
The Annals of Statistics
2003, Vol. 31, No. 4, 1110–1139
© Institute of Mathematical Statistics, 2003

LARGE SAMPLE THEORY FOR SEMIPARAMETRIC
REGRESSION MODELS WITH TWO-PHASE, OUTCOME

DEPENDENT SAMPLING
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University of Washington, Simon Frazer University and University of Washington

Outcome-dependent, two-phase sampling designs can dramatically re-
duce the costs of observational studies by judicious selection of the most
informative subjects for purposes of detailed covariate measurement. Here
we derive asymptotic information bounds and the form of the efficient score
and influence functions for the semiparametric regression models studied by
Lawless, Kalbfleisch and Wild (1999) under two-phase sampling designs. We
show that the maximum likelihood estimators for both the parametric and
nonparametric parts of the model are asymptotically normal and efficient.
The efficient influence function for the parametric part agrees with the more
general information bound calculations of Robins, Hsieh and Newey (1995).
By verifying the conditions of Murphy and van der Vaart (2000) for a least
favorable parametric submodel, we provide asymptotic justification for sta-
tistical inference based on profile likelihood.

1. Introduction. Outcome-dependent, two-phase stratified sampling designs
can dramatically reduce the costs of observational studies by selecting the most
informative subjects for detailed covariate measurement. Although ad hoc, ineffi-
cient estimation methods often have been used with these designs, recent work has
focused on maximum likelihood estimation for semiparametric regression models.
Scott and Wild (1997), who considered simple random samples at the first phase of
sampling, and Breslow and Holubkov (1997), who considered case-control sam-
pling at phase one and worked exclusively with the logistic model, developed max-
imum likelihood estimators for binary response models. This work extended the
classical theory of Prentice and Pyke (1979) to samples that were jointly strati-
fied by outcomes and covariates. Lawless, Kalbfleisch and Wild (1999) (LKW)
and Scott and Wild (2000) generalized the approach of Scott and Wild (1997) and
demonstrated that computation of maximum likelihood estimators is feasible for a
wide range of parametric regression models and two-phase designs provided that
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the phase one data are discrete. For an example of a two-phase design, see Breslow
and Chatterjee (1999).

Robins, Hsieh and Newey (1995) (RHN) derived the semiparametric efficient
scores for a more general problem in which a portion of the covariate vector is
missing for some subjects, but the outcome variable and the other covariates are
fully known for everyone. In the general case of continuous data, calculation of the
optimal estimator involves numerical solution of an (infinite dimensional) integral
equation. When the outcomes and covariates observed for everyone are discrete
and used to define the sampling strata, in which case the problems considered by
LKW and RHN are identical, RHN calculated an optimal estimator by solving
finite dimensional linear equations to obtain the scores.

LKW remarked that the RHN methods “appear to be asymptotically equivalent”
to theirs for the case of discrete phase one data, but offered no proof. They
also remarked that they had “no theoretical justification” for their empirical
observation that inferences based on the observed information for the profile
likelihood “performed excellently” even when the covariates were continuous. Our
goal is to provide asymptotic theory that resolves these outstanding issues. We first
establish asymptotic lower bounds using the methods of Bickel, Klaassen, Ritov
and Wellner (1993) to compute the efficient score functions, (efficient) information
and efficient influence functions for the problem considered by LKW. For at least
the i.i.d. special case of variable probability (Bernoulli) sampling, these results
also follow from the more general information calculations of RHN. The models
considered here yield sufficiently explicit formulas, however, that they deserve
special consideration. Although we do not go beyond the i.i.d. Bernoulli sampling
framework here, McNeney (1998) shows that the information bounds for the more
realistic basic stratified sampling model (cf. LKW) agree with those for Bernoulli
sampling under mild conditions. We intend to give a complete treatment of the
stratified sampling model and other designs elsewhere.

In Section 3 we identify a least favorable parametric submodel and verify
that it satisfies the key hypothesis of Theorem 1 of Murphy and van der Vaart
(2000) (MvdV). In Section 4 we use the least favorable parametric submodel to
justify the asymptotic expansion of the profile likelihood in terms of the efficient
score and information, which allows it to be treated as an ordinary likelihood for
purposes of statistical inference. A corollary of this development is asymptotic
normality and efficiency of the maximum likelihood estimator θ̂n of θ . The final
task, undertaken in Section 5, is to prove joint asymptotic normality and efficiency
of the ML estimators. Results given for both the parametric and nonparametric
components of the model are apparently new. Our approach, which requires only
modest regularity assumptions, is via Theorem 1 of MvdV and a verification of
their hypotheses for our particular class of models.

In Section 6 we discuss other designs and further problems. The more lengthy
arguments, including derivation of the semiparametric likelihood under several
sampling designs, direct computation of the information bounds using operator



1112 N. BRESLOW, B. MCNENEY AND J. A. WELLNER

theory, verification of regularity conditions for a least favorable parametric
submodel, a statement of the infinite-dimensional Z-theorem, connections with
the formulas of RHN and a derivation of the information formula for the important
special case of logistic regression, are spelled out in complete detail in the
companion technical report Breslow, McNeney and Wellner (2000) (BMW).

2. Information bounds, Bernoulli sampling. In this section we derive
information bounds for estimation of the regression parameters assuming that the
sampling design yields i.i.d. data. Suppose that (Y,X) has density f (y|x; θ)g(x)

with respect to a dominating measure ν × µ on Y × X for some θ ∈ � ⊂ Rm and
some G ∈ G, where

G ≡ {G :G is a distribution on X with density g with respect to µ},
and let Qθ,G denote the corresponding probability measure. Both X and Y may be
multivariate. Let Y × X =⋃J

j=1 Sj for a partition {Sj } into J mutually exclusive
strata. Following LKW, we set

Qj(θ,G) = Pr[(Y,X) ∈ Sj ] and Q∗
j (x, θ) ≡ Pr[(Y, x) ∈ Sj |X = x]1S∗

j
(x),

for j = 1, . . . , J where S∗
j = {x ∈ X : for some y, (y, x) ∈ Sj }. Thus Qj(θ,G) =∫

Q∗
j (x, θ) dG(x). Note that the S∗

j ’s do not form a partition of X and may in fact
intersect in quite arbitrary ways.

Suppose that (Y1,X1), . . . , (Yn,Xn) are i.i.d. as (Y,X) with density

p(y, x; θ0, g0) = f (y|x; θ0)g0(x).(2.1)

We assume throughout that the true distribution governing the underlying data is
given by (2.1) corresponding to (θ0,G0) ∈ � × G. We also assume that

Qj(θ0,G0) > 0, j ∈ {1, . . . , J }.(2.2)

At the first phase of sampling we do not observe the complete (Yi,Xi) pairs,
but only observe stratum indicators

δij = 1{(Yi,Xi) ∈ Sj }, i = 1, . . . , n, j = 1, . . . , J.

Thus

δ i = (δi1, . . . , δiJ ) ∼ MultJ
(
1,Q = (Q1, . . . ,QJ )T

)
where Qj ≡ Qj(θ,G), j = 1, . . . , J . We will sometimes use the alternative and
completely equivalent stratum variables Si , defined by Si = s if and only if δis = 1
for i = 1, . . . , n. Now suppose that selection of subjects for complete response
and covariate ascertainment at the second phase of sampling is defined by the
indicators

Ri =
{

1, if (Yi,Xi) is fully observed,
0, if only Si is observed.
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We set Dj = {i : δij = 1, Ri = 1}, Nj = ∑n
i=1 δij = #{i : (Yi,Xi) ∈ Sj } and

nj = #(Dj), for j = 1, . . . , J , so that N = (N1, . . . ,NJ )T ∼ MultJ (n,Q).
We confine our attention in this paper to variable probability sampling (VPS):

units are inspected sequentially as they arise from the density (2.1). When
(Yi,Xi) ∈ Sj , the ith unit is selected for full observation (Ri = 1) with specified
probability pj ; thus

Pr(Ri = 1|Yi,Xi) =
J∑

j=1

pj1{(Yi,Xi) ∈ Sj } =
J∑

j=1

pjδij = pSi
.

