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ACCELERATED RANDOMIZED STOCHASTIC OPTIMIZATION

BY JÜRGEN DIPPON

Universität Stuttgart

We propose a general class of randomized gradient estimates to be
employed in a recursive search for the minimum of an unknown multivariate
regression function. Here only two observations per iteration step are
used. Special cases include random direction stochastic approximation
(Kushner and Clark), simultaneous perturbation stochastic approximation
(Spall) and a special kernel based stochastic approximation method (Polyak
and Tsybakov). If the unknown regression is p-smooth (p ≥ 2) at the
point of minimum, these methods achieve the optimal rate of convergence
O(n−(p−1)/(2p)). For both the classical stochastic approximation scheme
(Kiefer and Wolfowitz) and the averaging scheme (Ruppert and Polyak) the
related asymptotic distributions are computed.

1. Introduction. Consider two random variables X and Z with values in
R

d and R, respectively, that have unknown common distribution PX,Z. Assume
that the regression function E(Z | X = ·) : Rd → R exists and has a unique
minimizer ϑ ∈ R

d :

ϑ = argmin
x∈Rd

E(Z | X = x).

In this article we discuss a general method to estimate ϑ recursively. For this
purpose it is assumed that the statistician can take a sample Zx distributed
according to PZ|X=x for any given x ∈ R

d . This sample can be viewed as a noisy
observation of f (x) := E(Z | X = x) corrupted by some random error Wx :

Zx = f (x) − Wx.

In 1952, Kiefer and Wolfowitz [10] solved this problem for d = 1. Subsequently
Blum [2] treated the multivariate case by running the recursion

Xn+1 = Xn − anYn(1)

with Yn taken to be an estimate of ∇f (Xn), the gradient of f at Xn. In contrast to
the gradient method in numerical analysis, the step lengths an > 0 must converge
to zero to obtain consistency. In this approach, Yn was chosen to be an estimator
of a d-dimensional two-sided difference quotient

Yn = 1

2cn

{[f (Xn + cnei) − Wn,i,1] − [f (Xn − cnei) − Wn,i,2]}i∈{1,...,d}
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with positive step lengths cn converging to zero and canonical basis {e1, . . . , ed}
of R

d . Observe that this gradient estimate requires 2d observations (in square
brackets) of f at design points Xn ± cnei . Respective observation errors are
denoted by Wn,i,j .

If f is three times differentiable, the iterates of the algorithm above tend to ϑ

with rate OP (n−1/3), provided an = a/n with the choice of a large enough a > 0.
For regression functions f possessing derivatives of higher order p (p ≥ 3 odd),
Fabian [6] gave a modified gradient estimate based on 2d�p/2� = d(p − 1)

observations which attains rate OP (n−(p−1)/(2p)).
More generally, Chen [3] and Polyak and Tsybakov [14] showed that for the

class of p-times differentiable regression functions (p ≥ 2), the optimal rate in a
minimax sense is O(n−(p−1)/(2p)).

To deal with high dimensional problems, Kushner and Clark [11], Polyak and
Tsybakov [14], Spall [17] and others suggested randomized gradient estimators
which need only two observations per step. The iterates of these methods still
converge with rate OP (n−1/3), but at the expense of a possibly higher asymptotic
squared error.

We show that these randomized gradient estimators can be considered as special
cases of a randomized kernel gradient estimate

Yn = 1

2cn

K(�n)
{[f (Xn + cn�n) − Wn,1] − [f (Xn − cn�n) − Wn,2]}(2)

of ∇f at Xn. The kernel function K : Rd → R
d and (artificially generated)

independently and identically distributed R
d -valued random vectors �n are chosen

such that E(K(�n) ⊗ �n) = Id to ensure that, conditionally on Xn, Yn is an
unbiased estimator of the gradient of f at Xn. It will be shown that there are
many possibilities to design the gradient estimate such that the iterates attain the
optimal rate of convergence. This approach unifies the investigation of different
randomized gradient estimators and indicates how to find a whole bunch of new
ones.

Proposition 1 formulates sufficient conditions for consistency. To be able to
compare these estimators in terms of their asymptotics, we compute their weak
limit distributions. This is done in a general frame in Section 4 for two important
types of algorithms. In Theorem 2 the traditional scheme (1) is studied, but there
is a crucial regularity assumption concerning the gain parameter a in an ∼ a/n

which is connected with the unknown Hessian Hf (ϑ) of f at ϑ . Motivated by the
Polyak–Ruppert idea for the Robbins–Monro stochastic approximation (see [13]
and [16]), Dippon and Renz [5] suggested taking weighted averages of the
iterates generated by Kiefer–Wolfowitz type algorithms. The iterates themselves
are obtained with larger step lengths an = an−α (α < 1), but without any regularity
condition on the Hessian Hf (ϑ). This approach is adopted in Theorem 3. Both
theorems show how to obtain estimators with unbiased limit distribution.
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In Section 5 it is shown how to obtain methods discussed in the previous
literature as special cases of the kernel function approach which include the
random direction method of Kushner and Clark [11] and the simultaneous
perturbation method of Spall [18] (Section 5.1). These methods can be generalized
in a natural way to higher order methods (Section 5.2). A special kernel method
proposed by Polyak and Tsybakov [14] fits in this framework as well. In the case of
random vectors �n consisting of a support with finitely many directions only, the
randomized kernel gradient estimator can be replaced by an average of estimated
directional derivatives. This approach includes Fabian’s higher order stochastic
method [7] (Section 5.4).

Instead of using two observations per step it is even possible to work with only
one observation (cf. [4], [14] and [19]). However, I will not pursue this idea here.

Although randomized and/or higher order methods can outperform the standard
methods in terms of asymptotic behavior, it is expected that, for a small or
moderate number n of iteration steps, the standard methods may be superior.
Hence, for practical applications, one might use a two-stage scheme which
switches from a standard method to a randomized or higher order method after a
moderate number of iteration steps. For a discussion of nonasymptotic properties
of randomized methods in comparison to their nonrandomized counterparts, see
page 318ff in [12].

Two competing methods with the same rate of convergence can be compared
in terms of their asymptotic mean squared error. I will not delve into these issues,
but the asymptotic distributions obtained herein provide a basis for a discussion in
this direction (compare pages 252–254 in [11], Section 5 in [5] and pages 337–338
in [18]).

