽ1. x y LŽ1. xŽ . Ž .n ny1
C x s .Ž . Ž1.xL xŽ .n

˜ Ž1.Ž .Consequently, the support points of j are given by the 0’s of xL x and then
mass at the support point x , j s 0, 1, . . . , n, is˜j

LŽ1. x y LŽ1. x˜ ˜Ž . Ž .n j ny1 j˜ <j x s z y x C z sŽ .˜ ˜Ž . Ž . zs x̃j j j Ž1. <drdz zL zŽ . Ž . zs x̃n j

LŽ1. x y LŽ1. x 1˜ ˜Ž . Ž .n j ny1 js s ;Ž1. Ž1. n q 1L x n q 1 y L x n q 1Ž . Ž .˜ ˜Ž . Ž .n j ny1 j

˜Ž .see Szego 1959 , formula 5.1.14. Therefore, j is a uniform distribution with¨
Ž1.Ž .support at the 0’s of the polynomials xL x . The first assertion in Theoremn

Ž .3.2 now follows from the discussion after A.4 which relates the designs j
˜ Ž . Ž . wand j corresponding to the sequences in A.4 and A.5 . Note that the

˜ Ž .derivation of j and the corresponding statement in Lau and Studden 1988
xis incorrect. Finally, we remark that it is straightforward to show that the

function
n n q 1Ž .

H z s yŽ .q F qzŽ .
Ž . Ž . Ž .is strictly decreasing in z if q - 0 and that H 0 s n n q 1 rE u . There-q p

Ž .fore, the equation H z s z has exactly one positive root which is given byq
Ž .3.2 . When q ) 0, a positive solution always exists by standard optimal
design theory arguments, and the right ‘‘z ’’ will have to be selected by trial
and error if there is more than one positive solution. I
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