Two variants of this plan depend on how the sampling is terminated:

VPS1: Inspect a pre-specified number n of units (Bernoulli sampling).
VPS2: Inspect units until a total of k have been selected (Negative Binomial
sampling).

As shown by Scott and Wild (1997) or Appendix 1A of BMW, VPS1 (Bernoulli)
sampling results in the following density for the observed data (R,Z) ≡
(R, (Y,X)1[R=1] + δ1[R=0]) ≡ (R, (Y,X)1[R=1] + S1[R=0]): with qj ≡ 1 − pj ,
j = 1, . . . , J ,

p(r, z; θ, g) ≡
{
f (y|x; θ)g(x)

(∑
pjδj

)}r
{

J∏
j=1

Q
δj

j

}1−r{∑
qjδj

}1−r

=
J∏

j=1

{
[f (y|x; θ)g(x)]δj rQ

δj (1−r)

j

}{∑
pjδj

}r{∑
qj δj

}1−r
.

(2.3)

This is our starting point for information calculations in the i.i.d. version of the
model. Let P be the collection of all probability distributions Pθ,G with densities
given by (2.3) for θ ∈ �, G ∈ G.

PROPOSITION 2.1 (Scores for the i.i.d. model). Suppose that (R,Z) has the
density (2.3), that (2.2) holds and that for a fixed G0 ∈ G

QG0 ≡
{
Qθ,G0 :

dQθ,G0

d(ν × µ)
(y, x) = f (y|x; θ)g0(x), θ ∈ �

}
is a regular parametric model. Suppose θ0 ∈ �0, the interior of �, and write P0
for P(θ0,G0) and E0 for expectation under P0, respectively. Then the score for θ

and the score operator for g at P0 in the VPS1 model are given by

l̇θ (r, z) = r l̇θ (y|x) + (1 − r)

J∑
j=1

δj Q̇j
(θ0,G0)/Qj (θ0,G0)

= r l̇θ (y|x) + (1 − r)E0
{
l̇θ (Y |X)

∣∣S = s
}(2.4)
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where

l̇θ (y|x; θ0) ≡ l̇θ (y|x) ≡ ∂

∂θ
log f (y|x; θ)

∣∣∣
θ=θ0

≡ ∇θ logf (y|x; θ0),

Q̇
j
(θ0,G0) ≡ ∇θQj (θ0,G0) ≡

∫
Q̇

∗
j
(x, θ0) dG0(x)

and, for h ∈ L0
2(G0) ≡ {h ∈ L2(G0) :

∫
hdG0 = 0},

l̇gh(r, z) ≡ Aθ0,G0h(r, z) ≡ Aθ0,G0h
(
r, r(y, x) + (1 − r)δ

)
= rh(x) + (1 − r)E0{h(X) | S = s}(2.5)

= rh(x) + (1 − r)δT diag(1/Q)〈Q∗, h〉
where 〈h1, h2〉 = ∫

h1h2 dG0 denotes the inner product in L2(G0).

Computation of the scores in Proposition 2.1 and inversion of the information
operator AT

θ0,G0
Aθ0,G0 , carried out explicitly in Section 2 of BMW, lead directly

to the information bounds for θ given in the following proposition. Since the
derivation is rather lengthy, however, the proof here relies instead on results of
RHN.

PROPOSITION 2.2 (Efficient scores and information bounds for the i.i.d.
model). Suppose that the assumptions of Proposition 2.1 hold at P0 and that
0 < pj < 1 for each j ∈ {1, . . . , J }. Define

ψ(y, x) ≡ l̇θ (y|x) − Q̇∗

π∗ (x)p − (Q̇ − C)M−1 Q∗

π∗ (x)

= l̇θ (y|x) − E0
{
l̇θ (Y |X)

∣∣R = 1,X = x
}

(2.6)

− E0
{
(Q̇ − C)M−1 diag(1/p)δ

∣∣R = 1,X = x
}
,

where

π∗(x) ≡
J∑

j=1

pjQ
∗
j (x, θ0) = E0(pS | X = x),(2.7)

M ≡ diag(Q/q) +
〈
Q∗, 1

π∗ Q∗T

〉
(2.8)

is always nonsingular, Q̇≡ (Q̇1, . . . , Q̇J
) is an m×J matrix, Q̇∗ ≡ (Q̇

∗
1, . . . , Q̇

∗
J
)

is an m × J matrix of functions and

C ≡
〈
Q̇∗p,

Q∗T

π∗
〉

(an m × J matrix).(2.9)

Then the efficient score function for θ is given by

l∗θ (r, z) = rψ(y, x) + (1 − r)E0{ψ(Y,X) | δ},(2.10)
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the information for θ at (θ0,G0) is

I (θ0) = E0

{
R

[
l̇θ (Y |X) − Q̇∗

π∗ (X)p

]⊗2
}

+ (Q̇ − C)M−1(Q̇ − C)T

= E0

{
R
[
l̇θ (Y |X) − E0

{
l̇θ (Y |X)

∣∣R = 1,X
}]⊗2

}
(2.11)

+ (Q̇ − C)M−1(Q̇ − C)T ,

and the efficient influence function is

l̃θ (r, z) = I (θ0)
−1l∗θ (r, z).(2.12)

REMARK 2.1. The efficient score function for θ given by (2.10) agrees with
the calculations of RHN after making the following minor correction to their
Proposition 1. According to their equations (11), (17) and (23) and the arguments
on page 421, the expressions for the optimal U(2)(φop) on pages 413 and 414
should read

U(2)(φop) = −	E

[
1 − π(W)

π(W)
φop(W)

∣∣∣	 = 1,X,V

]
+ (1 − 	)φop(W).

Then, with q = 1 − p,

ξ(δ) ≡ E0{ψ(Y,X) | δ} = (Q̇ − C)M−1 diag(1/q)δ(2.13)

plays the role of RHN’s φop(W) and satisfies the finite dimensional, integral
(linear) equation

ξ(δ) = E0
{
l̇θ − E0( l̇θ | R = 1,X)

∣∣ δ}
− E0

{
E0

[
ξ(δ)qT diag(1/p)δ

∣∣R = 1,X
] ∣∣ δ}(2.14)

that corresponds to their equation (8); see Section 3 and Appendix 1C of BMW.
For an independent recent derivation of the more general integral equation of RHN,
see Nan, Emond and Wellner (2000).

REMARK 2.2. Calculations based on the score operator (2.5) also lead easily
to an information bound for estimation of the distribution G as in Begun, Hall,
Huang and Wellner [(1983), Theorem 4.1, page 441], or Bickel, Klaassen, Ritov
and Wellner [(1993), Corollary 3, page 215]. See the statement of Theorem 4.1
and Section 4 of BMW.