2. Notation. In the Euclidean space R
d the unit vectors are denoted by

e1, . . . , ed . The ith coordinate of a vector x is indicated by xi , but if x, x1, x2, . . .

is a sequence of vectors (possibly without first element x), the ith coordinates are
denoted by x(i), x

(i)
1 , x

(i)
2 , . . . , respectively. Id is the identity matrix and 〈·, ·〉 is the

usual inner product. The tensor x ⊗ y : Rd → R
d of two vectors x, y ∈ R

d is the
linear mapping defined by 〈y, ·〉x, Hf (ϑ) is the Hessian of a function f : Rd → R

at ϑ ∈ R
d and Uε(ϑ) is the open ball around ϑ with radius ε. Consider the

multiindex m = (m1, . . . ,md) ∈ N
d
0 . Its length |m| is just the sum m1 + · · · + md ,

and m! is given by m1! · · ·md !. The mth power of x ∈ R
d is declared by xm =

x
m1
1 × · · · × x

md

d under the convention 00 := 1. The differential operator Dm is
defined by

∂m1

(∂x1)
m1

· · · ∂md

(∂xd)md
.

For r ∈ R we use �r� and �r� to denote the integer part of r and the least
integer greater than or equal to r , respectively. For a logical expression A, the



ACCELERATED RANDOMIZED STOCHASTIC OPTIMIZATION 1263

value of the indicator function 1A equals 1 if A is true and 0 otherwise. If
B is a set, then 1B(ω) is a short form of 1[ω∈B]. The space C([0,1],R

d) of
R

d -valued continuous functions on [0,1] is equipped with the maximum norm
and (�,A,P ) is the underlying probability space. Let (Xn) be a sequence of
R

d -valued random variables. We write Xn = OP (rn) if rn is increasing to infinity
and (Xn/rn) is bounded in probability, that is, limR→∞ limsupn P (‖Xn/rn‖ ≥
R) = 0. The sequence (Xn) converges to zero almost in Lr or is bounded almost
in Lr [r ∈ (0,∞)] if for each ε > 0 there exists a �ε ∈ A with P (�ε) ≥
1 − ε such that (

∫
�ε

‖Xn‖r dP )1/r = o(1) or = O(1), respectively. Convergence
almost in Lr implies convergence in probability, but it is weaker than a.s.
convergence or convergence in the r th mean. Two sequences (an) and (bn) are
called asymptotically equivalent, an ∼ bn, if limn→∞(an/bn) = 1. A set {a, . . . , b}
of increasing integers is considered to be empty whenever a > b.

3. Consistency. Consider the following set of conditions.

(A) f : Rd → R is bounded from below and has a Lipschitz continuous gradient.
(B) �,�1,�2, . . . are independent and identically distributed random variables

with values in R
d and finite second moments. The random variable �n is

assumed to be independent of {X1, . . . ,Xn,�1, . . . ,�n−1}.
(C) The kernel K : Rd → R

d is a measurable function with E(K(�) ⊗ �) = Id

and E(‖�‖4‖K(�)‖2) < ∞.
(D) The difference Wn = (Wn,1 −Wn,2)/2 of the observation errors (divided by 2)

satisfies E(K(�n)Wn | Gn) = 0 and supn E(‖K(�n)‖2W 2
n | Gn) < ∞ a.s.,

where the σ -field Gn is generated by {X1, . . . , Xn, �1, . . . ,�n−1}.
The consistency result below is an extension of Proposition 4.1 in [5]. It is

related to Blum’s result [2] on multivariate Kiefer–Wolfowitz procedures. Using
different techniques in the proof, the conditions on f can be relaxed.

PROPOSITION 1. Choose sequences (an) and (cn) satisfying an ≥ 0, cn > 0,
an → 0,

∑∞
n=1 an = ∞,

∑∞
n=1 anc

2
n < ∞ and

∑∞
n=1 a2

n/c
2
n < ∞. For recursion (1)

with gradient estimate (2) assume that Conditions (A)–(D) hold.

(a) If sup{‖x‖ :f (x) ≤ λ} < ∞ for all λ > inf{f (x) :x ∈ R
d}, then supn ‖Xn‖ < ∞

a.s.
(b) Assume ∇f (x) �= 0 and f (x) > f (ϑ) for all x �= ϑ . If supn ‖Xn‖ < ∞ a.s.,

then Xn → ϑ (n → ∞) a.s.

If there are constants a, c > 0, α ∈ (max{γ + 1/2,1 − 2γ },1] and γ ∈ (0,1/2),
then sequences (an) and (cn) with an ∼ a/nα or an ∼ (a lnn)/n and cn ∼ cn−γ

fulfill the assumptions of the proposition.
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4. Asymptotic normality. We will use the following assumptions:

(Ã) f : Rd → R is a measurable function and ∇f (ϑ) exists and equals 0. For a
given real number p ≥ 2 assume an ε > 0 such that all derivatives of f up
to order �p� − 1 exist on Uε(ϑ), all �p�th derivatives of f at ϑ exist, f is
p-smooth at ϑ in the sense that∥∥∥∥∥∇f (x) − ∑

|m|≤�p�−1

1

m!D
m∇f (ϑ)(x − ϑ)m

∥∥∥∥∥ = o
(‖x − ϑ‖p−1)

and, if p ∈ [3,∞), the Hessian of f is locally Lipschitz around ϑ , that is,

∀
x,y∈Uε(ϑ)

∃
L<∞

‖Hf (x) − Hf (y)‖ ≤ L‖x − y‖.

(B̃) Condition (B) holds. Additionally, the random variables �i are bounded a.s.
(C̃) Condition (C) holds. Additionally, if p ≥ 3, for every multiindex m ∈ N

d
0 with

odd length |m| ∈ {3, . . . , �p�}, E(�mK(�)) = 0 holds.

Set Vn := K(�n)Wn and define linearly interpolated stochastic processes Bn by
Bn(t) := 1/

√
n{∑�nt�

i=1 Vi + (nt − �nt�)V�nt�+1}, t ∈ [0,1].
(D̃) Condition (D) holds. Additionally, there exist a Brownian motion B , some

σ > 0 with Bn →D B in C([0,1],R
d) as n → ∞ and covariance matrix

S := σ 2E(K(�) ⊗ K(�)) of B(1).
(Ẽ) Bn(1) = O(1) almost in L1(P ) (as defined at the end of Section 2).

Furthermore, we have to impose a restriction on the eigenvalues of the Hessian
of f (ϑ):

λ0 := inf{reλ :λ eigenvalue of Hf (ϑ)}.(3)

[The eigenvalues of Hf (ϑ) need not necessarily be real under the conditions stated
on f .]

THEOREM 2. Assume Conditions (Ã)–(D̃) subject to some p ≥ 2. Choose
cn = cn−γ with γ = 1

2p
and choose an = a/n such that λ0 > 1

2a
(1 − 2γ ). If

Xn → ϑ a.s., then

n(1−1/p)/2(Xn − ϑ)
D→ N(0,�)

with � = 1
2(aHf (ϑ) − 1

2 (1 − 2γ )Id)
−1(a2/c2)S.

THEOREM 3. Assume Conditions (Ã)–(Ẽ) subject to some p > 2. Suppose
λ0 > 0. Choose cn = cn−γ with γ = 1

2p
and an = a/nα with α ∈ (max{1

2 +
γ,4γ },1) or an = a ln n/n. If Xn → ϑ a.s., then for all δ > −(1

2 + γ ),

X̃n,δ := 1 + δ

n1+δ

n∑
i=1

iδXi
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achieves

n(1−1/p)/2(X̃n,δ − ϑ)
D→ N(0, �̃)

with �̃ = c−2((1 + δ)2/(1 + 2γ + 2δ))A−1SA−1 and A = Hf (ϑ).

Consider some p ≥ 3 whose integer part �p� is odd. If Condition (C̃) is relaxed
to

(C̃′) Condition (C) holds. For every multiindex m ∈ N
d
0 with odd length |m| ∈

{3, . . . , �p� − 2}, E(�mK(�)) = 0 holds,

which coincides with the condition usually imposed in the literature for various
designs (�,K) (see Section 5), and if the quantity

T := −c�p�−1
∑

|m|=�p�

1

m!D
mf (ϑ)E

(
�mK(�)

)
does not vanish [which cannot happen under Condition (C̃)], then the asymptotic
distribution will no longer be unbiased. If additionally p > �p�, the optimal rate of
convergence will not be attained. These deficiencies occur for several traditional
methods such as those discussed in Section 5.1.

COROLLARY 4. Suppose p ≥ 3 with �p� odd. Assume Conditions (Ã)–(D̃)
with (C̃) replaced by (C̃′). Choose cn = cn−γ with γ = 1

2�p� and an = a/n such

that λ0 > 1
2a

(1 − 2γ ). If Xn → ϑ a.s., then

n(1−1/�p�)/2(Xn − ϑ)
D→ N(µ,�)

with µ = (aHf (ϑ) − 1
2 (1 − 2γ )Id)aT and � = 1

2(aHf (ϑ) − 1
2 (1 − 2γ )Id)

−1 ×
(a2/c2)S.

COROLLARY 5. Suppose p ≥ 3 with �p� odd. Assume Conditions (Ã)–(Ẽ)
with (C̃) replaced by (C̃′) and λ0 > 0. Choose cn = cn−γ with γ = 1

2�p� and

an = a/nα with α ∈ (max{1
2 + γ,4γ − p−�p�

�p� },1) or an = a ln n/n. If Xn → ϑ

a.s., then for all δ > −(1
2 + γ ),

X̃n,δ := 1 + δ

n1+δ

n∑
i=1

iδXi

achieves

n(1−1/�p�)/2(X̃n,δ − ϑ)
D→ N(µ̃, �̃)

with µ̃ = (2(1 + δ)/(1 + 2γ + 2δ))A−1T , �̃ = c−2((1 + δ)2/(1 + 2γ +
2δ))A−1SA−1 and A = Hf (ϑ).
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REMARK 6. (a) Observe that the spectral condition on the Hessian in
Theorem 3 is much weaker than in Theorem 2. However, in Theorem 3 the choice
p = 2 is excluded due to increased demand on the smoothness on f at ϑ necessary
in the averaging scheme. In Theorem 2 and Corollary 4 step lengths an converging
more slowly to zero than a/n are possible as well, but then the rate of convergence
of (Xn − ϑ) will be slower [7].

(b) Our notion of p-smoothness as given in Condition (Ã) is slightly stronger
than the Hölder condition of order p as given in [14].

(c) Conditions (D̃) and (Ẽ) are implied by the following two conditions:

(D̂) Conditions (B), (C) and (D) hold, E(Wn | Fn) = 0 a.s., E(W 2
n | Fn) → σ 2

a.s., supn E(|Wn|2+ε | Fn) < ∞ a.s. and E‖K(�)‖2+ε < ∞ for some ε > 0,
where the σ -field Fn is generated by {X1, . . . , Xn, �1, . . . ,�n}.

(Ê) Assume 1
n

∑n
i=1 E(‖K(�i)‖2W 2

i ) = O(1) [which holds, e.g., if the kernel K

is bounded, or if �i and Wi are independent, or if E(K(�)4) and supi E(W 4
i )

are bounded].

(d) If in the recursions considered in Theorem 2 and Corollary 4 the gradient
estimates Yn are premultiplied by a matrix M [such that MHf (ϑ) instead
of Hf (ϑ) satisfies (3)], the trace of the resulting covariance matrix of the
limit distribution attains its minimum for M = (Hf (ϑ))−1 (which exists by
assumption). In this case the optimal choice for a is a = (p − 1)/p. Since in
practice Hf (ϑ) is usually unknown, certain adaptive methods seek to estimate
(Hf (ϑ))−1 consistently by a sequence of random matrices Mn built up from
information gained up to the nth loop of the iteration. For Kiefer–Wolfowitz
type stochastic approximation methods this was suggested by Fabian [8]. Under
additional assumptions, results similar to Theorem 2 and Corollary 4 can be
achieved for adaptive variants. In these cases the covariance matrix of the limit
distribution will coincide with those of Theorem 3 (or Corollary 5, respectively)
provided the weighting exponent δ = −1/p is chosen. Now consider the
case of a nonvanishing bias of the asymptotic distribution as in Corollaries
4 and 5. Construction of a procedure which minimizes the second moment of the
asymptotic distribution is a difficult problem (see [5] for a further discussion of
this issue).

(e) The sequences (an) and (cn) in Theorems 2 and 3 and Corollaries 4 and 5
may be chosen more generally. To keep the formulation of the results and their
proofs lucent, we abstain from treating generalizations in this direction. For tools
to prove such extensions, see [5] and [20].

5. Examples. In the following examples we discuss several choices for the
pair (�,K), check the related Conditions (C), (C̃) and (C̃′), and compute in each
case the ingredients of the quantities S and T .
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5.1. Methods for p-smooth regression functions (p ∈ [2,3]). In this subsec-
tion we assume that the regression function f is p-smooth in the sense of Condi-
tion (Ã) with some p ∈ [2,3].

5.1.1. Random finite difference stochastic approximation. In the classical
Kiefer–Wolfowitz stochastic approximation scheme, one takes two-sided differ-
ences along each direction of the coordinate axes. A randomized version of this
employs the two-sided difference along the direction of a randomly chosen coor-
dinate axis. This means

� ∼ U({e1, . . . , ed}) and K(�) = d�.(4)

Then E(K(�) ⊗ �) = Id and E(K(�) ⊗ K(�)) = dId . If m ∈ N
d
0 with |m| = 3,

then E(�mK(�)) = ei or = 0, whenever there is an i with mi = 3 or not,
respectively. Hence S = dσ 2Id and, if p = 3,

T = −c2

6

(
∂3

(∂xi)3
f (ϑ)

)
i=1,...,d

.

In comparison, for the classical multivariate Kiefer–Wolfowitz procedure we have
the same T , but a different S = σ 2Id .