REMARK 2.3. The hypothesis that 0 < pj < 1 for all j = 1, . . . , J in
Proposition 2.2 can be weakened to 0 < pj ≤ 1 for all j = 1, . . . , J . This is
important in practice since often the pj ’s in strata with relatively small Qj , and
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hence small counts Nj , will be taken to be 1. Note that the second term in (2.11)
can be rewritten as[

(Q̇ − C)diag
(√

q
)]

M̃−1[diag
(√

q
)
(Q̇ − C)T

]
(2.15)

where

M̃ ≡ diag(Q) + diag
(√

q
)〈

Q∗, 1

π∗ Q∗T

〉
diag

(√
q
)

is always invertible (even if some pj = 1, qj = 0) by virtue of (2.2). Also note
that if all pj = 1 so that all qj = 0, then the second term [as rewritten in (2.15)]
vanishes, R = 1 identically, and the first term becomes

E0

{(
l̇θ (Y |X) − E0

(
l̇θ (Y |X)

∣∣X))⊗2
}

= E0
{
l̇θ (Y |X)⊗2},(2.16)

the information for θ with complete data from (2.1).

REMARK 2.4. Any (locally regular) estimator of θ in the i.i.d. two-phase
sampling model has an influence function of the form

φ(r, z) = r

π(y, x)
χ̇(y, x) − r − π(y, x)

π(y, x)
c(s)(2.17)

for some function c : {1, . . . , J } → Rm where χ̇ is an influence function for some
estimator of θ in the complete data model Q, with true element Q0, in which all
the (Yi,Xi)’s are observed; that is

χ̇ (y, x) = I−1
11 (θ0)l̇θ (y|x) + h(y, x)

where I11(θ0) = EQ0 l̇⊗2
θ , h = (h1, . . . , hm) and hi ⊥ L0

2(G) in L2(Q0) for i =
1, . . . ,m. For a proof of (2.17), see van der Vaart [(1998), pages 379–383]. In
particular, all of the inefficient estimators considered in LKW have influence
functions of this form for some h and c.

EXAMPLE 2.1 (Logistic regression for stratified case-control studies). Sup-
pose that

f (y|x) = f (y|x; θ) =
(

eθT x

1 + eθT x

)y( 1

1 + eθT x

)1−y

,

(2.18)
y ∈ {0,1}, x ∈ Rm, θ ∈ Rm.

Then, since the logit is the canonical link function for the Bernoulli distribution
[see McCullagh and Nelder (1989), pages 28–31], l̇θ (y|x) = x[y − f (1|x)]. For
stratified case-control sampling, as discussed by Scott and Wild (1997) or Breslow
and Holubkov (1997), the partition of Y × X is formed by intersecting a partition
of X into J sets {Xj } with the sets 1{y = 0} and 1{y = 1}. This leads to 2J

strata Syj = 1{Y = y,X ∈ Xj } for y = 0,1; j = 1, . . . , J . Continuing this double
subscript system, let pyj denote the corresponding sampling probabilities for
selection at phase two.
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COROLLARY 2.1 (Information for θ , logistic regression special case). Sup-
pose that the model is given by (2.18). Then (2.11) yields

I (θ) =
J∑

j=1

∫
Xj

x xT p0jp1j f (0|x)f (1|x)

π∗
j (x)

dG(x)

+
J∑

j=1

p0jp1j

(∫
Xj

x
f (0|x)f (1|x)

π∗
j (x)

dG(x)
)⊗2

Q0j Q1j

p0j Q0j +p1j Q1j −p0j p1j G(Xj )
− ∫

Xj

f (0|x)f (1|x)
π∗

j (x)
dG(x)

(2.19)

where π∗
j (x) ≡ p0j f (0|x) + p1j f (1|x) for x ∈ Xj .

PROOF. See Appendix 1D of BMW. The same expression may be derived by
using the linearization discussed in Section 4 of Breslow and Holubkov (1997),
and additional Taylor series expansions, in a direct computation of the influence
function for the maximum likelihood estimator. �

REMARK 2.5. Consider the special case where J = 1, so that sampling
depends only on the binary outcome, and drop the j subscript in what follows.
Suppose the linear predictor contains an intercept: f (0|x) = (1 + eθ1+θT

2 x)−1.
Let f π(y|x) = pye

y(θ1+θT
2 x)/(p0 + p1e

θ1+θT
2 x)= Pr(Y = y|X = x,R = 1) denote

the logistic regression probabilities of the “biased sampling model” Q = Qθ,G

induced by the condition R = 1. Then the information matrix may be written

I (θ) = EQ[VarQ(Y |X)]
{[

1 µT

µ µ2

]
+ c

[
1 µT

µ µµT

]}
where

c = πEQ[VarQ(Y |X)](p0Q0 + p1Q1 − p0p1)

p0p1Q0Q1 − πEQ[VarQ(Y |X)](p0Q0 + p1Q1 − p0p1)
,

µ = EQ[X VarQ(Y |X)]
EQ[VarQ(Y |X)] =

∫
xf π(0|x)f π(1|x)π∗(x) dG(x)∫
f π(0|x)f π(1|x)π∗(x) dG(x)

and

µ2 = EQ[XXT VarQ(Y |X)]
EQ[VarQ(Y |X)] =

∫
xxT f π(0|x)f π(1|x)π∗(x) dG(x)∫

f π(0|x)f π(1|x)π∗(x) dG(x)
,

and where π = π(θ,G) = Pr(R = 1). Now the information for θ2 is

I (P |θ2,P ) = I22(θ) − I21(θ)I−1
11 (θ)I12(θ)

= EQ[VarQ(Y |X)](µ2 − µµT )

= EQ

{(
X − EQ[X VarQ(Y |X)]

EQ[VarQ(Y |X)]
)⊗2

VarQ(Y |X)

}
.
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This expression, which agrees with formulas (4) and (9) of Breslow, Robins
and Wellner (2000), is precisely the information about θ2 obtained by fitting an
ordinary logistic regression model to the second phase data alone. It confirms
once again that, for simple case-control sampling, “prospective” logistic regression
analyis of the “retrospectively” sampled data yields efficient estimates of the odds
ratio parameters in logistic regression models [Prentice and Pyke (1979)].

PROOF OF PROPOSITION 2.2. This follows from Proposition 1 of RHN after
the corrections noted in Remark 2.1. We rewrite (2.14) [or equation (4.2) of Nan,
Emond and Wellner (2000)] as a matrix equation and express the solution in terms
of the inverse of a certain matrix. First,

E0
{
l̇θ | δ}= Q̇ diag(1/Q)δ(2.20)

and

E0
{
E0( l̇θ | R = 1,X)

∣∣ δ}= C diag(1/Q)δ(2.21)

where C is as defined in (2.9). Thus the first term on the right-hand side of (2.14)
is

E0
{
l̇θ − E0( l̇θ | R = 1,X)

∣∣ δ}= (Q̇ − C)diag(1/Q)δ.(2.22)

Furthermore, writing ξ(δ)=∑J
j=1 ξ

j
δj = ξδ for an m×J matrix ξ = (ξ

1
, . . . , ξ

J
),

we can rewrite the second term on the right-hand side of (2.14) as

E0
{
E0

[
ξ(δ)qT diag(1/p)δ | R = 1,X

] ∣∣ δ}= ξ diag(q)D diag(1/Q)δ(2.23)

where D = 〈Q∗, 1
π∗ Q∗T 〉. Substitution of (2.22) and (2.23) into (2.14) and

rearranging yields

ξ
(
I + diag(q)D diag(1/Q)

)= (Q̇ − C)diag(1/Q),(2.24)

or, with M ≡ diag(Q/q) + D as in (2.8),

ξ diag(q)M = (Q̇ − C).(2.25)

Note that

aT Ma =
J∑

j=1

(Qj/qj )a
2
j + ∥∥aT Q∗/

√
π∗∥∥2

> 0

for all a �= 0. Therefore the matrix M is nonsingular, M−1 exists and

ξ = (Q̇ − C)M−1 diag(1/q).(2.26)

Using (2.26) in the (corrected) formula for U(2)(φop) in Remark 2.1, together with
U(1) in RHN’s Proposition 1, yields the claimed efficient score given in (2.10). �
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3. A least favorable parametric submodel. An alternative approach to un-
derstanding of the efficient scores and influence function for θ in the semiparamet-
ric model (2.3) is to determine a least favorable submodel for G as in MvdV. We
initially determine a candidate least favorable submodel by partial maximization
of the expected log-likelihood, assuming that G is discrete. Subsequent calcula-
tions show that our submodel satisfies MvdV’s key conditions for a least favorable
parametric submodel; we give regularity conditions under which the remaining
hypotheses of their Theorem 1 hold. This provides theoretical confirmation for
LKW’s simulation studies, which showed that inferences based on the observed
information matrix of the profile likelihood function had appropriate frequency
properties.

Suppose then that X takes K values {xk} with probabilities gk ,
∑

k gk = 1.
Define

πj(Q) ≡ 1 − Qj(1 − pj )

Q
for Q ∈ (0,1],(3.1)

where Qj = Qj(θ,G) is defined in Section 2, and note that πj (Qj ) = pj . With
E ≡ Eθ,G denoting expectation with respect to (θ,G), we also define

g∗
k ≡ g∗

k (θ,G) ≡ E(R1{X=xk}) =
J∑

j=1

pjQ
∗
j (xk; θ)gk.

For t in a neighborhood of θ and H ranging over the discrete distributions for X,
our goal is to find the distribution

Gt ≡ Gt(θ,G) ≡ arg max
H

E[logp(R,Z; t,H)]

that maximizes the expected log-likelihood �(t,H) ≡ �(t,H ; θ,G) given by

�(t,H) ≡ E[R log f (Y |X; t)] + E[R log h(X)]
+ E[(1 − R) logQS(t,H)].(3.2)

Towards this end we fix t and maximize (3.2) as a function of H = {hk} subject to∑
k hk = 1. Following the arguments in Scott and Wild (1997) and LKW, introduce

the Lagrange multiplier λ for the side condition (
∑

k hk − 1) = 0 and jointly solve
the K + 1 equations

∂[�(t,H) + λ(
∑

h − 1)]
∂hk

= g∗
k

hk

+∑
j

(1 − pj )Qj

Q∗
j (xk, t)∑

� Q∗
j (x�, t)h�

+ λ = 0(3.3)

for k = 1, . . . ,K , and ∑
k

hk − 1 = 0.
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Multiplying (3.3) by hk and summing over k gives ER + (1 − ER) + λ = 0 or
λ = −1. This allows (3.3) to be reexpressed as

hk = g∗
k∑

j πj [Qj(t,H)]Q∗
j (xk, t)

.(3.4)

Substituting for hk in (3.2) using (3.4) yields the profile expected log-likelihood

E log p(R,Z; t,Gt) = E[R logf (Y |X; t)]
−∑

k

gk log
∑
j

πj [Qj(t,Gt )]Q∗
j (xk, t)

+∑
j

(1 − pj )Qj log Qj(t,Gt ) + constant.

(3.5)

This depends on Gt = {gt (xk)} only through the values of

Q
†
j (t) ≡ Qj(t,Gt ) =∑

k

Q∗
j (xk, t)gt (xk).(3.6)

By substitution of gt (xk) = hk from (3.4) into (3.6), the Q
†
j (t) are determined for

each t from the equations

Q
†
j (t) =∑

k

Q∗
j (xk; t)g∗

k∑
� π�[Q†

�(t)]Q∗
�(xk; t)

, j = 1, . . . , J.(3.7)

It follows that Gt has point masses gt (xk) that arise by substitution of Q
†
j (t) for

the Qj(t,Gt ) in (3.4). Thus for x = xk, k = 1, . . . ,K ,

gt (x) =
∑J

j=1 pjQ
∗
j (x, θ)∑J

j=1 πj [Q†
j (t)]Q∗

j (x, t)
g(x).(3.8)

Generalizing (3.7) and (3.8), suppose now that Gt ≡ Gt(θ,G) has density gt

with respect to G given by

gt (x) ≡ dGt

dG
(x) =

∑J
j=1 pjQ

∗
j (x, θ)∑J

j=1 πj [Q†
j (t)]Q∗

j (x, t)
(3.9)

where the Q
†
j (t) ≡ Qj(t,Gt ) satisfy

Q
†
j (t) =

∫ ∑J
�=1 p�Q

∗
�(x, θ)∑J

�=1 π�[Q†
�(t)]Q∗

�(x, t)
Q∗

j (x, t) dG(x), j = 1, . . . , J.(3.10)

[In the next section we will also use the notation Q
†
j (t, θ,G) = Qj(t,Gt (θ,G)).]

The log-likelihood for one observation for our proposed least favorable submodel
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is given by

l(t, θ,G)(r, z) ≡ l
(
t,Gt (θ,G)

)
(r, z)

= r

(
log f (y|x; t) + log

dGt

dG
(x, θ,G)

)

+ (1 − r)

J∑
j=1

δj log Q
†
j (t).

(3.11)

Since the Qj themselves satisfy (3.10) when t = θ , it follows that Gθ = G and
thus that the submodel passes through (θ,G) as required by MvdV’s equation (8).
To calculate �̇(θ, θ,G), the t derivative of (3.11), let �·j ≡ ∂Q

†
j (t)/∂t evaluated

at t = θ . The corresponding m × J matrix � has elements �kj , rows �k· and
columns �·j . Differentiating both sides of (3.10) with respect to t shows that, for
each k, the 1 × J gradient vector �k· solves a system of linear equations. In fact,
with M and C as defined in equations (2.8) and (2.9), it is given by

�k· = (Q̇ − C)k·M−1 diag(Q/q)(3.12)

where Q̇ − C has components

(Q̇ − C)kj = Qj

(
E
[
l̇θk

(Y |X)
∣∣S = j

]
− E

{
E
[
l̇θk

(Y |X)
∣∣R = 1,X

] ∣∣S = j
})

.
(3.13)

One interpretation of equations (3.12) and (3.13) is that the finite dimensional
random variable ξ(S) = �·S/QS satisfies the linear equation [cf. equation (2.14)]

ξ(S) = E
[
l̇θ − E(l̇θ | R = 1,X)

∣∣S]− E
{
E
[
qSp−1

S ξ(S)
∣∣R = 1,X

] ∣∣S}.(3.14)

From (3.9) we have

∇t loggt (x)|t=θ = −
∑

j π̇j�·jQ∗
j (x, θ) +∑

j pj Q̇
∗·j (x, θ)

π∗(x)

= −E

[
qS�·S
pSQS

∣∣∣R = 1,X = x

]
− E

[
l̇θ | R = 1,X = x

]
,

(3.15)

where π̇j ≡ ∂πj/∂Q|Q=Qj
= (1 − pj )/Qj . Similarly,

∇t logQj(θ,Gt )|t=θ = − 1

Qj

∑
�

π̇��·�
〈
Q∗

�

π∗ ,Q∗
j

〉
− 1

Qj

∑
�

p�

〈Q̇∗·�
π∗ ,Q∗

j

〉

= −E

{
E

[
qS�·S
pSQS

+ l̇θ (Y |X)
∣∣∣R = 1,X

] ∣∣∣S = j

}
.