5.1.2. Random direction stochastic approximation. Kushner and Clark ([11],
page 58ff ) described a method which estimates the gradient of f at Xn by
estimating the directional derivative along a randomly chosen direction of the
unit sphere Sd . This condition can be relaxed as is done in [12], page 315ff,
by choosing a distribution FRD which is concentrated on Sd , has identically
distributed projections on coordinate axes and is symmetrically distributed with
respect to reflection about each axis.

Consider the design

� ∼ FRD and K(�) = d�.(5)

We mention three examples for distributions of �: the uniform distribution on the
sphere Sd , the uniform distribution on the finite set {x ∈ Sd : |x(i)|2 = 1/d for each
i ∈ {1, . . . , d}} and the uniform distribution on the finite set {±ei : i ∈ {1, . . . , d}}.
In [12], the methods corresponding to the first two choices were called the
spherical method and the Bernoulli method, respectively. The third choice is just
the random finite difference method as given in display (4).

We have E(K(�) ⊗ �) = dE(� ⊗ �) = Id and E(K(�) ⊗ K(�)) = dId . Set
τ1 := E(�(1))4 and τ2 := E(�(1)�(2))2 = (1 − dτ1)/(d(d − 1)). Observe that for
m ∈ N

d
0 with |m| = 3,

E
(
�mK(�)

) =


dτ1ei, if there is an i with mi = 3,

dτ2ei, if there are i �= j with mi = 1 and mj = 2,

0, otherwise.
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Then S = dσ 2Id and, if p = 3,

T = −c2d

6

(
τ1

∂3

(∂xi)3
f (ϑ) + 3τ2

d∑
j=1,j �=i

∂3

∂xi(∂xj )2
f (ϑ)

)
i=1,...,d

.

5.1.3. Simultaneous perturbation stochastic approximation. Spall [17, 18]
introduced another scheme to estimate the gradient with two observations per step.
The difference of two observations taken at Xn + cn�n and Xn − cn�n with a
random direction �n is simultaneously used for each component of the gradient
estimate.

Choose a distribution FSP on R
d which is the d-fold tensor product of a

symmetrical distribution concentrated on R \ {0}. A possible but simple choice
for FSP is the uniform distribution concentrated on the vertices of the cube
[−1,1]d . For δ = (δ(1), . . . , δ(d)), define δ−1 = (1/δ(1), . . . ,1/δ(d)). Now consider
the design given by

� ∼ FSP and K(�) = �−1.

Suppose that both ξ2 := E((�(i))2) and ρ2 := E((�(i))−2) are finite. We find
E(K(�) ⊗ �) = E(�−1 ⊗ �) = Id and E(K(�) ⊗ K(�)) = E(�−1 ⊗ �−1) =
ρ2Id .

Let m ∈ N
d
0 with |m| = 3. If � has a finite third moment, then E(�mK(�)) =

ξ2ei or = 0 whenever there are i �= j with mi = 1 and mj = 2 or not, respectively.
Hence S = σ 2ρ2Id and, if p = 3,

T = −c2ξ2

6

(
∂3

(∂xi)3
f (ϑ) + 3

d∑
j=1,j �=i

∂3

∂xi(∂xj )2
f (ϑ)

)
i=1,...,d

.

5.2. Higher order methods for p-smooth regression functions (p ≥ 2). We
modify the designs of Section 5.1 to obtain a convergence rate faster than n−1/3

whenever p > 3 while still requiring only two observations per step. For p ≥ 2,
take q = �p/2�. If p ≥ 3 is an odd number, the choice q = �p/2� is possible
as well, but generally this will lead to a biased asymptotic distribution. Choose
numbers 0 < u1 < · · · < uq ≤ 1 and compute (v1, . . . , vq)t = M−1e1, where
M is the Vandermonde matrix (u2l−1

j )l, j∈{1,...,q}. Then
∑q

j=1 u2l−1
j vj = 1[l=1] for

l = {1, . . . , q}.

5.2.1. Higher order random finite difference stochastic approximation. For
regression functions with p-times differentiability at ϑ (p ≥ 3 odd), Fabian [7]
described a method that required 2d�p/2� observations per step. In [5] this idea
was generalized to p-smooth functions (p ∈ {2,3, . . .}) using 2d�p/2� or 2d�p/2�
observations per step. Now we give a randomized version which uses two
observations per step only and assumes a p-smooth regression function (p ≥ 2).
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Consider the design

� = � · � with independent � ∼ U({uj : 1 ≤ j ≤ q}) and

� ∼ U({ei : 1 ≤ i ≤ d}),
K(�) = qdvj� whenever � = uj�.

It turns out that

E
(
K(�) ⊗ �

) = 1

qd

d∑
i=1

q∑
j=1

qdujvj (ei ⊗ ei) = Id,

S = σ 2E
(
K(�) ⊗ K(�)

) = σ 2 1

qd

d∑
i=1

q∑
j=1

(qd)2v2
j (ei ⊗ ei) = σ 2qd

q∑
j=1

v2
j Id,

since
∑d

i=1 ei ⊗ ei = Id .

Let m ∈ N
d
0 . Assume that � has the realization uj ei . Then �m = u

|m|
j whenever

m(i) = |m| and �m = 0 otherwise. Hence

E
(
�mK(�)

) =


q∑

j=1

u
|m|
j vj ei, if there is an i with m(i) = |m|,

0, otherwise.

If �p� is odd and |m| ∈ {3,5, . . . , �p� − 2} or if �p� is even and |m| ∈ {3,5,

. . . , �p� − 1}, then, due to
∑q

j=1 u
|m|
j vj = 1[|m|=1], we have E(�mK(�)) = 0.

Now consider �p� odd and |m| = �p�. If q = �p/2�, E(�mK(�)) = 0 holds as
well; thus Condition (C̃) is satisfied. However, if we choose q = �p/2�, we have

E
(
�mK(�)

) =


( q∑

j=1

u
�p�
j vj

)
ei, if there is an i with m(i) = |m|,

0, otherwise.

This leads to

T = −c�p�−1
d∑

i=1

1

�p�!
∂�p�

∂ϑ
�p�
i

f (ϑ)

( q∑
j=1

u
�p�
j vj

)
ei .

Apparently, instead of Condition (C̃), the weaker Condition (C̃′) is satisfied.

5.2.2. Higher order random direction stochastic approximation. Using the
notation of Section 5.1.2 and

� = � · � with independent r.v.’s � ∼ U({uj : 1 ≤ j ≤ q}) and

� ∼ FRD,

K(�) = qdvj� whenever � = uj�,
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we obtain

E
(
K(�) ⊗ �

) = 1

q

q∑
j=1

qujvjdE(� ⊗ �) = Id,

E
(
K(�) ⊗ K(�)

) = 1

q

q∑
j=1

q2d2v2
jE(� ⊗ �) = qd

q∑
j=1

v2
j Id

and

E
(
�mK(�)

) = 1

q

q∑
j=1

qu
|m|
j vjE(�m�) =

( q∑
j=1

u
|m|
j vj

)
E(�m�),

which equals zero for every multiindex m ∈ N
d
0 with odd length |m| ∈ {3, . . . ,

�p� − 1}. As in Section 5.2.1, for q = �p/2� Condition (C̃) is satisfied.
For p ≥ 3 with �p� odd and q = �p/2� one obtains

T = −c�p�−1
∑

|m|=�p�

1

m!D
mf (ϑ)E

(
q∑

j=1

u
|m|
j vj

)
E(�m�),

which is to be used in connection with Condition (C̃′).

5.2.3. Higher order simultaneous perturbation finite difference stochastic
approximation. With the notation of Section 5.1.3, choose

� = � · � with independent r.v.’s � ∼ U({uj : 1 ≤ j ≤ q}) and

� ∼ FSP,

K(�) = qvj�
−1 whenever � = uj�

and assume finite moments of � up to order �p�. Then we obtain

E
(
K(�) ⊗ �

) = 1

q

q∑
j=1

qujvjE(� ⊗ �−1) = Id,

E
(
K(�) ⊗ K(�)

) = 1

q

q∑
j=1

q2v2
jE(� ⊗ �−1) = qρ2

q∑
j=1

v2
j Id

and

E
(
�mK(�)

) = 1

q

q∑
j=1

qu
|m|
j vjE(�m�−1) =

( q∑
j=1

u
|m|
j vj

)
E(�m�−1).

Again, for the choice q = �p/2� Condition (C̃) is satisfied. For p ≥ 3 with �p� odd
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and q = �p/2�, Condition (C̃′) applies with

T = −c�p�−1
∑

|m|=�p�

1

m!D
mf (ϑ)E

( q∑
j=1

u
|m|
j vj

)
E(�m�−1).

5.3. The kernel method of Polyak and Tsybakov. An interesting design
investigated by Polyak and Tsybakov [14] is

� ∼ U([−0.5,0.5]d) and K(�) = (
K1(�), . . . ,Kd(�)

)
,

where the functions Ki : Rd → R are chosen such that

Kj(δ) = k0(δ
(j))

d∏
m=1,m�=j

k̃(δ(m)), δ ∈ R
d,

with measurable and bounded functions k0, k̃ : R → R, the supports of which are
contained in [−0.5,0.5], and

∀
i∈{0,...,�p�}

∫
uik0(u) du = 1[i=1]

and

∀
i∈{0,...,�p�−1}

∫
uik̃(u) du = 1[i=0].

Polyak and Tsybakov described a method for constructing the kernels k0 and k̃ by
using orthogonal Legendre polynomials on [−0.5,0.5].

We observe that

E
(
�(i)Kj (�)

)
= E

(
�(i)k0(�

(j))

d∏
m=1,m�=j

k̃(�(m))

)

=


E

(
�(i)k̃(�(i))

)
E

(
k0(�

(j))
) d∏
m=1,m�=j,m�=i

E
(̃
k(�(m))

)
, if i �= j ,

E
(
�(i)k0(�

(i))
) d∏
m=1,m�=i

E
(̃
k(�(m))

)
, if i = j

= 1[i=j ]
and thus E(K(�) ⊗ �) = Id . Furthermore,

E
(
�mKj(�)

) = E
(
(�(j))mj k0(�

(j))
) d∏
i=1,i �=j

E
(
(�(i))mi k̃(�(i))

) = 0
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whenever 2 ≤ |m| ≤ �p�. Hence Condition (C̃) is fulfilled. With

E
(
Ki(�)Kj (�)

)
= E

(
k0(�

(i))k0(�
(j))

d∏
l=1,l �=i

k̃(�(l))

d∏
q=1,q �=j

k̃(�(q))

)

=


E

(
k0(�

(i))k̃(�(i))
)
E

(
k0(�

(j))k̃(�(j))
) d∏
l=1,l �=i,l �=j

E
(̃
k(�(l))2)

, if i �= j ,

E
(
k0(�

(i))2) d∏
l=1,l �=i

E
(̃
k(�(l))2)

, if i = j ,

=


(∫

k0k̃

)2(∫
k̃

2
)d−2

, if i �= j ,(∫
k2

0

)(∫
k̃

2
)d−1

, if i = j ,

we obtain the components of S = σ 2E(K(�) ⊗ K(�)).

5.4. Methods that use more than two observations per step. Let us consider
any of the kernel functions K together with the related distributions of the
simulated random variables � and � as described in Sections 5.2.1–5.2.3. There,
at step n, we took one simulated realization of �n ∼ U({uj : 1 ≤ j ≤ q}), one
simulated realization of �n, and two noisy observations of f at Xn (in square
brackets), that is,

Yn = 1

cn

K(�n)
{[f (Xn + cn�n) − Wn,1] − [f (Xn + cn�n) − Wn,1]},

where �n = �n ·�n. If the distributions of �, � or � have a support with finitely
many points, the use of randomization in Sections 5.1 and 5.2 can be (partly or
totally) avoided by taking, in each step of the iteration, the average of 2q or 2qκ

observations of function values of the unknown regression function f .

5.4.1. 2q observations per iteration step. Consider the case of a finitely
valued random variable �. For observation errors Wn,i,l , assume that, in lieu
of (Wn), the sequence defined by Wn = 1

q

∑q
l=1(Wn,1,l − Wn,2,l), n ∈ N, satisfies

Condition (D̃) with σ 2 replaced by σ 2/q . Then the conditional expectation of
E(Yn | Xn,�n) can be estimated unbiasedly by

Yn = 1

q

q∑
l=1

1

cn

K(ul�n)
{[f (Xn + cnul�n) − Wn,1,l]
− [f (Xn + cnul�n) − Wn,2,l]},
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which uses 2q observations (in square brackets) of the regression function. Now
the assertions of Theorems 2 and 3 and Corollaries 4 and 5 remain valid if we
replace Yn by Yn and S by (1/q)S, where S and T are as computed in Section 5.2.

The special case of equidistant u1, . . . , uq together with the simultaneous
perturbation scheme in Section 5.2.3 was recently suggested by Gerencsér [9].