(3.16)

Combining equations (3.11)–(3.16), we find

�̇(θ, θ,G)(r, z) = rψ(y, x) + (1 − r)E[ψ(Y,X) | S = s](3.17)
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where

ψ(y, x) = l̇θ (y|x) − E
[
l̇θ | R = 1,X = x

]− E

[
qS�·S
pSQS

∣∣∣R = 1,X = x

]
.(3.18)

In view of (3.14),

E(ψ|S) = ξ(S) = �·S
QS

= �diag(1/Q)δ = (Q̇ − C)M−1 diag(1/q)δ.

Consequently, we see that

�̇(θ, θ,G)(r, z) = l∗θ (r, z) = rψ(y, x) + (1 − r)ξ(s)(3.19)

is the efficient score given by (2.10). Equation (3.19), corresponding to MvdV’s
equation (9), is the key condition for a least favorable submodel.

4. Asymptotic theory via the least favorable submodel. The main goal here
is to give hypotheses which imply the conditions, and hence also the conclusions,
of Theorem 1 of MvdV. Then we will prove a theorem giving joint asymptotic
normality and efficiency of the estimators (θ̂n, Ĝn).

The first issue is consistency. Although the models we are considering are quite
closely related to those treated by van der Vaart and Wellner (1992) (they are
exactly the same if θ is known), the sufficient conditions for consistency given
there fail in the present situation. In particular, (3.3) on page 138 of van der
Vaart and Wellner (1992) fails in our current setting. However, a slightly different
approach yields consistency in our case. van der Vaart and Wellner (2001) have
established consistency of (θ̂n, Ĝn). For completeness we give a brief statement of
their results.

A1. pj > 0 for j = 1, . . . , J .
A2. The pair of parameters (θ,G) is identifiable in the model

Q = {
Qθ,G :dQθ,G/d(ν × µ) = q(·; θ,G), θ ∈ �, G ∈ G

}
,

where q(y, x; θ,G) = f (y|x; θ)g(x) as in (2.1).
A3. Qj(θ0,G0) ∈ (0,1) for j = 1, . . . , J ; this holds without loss of generality.
C1. X is a semimetric space that has a completion that is compact and contains

X as a Borel set.
C2. The maps (θ, x) �→ Q∗

j (x, θ) are uniformly continuous and θ �→ f (y|x; θ)

are upper semicontinuous for all (y, x) ∈ Y × X.
C3. � is a compact metric space.
C4. P0(supθ∈� log(f (Y |X; θ)/f (Y |X; θ0)) < ∞.

PROPOSITION 4.1 [Consistency of (θ̂n, Ĝn)]. Suppose that A1–A3 and
C1–C4 hold. Then θ̂n →a.s. θ0 and suph∈H |(Ĝn − G0)h| →a.s. 0 for every G

C-class H that is bounded in L1(G0).
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The proof of Proposition 4.1 is given in van der Vaart and Wellner (2001).
With consistency established, we now turn to a study of the asymptotic

distributions of the profile likelihood and the maximum likelihood estimators for
the special case of VPS1 (Bernoulli) sampling. We will rely on the results of MvdV
[see also Murphy and van der Vaart (1997), (1999)]. We have already verified the
key condition (9) of Theorem 1 of MvdV in (3.19) of the previous section.

Now let the log-profile likelihood �P
n (θ) be defined by

�P
n (θ) = logLn

(
θ, Ĝn(·, θ)

)
where Ĝn(·, θ) is the maximizer of log Ln(θ,G) over distributions G concentrated
at the observed Xi ’s as in LKW. Thus for a Borel subset A of X

Ĝn(A, θ) = Pn

(
1A(X)

R

ŝn(X, Q̂
n
(θ), θ)

)
(4.1)

where, with Nj = nPn1[S=j ] and nj = nPn(R1[S=j ]) as defined in Section 2,

ŝn(x,Q, θ) =
J∑

j=1

(
1 − Nj − nj

nQj

)
Q∗

j (x, θ),(4.2)

and Q̂
n

= Q̂
n
(θ) satisfies

Q̂
n
(θ) = Pn

(
R

ŝn(·, Q̂n
(θ), θ)

Q∗(·, θ)

)
.(4.3)

Then θ̂n = arg maxθ �P
n (θ), and Ĝn = Ĝn(·, θ̂n).

In order to establish the remaining conditions of MvdV’s Theorem 1 we assume
the following:

L0. Assumptions A1–A3 and C1–C4 hold.
L1. The maps θ �→ {l̇θ (y|x) :y ∈ Y, x ∈ X}, θ �→ Q∗(·, θ) and θ �→ Q̇∗(·, θ) are

all Lipschitz in the sense that, for all t, s in a neighborhood of θ0 and all
(y, x) ∈ Y × X: ∣∣l̇t (y|x) − l̇s (y|x)

∣∣≤ M(y,x)|t − s|
where

P0M
2 =

∫
M2(y, x)f (y|x, θ0) dν(y) dG0(x) < ∞;

|Q∗(x, t) − Q∗(x, s)| ≤ M(x)|t − s|
where

G0|M|2 =
∫

M2(x) dG0(x) < ∞;
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and ∣∣Q̇∗(x, t) − Q̇∗(x, s)
∣∣≤ Ṁ(x)|t − s|

where

G0|Ṁ |2 =
∫

Ṁ2(x) dG0(x) < ∞.

L2. For some δ0 > 0 the collections of functions{
r l̈t,k,l(y|x) : |t − θ0| ≤ δ0, k, l = 1, . . . ,m

}
and {

rQ̈∗
j,k,l(x, t) : |t − θ0| ≤ δ0, j = 1, . . . , J, k, l = 1, . . . ,m

}
are P0-Glivenko–Cantelli classes of functions.

L3. There is no m-vector a such that aT l̇θ (Y |X) is constant in Y for G-a.e. X.
[Equivalently, the information matrix for θ with no missing data given
in (2.16) is nonsingular.]

THEOREM 4.1. Suppose that L0–L3 hold. Then for any random sequence
θ̃n →p θ0 it follows that

�P
n (θ̃n) = �P

n (θ0) + (θ̃n − θ0)
T

n∑
i=1

l∗θ (Ri,Zi) − 1
2n(θ̃n − θ0)

T I (θ0)(θ̃n − θ0)

+ op

(√
n‖θ̃n − θ0‖ + 1

)2(4.4)

where l∗θ is given by (2.10) and I (θ0) is given by (2.11).

As shown by MvdV in their Corollaries 1 and 2, the expansion (4.4) together
with invertibility of I (θ0) implies θ̂n is asymptotically linear with efficient
influence function l̃θ = I (θ0)

−1l∗θ given by (2.12),

√
n(θ̂n − θ0) = 1√

n

n∑
i=1

I (θ0)
−1l∗θ (Ri,Zi) + op(1).(4.5)

Moreover, the expansion

�P
n (θ̃n) = �P

n (θ̂n) + (θ̃n − θ̂n)
T

n∑
i=1

l∗θ (Ri,Zi) − 1
2n(θ̃n − θ̂n)

T I (θ0)(θ̃n − θ̂n)

+ op

(√
n‖θ̃n − θ0‖ + 1

)2
,

(4.6)

also holds and the likelihood ratio statistic based on the profile likelihood is
asymptotically χ2

m:

2
{
�P
n (θ̂n) − �P

n (θ0)
}→d χ2

m.(4.7)
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PROOF OF THEOREM 4.1. We begin by verifying conditions (8)–(10) of
MvdV. Condition (8) of MvdV is indeed satisfied by the submodel (t,Gt (θ,G))

given by (3.9); (t,Gt (θ,G)) passes through (θ,G) at t = θ . We have already seen
in (3.19) that condition (9) of MvdV holds. Condition (10) of MvdV requires that
Ĝn(θ), the maximizer of the log-likelihood over G for fixed θ , satisfies

Ĝn(θ̃n) →p G0(4.8)

for every random sequence θ̃n with θ̃n →p θ0. This holds by virtue of the
arguments in van der Vaart and Wellner [(2001), pages 281 and 282].