5.4.2. 2qκ observations per iteration step. If both simulated random variables
� and � attain finitely many values u1, . . . , uq and ψ1, . . . ,ψκ only, an unbiased
estimator of the conditional expectation of E(Yn | Xn) is given by

Ŷn = 1

qκ

q∑
j=1

κ∑
k=1

1

cn

K(ujψk)
{[f (Xn + cnujψk) − Wn,1,j,k]

− [f (Xn − cnujψk) − Wn,2,j,k]},
which uses 2qκ observations at each step but no randomization. Here we assume
that the observation errors Wn,i,j,k obey the property that the sequence defined
by Ŵn = 1

qκ

∑q
j=1

∑κ
k=1(Wn,1,j,k − Wn,2,j,k), n ∈ N, fulfills Condition (D̃)

with (Wn) and σ 2 replaced by Ŵn and σ 2/(qκ), respectively. Then the assertions
of Theorems 2 and 3 and Corollaries 4 and 5 remain valid if we replace Yn by Ŷn

and S by 1/(qκ)S, where S and T are as computed in Section 5.2.
If we use the kernel function given in Section 5.2.1, we end up with a

generalization of [5] to general p-smooth regression functions with p ≥ 2, which
itself extends Fabian’s method [6, 7] from odd numbers p ≥ 3 (and q = �p/2�)
to the case of natural numbers p ≥ 2 (and q = �p/2� or q = �p/2�, possessing
unbiased limit distributions in the latter case). In the very special setting p = 3
and q = 1, this is just the original Kiefer–Wolfowitz method [10] that yields
convergence rate n−1/3.

6. Proofs.

PROOF OF PROPOSITION 1. Without loss of generality we may assume ϑ = 0
and f (ϑ) = 0. According to Condition (A), ∇f is Lipschitz continuous. Hence∣∣f (x + h) − f (x − h) − 〈2h,∇f (x)〉∣∣

=
∣∣∣∣ ∫ 1

−1
〈h,∇f (x + th) − ∇f (x)〉dt

∣∣∣∣
≤ ‖h‖

∫ 1

−1
L|t|‖h‖dt = L‖h‖2,

(6)

where L here and in the following inequalities is a constant which may vary from
inequality to inequality. Applying (6) and respecting Conditions (B) and (C), we
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arrive at

‖E(Yn | Gn) − ∇f (Xn)‖
≤

∥∥∥∥E(
1

2cn

K(�n)
{
f (Xn + cn�n) − f (Xn − cn�n)

− 〈2cn�n,∇f (Xn)〉} ∣∣ Gn

)∥∥∥∥
+ ∥∥E(

K(�n)〈�n,∇f (Xn)〉 − ∇f (Xn) | Gn

)∥∥
≤ c−1

n LE
((‖cn�n‖2‖K(�n)‖) ∣∣ Gn

)
+ ∥∥E(

K(�n) ⊗ �n | Gn

)∇f (Xn) − ∇f (Xn)
∥∥

≤ Lcn a.s.

(7)

Hence |〈E(Yn | Gn) − ∇f (Xn),∇f (Xn)〉| ≤ Lcn‖∇f (Xn)‖ a.s. and

〈∇f (Xn),E(Yn | Gn)〉 ≥ ‖∇f (Xn)‖2 − Lcn‖∇f (Xn)‖ a.s.(8)

Referring to (6) and Conditions (C) and (D), we obtain

E(‖Yn‖2 | Gn)

≤ E

(∥∥∥∥Yn − 1

2cn

K(�n)
(
f (Xn + cn�n) − f (Xn − cn�n)

)∥∥∥∥2 ∣∣∣ Gn

)
+ E

(∥∥∥∥ 1

2cn

K(�n)
{
f (Xn + cn�n) − f (Xn − cn�n)

− 〈2cn�n,∇f (Xn)〉}∥∥∥∥2 ∣∣∣ Gn

)
+ E

(‖K(�n)〈�n,∇f (Xn)〉‖2 | Gn

)
≤ Lc−2

n E
(‖K(�n)‖2W 2

n | Gn

) + Lc2
n + L‖∇f (Xn)‖2 a.s.

(9)

Lipschitz continuity of ∇f implies, as in (6),

f (Xn+1) ≤ f (Xn) − an〈∇f (Xn),Yn〉 + La2
n‖Yn‖2.

Taking conditional expectations and using inequalities (8) and (9), we obtain

E
(
f (Xn+1) | Gn

) ≤ f (Xn) − an

(‖∇f (Xn)‖2 − Lcn‖∇f (Xn)‖)
+ La2

n‖∇f (Xn)‖2 + La2
n/c

2
n

(
E

(‖K(�n)‖2W 2
n | Gn

) + 1
)

≤ f (Xn) − an/2
(‖∇f (Xn)‖ − Lcn

)2 + L2/2anc
2
n

+ La2
n/c

2
n

(
E

(‖K(�n)‖2W 2
n | Gn

) + 1
)

a.s.

for all n with Lan < 1/2. Let An := an/2(‖∇f (Xn)‖ − Lcn)
2 and Bn :=

L2/2anc
2
n + La2

n/c
2
n(E(‖K(�n)‖2W 2

n | Gn) + 1). For n large enough,

E
(
f (Xn+1) | Gn

) ≤ f (Xn) − An + Bn a.s.
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where An ≥ 0, Bn ≥ 0 and
∑∞

n=1 Bn < ∞ a.s. On a set �0 of measure 1 we
have convergence of f (Xn) and

∑∞
n=1 An according to a theorem of Robbins and

Siegmund [15] for nonnegative almost supermartingales.
Fix ω ∈ �0 and set xn := Xn(ω). Then for almost all n the relationship f (xn) ≤

λ := lim f (xn)+1 holds. Since {x :f (x) ≤ λ} is bounded, (xn) is bounded as well.
To prove (b), fix ω ∈ �0 with supn ‖Xn(ω)‖ < ∞ and set xn := Xn(ω) again.

Select a subsequence (xn′) with ∇f (xn′) → 0. Then there exists a convergent
subsequence (xn′′) of (xn′). Since ∇f (xn′′) → 0 and ∇f is continuous, (xn′′)
converges to zero. Hence f (xn′′) → 0 and f (xn) → 0. Choose ε > 0 such that
‖xn‖ < 1/ε for all n. For n sufficiently large, we have f (xn) < inf{f (x) : ε <

‖x‖ < 1/ε}. This proves xn → 0. �

PROOF OF THEOREM 3 AND COROLLARY 5. We apply Lemma 7.1 in [5] to
show asymptotic normality.

Step 1. Expansion of Dn := (1/2cn)K(�n)(f (Xn + cn�n) − f (Xn − cn�n)).
First let us consider the case p ≥ 3. For x, δ ∈ R

d and h > 0 with x ± hδ,
ϑ ± hδ ∈ Uε(ϑ), Taylor’s formula yields

K(δ)

2
{f (x + hδ) − f (x − hδ)} = t (h, δ) + s(h, δ) + q(h, δ)

with

t (h, δ) = K(δ)

2

(
f (ϑ + hδ) − f (ϑ − hδ)

)
,

s(h, δ) = K(δ)

2
〈∇f (ϑ + hδ) − ∇f (ϑ − hδ), x − ϑ〉,

q(h, δ) = K(δ)

2

〈
x − ϑ,

∫ 1

0
(1 − t)G(t, h, δ) dt (x − ϑ)

〉
,

where G(t,h, δ) := Hf (ϑ + t (x − ϑ) + hδ) − Hf (ϑ + t (x − ϑ) − hδ), since
f is at least twice differentiable.

Due to Assumption (Ã) we have for ϑ ± hδ ∈ Uε(ϑ),

t (h, δ) = t(h, δ) + K(δ)o(hp‖δ‖p)

with

t(h, δ) = K(δ)

2

∑
|m|≤�p�

1

m!D
mf (ϑ)δmhm

(
1 − (−1)m

)
.

Observe that, in the last sum, terms with |m| = 1 vanish, that E(�mK(�)) = 0
for |m| odd with |m| ∈ {3, . . . , �p� − 1} and that 1 − (−1)m = 0 for |m| even.
Hence

Et(h,�) = ∑
|m|≤�p�

1

m!D
mf (ϑ)E

(
�mK(�)

)
hm 1 − (−1)m

2

= ∑
|m|=�p�

1

m!D
mf (ϑ)E

(
�mK(�)

)
hm 1 − (−1)m

2
=: h�p�T̂

(10)
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and, since � is bounded,

Et(h,�) = h�p�T̂ + o(hp).

Notice that T̂ = 0 under the assumptions of Theorem 3.
Similarly, we have

s(x,h, δ) = s(x,h, δ) + K(δ)o(hp−1‖δ‖p−1‖x − ϑ‖)
with

s(x,h, δ) = K(δ)

〈 ∑
0≤|m|≤�p�−1

1

m!D
m∇f (ϑ)(hδ)m

1 − (−1)m

2
, x − ϑ

〉
.

In this sum the term for |m| = 0 vanishes. Furthermore, in Es(x,h,�) all
summands vanish except those with |m| = 1, since for odd |m| with 3 ≤ |m| ≤
�p�−1 the term E(�mK(�)) equals zero and for |m| even with 2 ≤ |m| ≤ �p�−1
the term (1 − (−1)m) equals zero too. Hence

Es(x,h,�) = E

(
K(�)

〈(
d∑

j=1

∂2

∂xi ∂xj

f (ϑ)h�(j)

)
i∈{1,...,d}

, x − ϑ

〉)

= h

d∑
i=1

d∑
j=1

(
Hf (ϑ)

)
i,j (x − ϑ)(i)E

(
�(j)K(�)

)
= hHf (ϑ)(x − ϑ)

(11)

and

Es(x,h,�) = h
(
Hf (ϑ) + o(hp−2)

)
(x − ϑ).

Due to Lipschitz continuity of the Hessian of f , we obtain for ϑ ±hδ, x ±hδ ∈
Uε(ϑ),

q(x,h, δ) = K(δ)O

(
‖x − ϑ‖2

∫ 1

0
(1 − t)Lh‖δ‖dt

)
= K(δ)O(h‖δ‖‖x − ϑ‖2)

and thus

Eq(x,h,�) = O(h‖x − ϑ‖2).

Set Dn := (1/cn)t(cn,�n) + (1/cn)s(Xn, cn,�n) and �n := [‖Xn − ϑ‖ <

ε/2] ∈ Gn. Since � is bounded, there is an n0 such that ‖cn�n‖ < ε/2 on � for
any n ≥ n0. Now observe that

(Dn − Dn)1�n

= K(�n)
(
o(cp−1

n ) + o(cp−2
n )‖Xn − ϑ‖ + O(‖Xn − ϑ‖2)

)
1�n

(12)
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and, since Xn → ϑ a.s., with probability 1,(
Dn − E(Dn | Gn)

)
1�c

n
+ (Dn − Dn)1�c

n
= 0

(13)
for n sufficiently large.

Then

Dn = E(Dn | Gn) + (
Dn1�n − E

(
Dn1�n | Gn

)) + (
Dn − E(Dn | Gn)

)
1�c

n

+ (
(Dn − Dn)1�n − E

(
(Dn − Dn)1�n | Gn

))
+ E

(
(Dn − Dn)1�n | Gn

)
+ (Dn − Dn)1�c

n

= (
Hf (ϑ) + o(cp−2

n ) + O(‖Xn − ϑ‖))(Xn − ϑ) + c�p�−1
n T̂ + o(cp−1

n )

+ (
Dn1�n − E

(
Dn1�n | Gn

))
+ (

(Dn − Dn)1�n − E
(
(Dn − Dn)1�n | Gn

))
.

(14)

Now we consider the case p ∈ [2,3). Due to Assumption (Ã), for x ∈ Uε(ϑ),
∇f (x) = (Hf (ϑ) + R(x))(x − ϑ) holds with a matrix-valued remainder term R

satisfying ‖R(x)‖ = o(‖x − ϑ‖p−2). Hence, for x ± hδ ∈ Uε(ϑ) the following
representation is valid:

K(δ)

2
{f (x + hδ) − f (x − hδ)}

= K(δ)

2

∫ 1

−1
〈∇f (x + thδ), hδ〉dt

= K(δ)

2

{∫ 1

−1
〈Hf (ϑ)(x + thδ − ϑ),hδ〉dt

+
∫ 1

−1
〈∇f (x + thδ) − Hf (ϑ)(x + thδ − ϑ),hδ〉dt

}

= K(δ)

2

{
〈Hf (ϑ)(x − ϑ),2hδ〉 +

∫ 1

−1
〈R(x + thδ)(x + thδ − ϑ),hδ〉dt

}
= K(δ)

2

{
〈Hf (ϑ)(x − ϑ),2hδ〉

+
∫ 1

−1
o(‖x + thδ − ϑ‖p−2)‖x + thδ − ϑ‖‖hδ‖dt

}
= K(δ)

2

{〈Hf (ϑ)(x − ϑ),2hδ〉 + o(‖x − ϑ‖p−1 + ‖hδ‖p−1)‖hδ‖}
.

Set Dn := K(�n)〈Hf (ϑ)(Xn − ϑ),�n〉 and observe

E(Dn | Gn) = Hf (ϑ)(Xn − ϑ) a.s.
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Define �n as above. Since (13) holds in this case, too, we obtain, similarly as
in (14),

Dn = Hf (ϑ)(Xn − ϑ) + o(‖Xn − ϑ‖p−1) + (
Dn1�n − E

(
Dn1�n | Gn

))
+ (

(Dn − Dn)1�n − E
(
(Dn − Dn)1�n | Gn

)) + o(cp−1
n ).