We will postpone verification of condition (11) of MvdV; in fact, verification of
this condition will occupy most of our proof.

To verify the Donsker and Glivenko–Cantelli hypotheses of Theorem 1 of
MvdV, we need first to compute the functions l̇t (t, θ,G) and l̈t (t, θ,G). The
log-likelihood for one observation for the least favorable submodel is given by
l(t, θ,G) in (3.11) where Q

†
j (t) ≡ Qj(t,Gt (θ,G)), j = 1, . . . , J . We need to

calculate the first and second derivatives of this function with respect to t . To do
this, we first calculate the first and second derivatives of log(dGt/dG)

∇t log
(

dGt

dG
(x; θ,G)

)

= −∑J
j=1 ∇t{(1 − (Qj (1 − pj )/Q

†
j (t)))Q

∗
j (x, t)}∑J

j=1(1 − (Qj (1 − pj )/Q
†
j (t)))Q

∗
j (x, t)

= −
∑J

j=1(1 − (Qj (1 − pj )/Q
†
j (t)))Q̇

∗
j (x, t)∑J

j=1(1 − (Qj (1 − pj )/Q
†
j (t)))Q

∗
j (x, t)

+
∑J

j=1 Q∗
j (x, t)(Qj (1 − pj )/[Q†

j (t)]2)∇tQ
†
j (t)∑J

j=1(1 − (Qj (1 − pj )/Q
†
j (t)))Q

∗
j (x, t)

.

(4.9)

Here the derivative vector ∇tQ
†
j (t) satisfies a linear equation which can be derived

by differentiating across (3.10); see (3.12) and (A.3). Note that this is basically a
ratio of a (family of) linear combination(s) of the functions Q∗

j (·, t), Q̇∗
j (·, t) and

the family of functions st given by

st (x) ≡
J∑

j=1

(
1 − Qj(1 − pj )

Q
†
j (t)

)
Q∗

j (x, t).(4.10)

We also define

s0(x,Q, θ) =
J∑

j=1

(
1 − Q0

j (1 − pj )

Qj

)
Q∗

j (x, θ)(4.11)

where Q0
j = Qj(θ0,G0). Note that sθ0(x; θ0,G0) = π∗(x) = s0(x,Q0, θ0) for all

x ∈ X with π∗ as defined in (2.7). Thus we also write (in a slight abuse of notation)
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s0 instead of π∗. Calculation of the second derivatives yields

∇t

(
∇t log

(
dGt

dG
(x; θ,G)

))
=
{
∇t log

(
dGt

dG
(x; θ,G)

)}⊗2

−
J∑

j=1

{(
1 − Qj(1 − pj )

Q
†
j (t)

)
Q̈∗

j (x, t)

+ Qj(1 − pj )

[Q†
j (t)]2

(
Q̇∗

j (x, t)
)⊗2

+ Q̇∗
j (x, t)

Qj (1 − pj )

[Q†
j (t)]2

∇tQ
†
j (t)

− 2Q∗
j (x, t)

Qj (1 − pj )

[Q†
j (t)]3

(∇tQ
†
j (t)

)⊗2

+ Q∗
j (x, t)

Qj (1 − pj )

[Q†
j (t)]2

Q̈
†
j (t)

}/
st (x)

(4.12)

where st is defined in (4.10). Thus we find that

l̇(t, θ,G)(r, z) ≡ ∇t l(t, θ,G)(r, z)

= r

(
l̇t (y|x) + ∇t log

(
dGt

dG
(x; θ,G)

))
(4.13)

+ (1 − r)

J∑
j=1

δj

∇tQj (t,Gt )

Qj (t,Gt )

and

l̈(t, θ,G)(r, z) ≡ ∇t l̇(t, θ,G)(r, z)(4.14)

= r

(
l̈t (y|x) + ∇t

(
∇t log

(
dGt

dG
(x; θ,G)

)))
(4.15)

+ (1 − r)

J∑
j=1

δj

{Q̈
†
j (t)

Q
†
j (t)

− [Q̇†
j (t)]2

[Q†
j (t)]2

}
.

We now show that there is a neighborhood V of (θ0, θ0,G0) such that the classes
of functions {

l̇k(t, θ,G) : (t, θ,G) ∈ V, k = 1, . . . ,m
}

with l̇(t, θ,G) as given by (4.13) and (4.9) are P0-Donsker with square integrable
envelope function. First note that by L1 the collections{

r l̇k,t : (t, θ,G) ∈ V, k = 1, . . . ,m
}
,{

rQ∗
j (·, t) : (t, θ,G) ∈ V, j = 1, . . . , J

}
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and {
rQ̇∗

jk(·, t) : (t, θ,G) ∈ V, j = 1, . . . , J, k = 1, . . . ,m
}

are P0-Donsker by virtue of the Jain–Marcus CLT [see Example 2.11.13, page 213,
van der Vaart and Wellner (1996)]. Then, since products of these functions
with bounded families of constants are also P0-Donsker by an application of
Corollary 2.10.13, page 193, van der Vaart and Wellner (1996), the individual
terms appearing in the numerator of (4.9) are also P0-Donsker, and hence also
their sum by application of Example 2.10.7, page 192, van der Vaart and Wellner
(1996). Then, since s0(x) is bounded uniformly away from zero by A1 and∑

j Q∗
j (x, θ0) = 1, st (x) is also bounded away from zero uniformly in x and t in

a sufficiently small neighborhood of θ0. Hence the ratio appearing in (4.9) is also
P0-Donsker by virtue of Example 2.10.9, page 192, van der Vaart and Wellner
(1996). Furthermore, the neighborhood V of (θ0, θ0,G0) can be chosen so that the
class of functions {

l̈(t, θ,G) : (t, θ,G) ∈ V
}

with l̈(t, θ,G) given by (4.15) and (4.12) is P0-Glivenko–Cantelli with integrable
envelope function. This follows from L2 [to handle the terms involving l̈t (y|x) and
Q̈∗

j,k,l(x, t)], Lemma 2.10.14, page 194, van der Vaart and Wellner (1996), and the
Glivenko–Cantelli preservation theorem of van der Vaart and Wellner (2000) to
handle the remaining terms.

We now turn our attention to verification of the remaining condition (11) of
MvdV. The discussion leading to MvdV’s (16) applies so that, in place of their
condition (11), it suffices to verify that for convergent sequences θ̃n

P0�̇
(
θ0, θ0, Ĝn(θ̃n)

)= op(‖θ̃n − θ0‖ + n−1/2).(4.16)

As argued by MvdV, page 458, (4.16) can be shown to hold if their display (18)
holds; in our context their display (18) becomes

‖Ĝn(θ̃n) − G0‖H = Op(‖θ̃n − θ0‖) + Op(n−1/2)(4.17)

where H is a universal-Donsker class of real-valued (measurable) functions on X.
Once again the key observation comes from LKW: to find Ĝn one does not need
to estimate all of G, but just the quantities Qj(θ,G) which, for fixed θ , are
determined by equations (3.10). We view this system of equations as processes
in θ in a neighborhood of θ0 and show that the convergence of the corresponding
Q̂j (θ) processes is uniform in θ . Towards this end, consider

�n(Q)(θ) ≡ Q − Pn

(
R

ŝn(·,Q, θ)
Q∗(·, θ)

)
and

�(Q)(θ) ≡ Q − P0

(
R

s0(·,Q, θ)
Q∗(·, θ)

)
;
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here ŝn is given by (4.2) and s0(·,Q, θ) is given by (4.11). Note that �n(Q̂n
(θ))(θ)

= 0 defines Q̂
n
(θ), while �(Q

0
(θ))(θ) = 0 defines Q

0
(θ). Also note that

Q
0
(θ0) = Q0 = Q(θ0,G0).

PROPOSITION 4.2. Suppose that L0–L3 hold. Then for some (sufficiently
small) closed ball B(θ0) in Rm centered at θ0,√

n
(
Q̂

n
(θ) − Q0(θ)

)⇒ Q(θ) in C[B(θ0)]J(4.18)

where Q(θ) is a zero-mean Gaussian process.

Once we have proved (4.18), the next step is to show that (4.17) holds for any
random sequence θ̃n →p θ0. In other words, we want to show that∥∥√n

(
Ĝn(h; θ̃n) − G0(h)

)∥∥
H = Op(1) + √

n(θ̃n − θ0).(4.19)

To this end, we first abbreviate notation slightly: ŝn(x, Q̂
n
(θ̃n), θ̃n) ≡ ŝn(x, θ̃n).

Then we have
√

n
(
Ĝn(h; θ̃n) − G0(h)

)= √
n

(
Pn

(
R

ŝn(·, θ̃n)
h

)
− P0

(
R

s0
h

))

= √
n

(
Pn

(
R

s0
h

)
− P0

(
R

s0
h

))

+ √
nPn

(
Rh

(
1

ŝn(·, θ̃n)
− 1

s0

))

= Gn

(
R

s0
h

)
− Pn

(
Rh

√
n(̂sn(·, θ̃n) − s0)

ŝn(·, θ̃n)s0

)
≡ In(h) − IIn(h).

(4.20)

Here Gn ≡ √
n(Pn −P0) is the empirical process and hence ‖In‖H = Op(1) easily

via standard theory. To understand the term IIn(h), we write

IIn(h) = −Pn

(
Rh

s0ŝn(·, θ̃n)

√
n

×
J∑

j=1

(
Nj − nj

n

1

Q̂j (θ̃n)
Q∗

j (·, θ̃n) − Q0
j (1 − pj )

Q0
j

Q∗
j (·, θ0)

))

+ Pn

(
Rh

s0ŝn(·, θ̃n)

J∑
j=1

√
n
(
Q∗

j (·, θ̃n) − Q∗
j (·, θ0)

))

= −
J∑

j=1

√
n

(
Nj − nj

n
− Q0

j (1 − pj )

)
1

Q̂j (θ̃n)
Pn

(
Rh

s0ŝn(·, θ̃n)
Q∗

j (·, θ̃n)

)
(4.21)
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+
J∑

j=1

√
n

{
Q̂j (θ̃n) − Qj(θ̃n)

Q̂j (θ̃n)Q
0
j

}
Q0

j (1 − pj )Pn

(
Rh

s0ŝn(·, θ̃n)
Q∗

j (·, θ̃n)

)

+
J∑

j=1

√
n

{Qj(θ̃n) − Q0
j

Q̂j (θ̃n)Q
0
j

}
Q0

j (1 − pj )Pn

(
Rh

s0ŝn(·, θ̃n)
Q∗

j (·, θ̃n)

)

+ Pn

(
Rh

s0ŝn(·, θ̃n)

) J∑
j=1

pjQ̇
∗
j (·, θ�

n)
√

n(θ̃n − θ0)

≡ An(h) + Bn(h) + Cn(h) + Dn(h).

Here Qj(θ̃n) ≡ Qj0(θ̃n) satisfies �(Q 0(θ̃n))(θ̃n) = 0. Now ‖An‖H = Op(1) by√
n((Nj − nj )/n − Q0

j (1 − pj )) = Op(1), consistency of Ĝn, and uniform (in θ )

convergence of Q̂
n
(θ) in a neighborhood of θ0; ‖Bn‖H = Op(1) by Proposi-

tion 4.2 and consistency of Ĝn; ‖Cn‖H = Op(
√

n(θ̃n − θ0)) by differentiability
of the maps θ �→ Q0j (θ) and consistency of Ĝn; and ‖Dn‖H = Op(

√
n(θ̃n − θ0))

easily by consistency of Ĝn.
But in view of the differentiability of Q†(θ0, θ,G0) ≡ Q

0
(θ) with respect to θ

proved in (A.2) [using the definition of Q
†
j (t, θ,G) following (3.10)], we have, by

the mean-value theorem,√
n
(
Q0(θ̃n) − Q0(θ0)

)= ∇θQ 0(θ)
∣∣
θ=θ

�
n
· √n(θ̃n − θ0),

and thus we see, by combining In and IIn together with a bit more Glivenko–
Cantelli, that (4.19) holds. �

PROOF OF NONSINGULARITY OF I (θ0) AND (4.5)–(4.7). We now prove
that I (θ0) is nonsingular and hence, via Corollaries 1 and 2 of MvdV, that
(4.5)–(4.7) hold. Recall the formula for I (θ0) given in (2.11),

I (θ0) = E0

{
R

(
l̇θ (Y |X) − Q̇∗

π∗ (X)p

)⊗2
}

+ (Q̇ − C)M−1(Q̇ − C)T .(4.22)

It is clear from the form of the two terms in (4.22) that each is nonnegative definite.
Thus, to be invertible, at least one term must be positive definite.

In the first term in (4.22) we have

Q̇∗(X)p =
J∑

j=1

pjQ̇
∗
j
(X) = E0

(
R l̇θ (Y |X)

∣∣X)
since

Q̇
∗
j
(X) = E0

(
δj l̇θ (Y |X)

∣∣X)
and we recall that

Q̇∗

π∗ (X)p = E0( l̇θ | X,R = 1).
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Consider quadratic forms of this matrix with an arbitrary m-vector a. We have

aT E0

{
R

(
l̇θ (Y |X) − E0(R l̇θ (Y |X) | X)

π∗(X)

)⊗2
}
a

= E0

{
J∑

j=1

pjδjE0

((
aT l̇θ (Y |X) − E0(RaT l̇θ (Y |X) | X)

π∗(X)

)2 ∣∣∣∣ δ)
}

≥ min
j

pjE0

{(
aT l̇θ (Y |X) − E0(RaT l̇θ (Y |X) | X)

π∗(X)

)2
}

which is 0 if and only if

aT l̇θ (Y |X) = E0(RaT l̇θ (Y |X) | X)

π∗(X)
, P0-a.s.