Step 2. Recursion in standard form. Using Un := Xn − ϑ and the expansion
of Dn of the first step, recursion (1) can be rewritten in the form of (7.2) in [5],

Un+1 = Un − anYn = Un − anDn + an

cn

K(�n)Wn

= (Id − anAn)Un + ann
γ (Vn + n−1/2Tn),

where γ = 1/(2p) or γ = 1/(2�p�) in the case of Theorem 3 or Corollary 5,
respectively, and, with notation slightly different from that that appears after
Condition (C̃),

Vn = Vn,1 + Vn,2,

Vn,1 = c−1K(�n)Wn,

Vn,2 = Dn1�n − E
(
Dn1�n | Gn

)
and, if p ∈ [2,3),

An = Hf (ϑ) + o(‖Xn − ϑ‖p−2), Tn = o(1)(15)

or, if p ≥ 3,

An = Hf (ϑ) + o(cp−2
n ) + O(‖Xn − ϑ‖), Tn = c�p�−1T̂ + o(1).(16)

Step 3. Rates of convergence of (Xn). Since Xn → ϑ a.s., we obtain An → A

and Tn → T a.s. This is sufficient for (7.5), (7.8) and (7.9) in [5]. Conditions (7.10)
and (7.11) in [5] imposed on (Vn,1) follow directly from Assumption (D) which
is included in (D̃). Note that Vn,2 is Gn+1-measurable and E(Vn,2 | Gn) = 0 a.s.
Assume p ≥ 3. Relationships (10), (11) and (12), independence of Xn and �n,
and required consistency of (Xn) imply

‖E(Vn,2 ⊗ Vn,2 | Gn)‖
= O(c−2

n )E
(‖t(cn,�n)‖2 | Gn

) + O(c−2
n )E

(‖s(Xn, cn,�n)‖21�n | Gn

)
+ E

(‖K(�n)‖2(
o(c2p−2

n ) + o(c2p−4
n )‖Xn − ϑ‖2

+ O(‖Xn − ϑ‖4)
)
1�n | Gn

)
= O(c2�p�−2

n ) + O(‖Xn − ϑ‖2)1�n → 0, n → ∞, a.s.,

(17)

which yields

sup
n

E(‖Vn,2‖2 | Gn) < const < ∞ a.s.(18)
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It is easy to see that the same statement is valid in the case p ∈ [2,3) too. Now
Lemma 7.1(b) in [5] asserts Xn − ϑ = O(nγ √

an ) almost in L2(P ). Recall the
assumptions on the sequence (an) and p > 2 as required in Theorem 3. Then the
last result together with (15) or (16) implies validity of An −Hf (ϑ) = o(1/

√
nan )

almost in L2(P ). This gives Condition (7.7) in [5].
Step 4. Asymptotic normality of (Xn). Let Bn,j (t) := 1/

√
n(

∑�nt�
i=1 Vi,j +

(nt −�nt�)V�nt�+1,j ), t ∈ [0,1], j ∈ {1,2}. Due to Condition (D̃) the process Bn,1
converges in distribution to a Brownian motion B in C([0,1],R

d) with covari-
ance S of B(1).

To prove Bn,2 →P 0 in C([0,1],R
d), we apply an invariance principle for

martingale difference sequences of Berger [1]. Its assumptions can be met by
referring to relationships (17), (18) and

∀
r>0

E
(‖Vn,2‖21[‖Vn,2‖2≥rn] | Gn

) → 0, n → ∞, a.s.,

which is a consequence of (17). Slutsky’s theorem yields Bn := Bn,1 +
Bn,2 →D B; hence Condition (7.3) in [5] is fulfilled.

Assumption (7.4) in [5] is satisfied if Bn,j (1) = O(1) almost in L1(P ). For
j = 1, this is Condition (Ẽ). For j = 2 this follows with (18) from

E‖Bn,2(1)‖2 = 1

n

n∑
i=1

E‖Vi,2‖2 ≤ 1

n

n∑
i=1

E

(
sup

i

E(‖Vi,2‖2 | Gi)

)
< ∞.

Now the assertion of Lemma 7.1(a) in [5] applies. This proves Theorem 3 and
Corollary 5. �

PROOF OF THEOREM 2 AND COROLLARY 4. We adopt the first step of the
proof of Theorem 3. For the second step, we check the assumptions of Theorem 1
in Walk [20]. Using Un := Xn − ϑ and the expansion of Dn of the first step,
recursion (1) can be rewritten in the form

Un+1 = Un − anYn = Un − anDn + an

cn

K(�n)Wn

=
(
Id − 1

n
aAn

)
Un + n−(1+β)/2aVn + n−1−β/2aTn,

where β = 1 − 2γ and A,An,B,Bn,T ,Tn and Vn are defined as in the last
proof. (Notice that Theorem 1 in [20] treats the case a = 1, but the extension
to general a > 0 is trivial.) Proposition 1 implies An → A = Hf (ϑ) a.s. Due to
the assumption on λ0, spec(aA) > β/2 holds. Distributional convergence of Bn

to B is established as above. In this case the covariance of aB(1) is equal to a2S.
Finally, we have Tn → T a.s. Hence Theorem 1 in [20] can be applied. For t = 1
this yields the assertions of Theorem 2 and Corollary 4. �
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PROOF OF REMARK 6(C). (D̂) ⇒ (D̃). To show that the process Bn, as
defined in (D̃), converges in distribution to a Brownian motion B in C([0,1],R

d)

with covariance S of B(1), we apply an invariance principle for martingale
difference sequences found in Berger [1].

Since

E(Vn | Fn) = K(�n)E(Wn | Fn) = 0 a.s.

and Vn is Fn+1-measurable, (Vn) is a martingale difference sequence with respect
to (Fn+1). Kolmogorov’s strong law of large numbers can be used to show

1

n

n∑
i=1

E(Vi ⊗ Vi | Fi ) = 1

n

n∑
i=1

K(�i) ⊗ K(�i)E(W 2
i | Fi )

= σ 2 1

n

n∑
i=1

K(�i) ⊗ K(�i)

+ 1

n

n∑
i=1

K(�i) ⊗ K(�i)
(
E(W 2

i | Fi ) − σ 2)
→ σ 2E

(
K(�) ⊗ K(�)

) = S, n → ∞, a.s.

Furthermore, for any r > 0, we obtain

1

n

n∑
i=1

E
(‖Vi‖21[‖Vi‖2≥rn] | Fi

)

≤ r−ε/2 1

n1+ε/2

n∑
i=1

E
(‖K(�i)Wi‖2+ε | Fi

)

≤
(
r−ε/2 1

n

n∑
i=1

‖K(�i)‖2+ε

)

×
(

1

nε/2 sup
i∈N

E(‖Wi‖2+ε | Fi )

)
P→ 0, n → ∞,

since 1
n

∑n
i=1 ‖K(�i)‖2+ε converges a.s. and supi∈N E(‖Wi‖2+ε | Fi ) < ∞ is

bounded a.s. This proves the assumptions of the central limit theorem mentioned
above. �

PROOF OF REMARK 6(C). (D̂) ∧ (Ê) ⇒ (Ẽ). Since (Vn) is a martingale
difference sequence, we have

E‖Bn(1)‖2 = 1

n

n∑
i=1

E‖Vi‖2 = 1

n

n∑
i=1

E
(‖K(�i)‖2W 2

i

) = O(1).(19)

From this we can find sufficient conditions for (19) as those mentioned in (Ê). �
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