This would require aT l̇θ (Y |X) to be constant in Y in which case the equality
follows from the fact that E0(R | X) = π∗(X). Thus L3 implies that the first term
in (4.22) is positive definite, and hence I (θ0) is invertible. �

PROOF OF PROPOSITION 4.2. We will apply van der Vaart’s Z-theorem;
see van der Vaart (1995) and van der Vaart and Wellner [(1996), Theorem 3.3.1,
page 310]. To this end, note that

Zn(Q)(θ) ≡ √
n
(
�n(Q)(θ) − �(Q)(θ)

)
= −Gn

(
R

s0(·,Q, θ)
Q∗(·, θ)

)

− Pn

(
R

∑J
j=1

√
n[(Nj −nj )/n−Q0

j (1 −pj )]Q∗
j (·, θ)/Qj

ŝn(·,Q, θ)s0(·,Q, θ)
Q∗(·, θ)

)

= −Gn

(
R

s0(·,Q, θ)
Q∗(·, θ)

)

−
J∑

j=1

√
n

(
Nj − nj

n
− Q0

j (1 − pj )

)

× Pn

( RQ∗
j (·, θ)/Qj

ŝn(·,Q, θ)s0(·,Q, θ)
Q∗(·, θ)

)
.

Now it follows easily from L1 and the Jain–Marcus CLT that

Zn

(
Q0(θ)

)
(θ) ⇒ Z0(θ)

as a (vector of ) process(es) indexed by θ ∈ B(θ0), and that

sup
Q∈Lip[B(θ0)]J : ‖Q(θ)−Q0(θ)‖≤δn

∥∥Zn(Q) − Zn(Q 0)
∥∥
B(θ0)

= op(1)
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for every sequence δn → 0. Furthermore,

∇Q�(Q) = I + P0

(
R

s0(·,Q, θ)2 Q∗(·, θ)∇Qs0(·,Q, θ)

)
= I + P0

(
R

s0(·,Q, θ)2 Q∗(·, θ)diag(Q0
j (1 − pj )/Q

2
j )Q

∗(·, θ)T
)

is always nonsingular, and hence via the chain rule we see that the derivative
map �̇ : Lip(B(θ0))

J �→ Lip(B(θ0))
J exists and has a bounded inverse at Q0 =

{Q
0
(θ) : θ ∈ B(θ0)}. �

5. Joint asymptotic normality and efficiency of (θ̂n, Ĝn), Bernoulli sam-
pling. We now turn to a study of the joint asymptotic distributions of the
maximum likelihood estimators (MLE) (θ̂n, Ĝn) for the special case of VPS1
(Bernoulli) sampling. The density for the data under VPS1 given in (2.3) is our
starting point. We will use the infinite-dimensional Z-theorem given in van der
Vaart (1995), van der Vaart and Wellner [(1996), pages 314–319], and van der
Vaart [(1998), Section 25.12], primarily as a way to organize the statement of the
theorem. In fact the proof will use the development of Section 4.

Our first job is to calculate the score functions �n [using the notation of van der
Vaart (1998)]. It follows from (2.3) that

logLn(θ,G)=
J∑

j=1

{∑
i∈Dj

[
logf (Yi|Xi; θ)+ log g(Xi)

]+ (Nj −nj ) log Qj(θ,G)

}

=
n∑

i=1

{
Ri

(
logf (Yi |Xi; θ) + log g(Xi)

)
(5.1)

+ (1 − Ri)

J∑
j=1

δij logQj(θ,G)

}
.

With the notation as in Proposition 2.1, this yields

�n1(θ,G) ≡ 1

n
l̇nθ (θ,G) ≡ 1

n
∇θ logLn(θ,G)

= 1

n

n∑
i=1

{
Ri l̇θ (Yi |Xi) + (1 − Ri)

J∑
j=1

δij

Q̇j (θ,G)

Qj (θ,G)

}

= Pn

(
R l̇θ (Y |X) + (1 − R)

Q̇S(θ,G)

QS(θ,G)

)
,

so that the MLE (θ̂ , Ĝ) of (θ,G) satisfies �n1(θ̂ , Ĝ) = 0. Now let Ĝ be the MLE
of G and, for any bounded real-valued function h on X, let

dĜt ≡
(

1 + t (h −
∫

hdĜ)

)
dĜ.
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Then, with

�n2(θ,G)(h) = PnAθ,Gh − Pθ,GAθ,Gh,(5.2)

where Aθ,G is given by (2.5), we find that the MLE (θ̂ , Ĝ) of (θ,G) also satisfies

0 = 1

n
l̇t (θ̂ , Ĝ)

= 1

n

n∑
i=1

{
Ri

(
h(Xi) −

∫
hdĜ

)

+ (1 − Ri)

J∑
j=1

δij

∫
Q∗

j (x, θ̂)(h(x) − ∫
hdĜ) dĜ

Qj (θ̂, Ĝ)

}

= PnAθ̂,Ĝh − Pθ̂,ĜAθ̂,Ĝh = �n2(θ̂ , Ĝ)(h).

(5.3)

The population version of the score for θ is

�1(θ,G) = P0
(

l̇θ (θ,G)
)= P0

(
R l̇θ (Y |X) + (1 − R)

J∑
j=1

δj

Q̇j (θ,G)

Qj (θ,G)

)

= P0
(
R l̇θ (Y |X) + Q̇(θ,G)diag(Q−1)δ(1 − R)

)
.

(5.4)

Similarly, the population version of the score for G is given by

�2(θ,G)(h) = P0Aθ,Gh − Pθ,GAθ,Gh.(5.5)

Under the hypotheses of the following theorem, � = (�1,�2) is differentiable in
a suitably strong sense with derivative �̇ : (Rm × �∞(H)) → (Rm × �∞(H)) at
(θ0,G0) ∈ � × G given by

�̇

(
θ − θ0
G − G0

)
=
(

�̇11 �̇12

�̇21 �̇22

)(
θ − θ0
G − G0

)
,

where

�̇11 : Rm → Rm

is given by �̇11(θ − θ0) = −I11(θ0)(θ − θ0),

�̇12 : �∞(H) → Rm

is given by �̇12(G − G0) = −
∫

AT
0 l̇θ d(G − G0),

(5.6)
�̇21 : Rm → �∞(H)

is given by �̇21(θ − θ0)h = −(θ − θ0)
T
∫

A0hl̇θ dP0,

�̇22 : �∞(H) → �∞(H)

is given by �̇22(G − G0)h = −
∫

AT
0 A0hd(G − G0).
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Here

I11(θ0) = P0
(
l̇⊗2
θ (R,Z; θ0,G0)

)
= E0

{
π(Y,X)l̇⊗2

θ (Y |X)
}+ Q̇ diag(q/Q0)Q̇T ,

(5.7)

with l̇θ (R,Z; θ0,G0) given by (2.4), is the information for θ when G is known.
It is shown in Section 2 of BMW that the information operator AT

0 A0 = l̇Tg l̇g
given by

AT
0 A0h(x) = π∗(x)h(x) + Q∗T (x)diag(q/Q)〈Q∗, h〉(5.8)

is invertible with

(AT
0 A0)

−1h(x) = 1

π∗(x)
h(x) −

〈
h,

Q∗T

π∗
〉
M−1 Q∗(x)

π∗(x)
.

From this it follows, using standard formulas for inverses of operators defined
in blocks as above (the same as for block-matrices), that the inverse �̇−1

0 :
(Rm × �∞(H)) → (Rm × �∞(H)) exists, is continuous, and is given by

�̇−1 =
(

V̇ −1 −V̇ −1�̇12�̇
−1
22

−�̇−1
22 �̇21V̇

−1 �̇−1
22 (�̇22 + �̇21V̇

−1�̇12)�̇
−1
22

)
(5.9)

where V̇ = �̇11 − �̇12�̇
−1
22 �̇21 and

�̇12�̇
−1
22 �̇21(θ − θ0) = −

∫
A0(A

T
0 A0)

−1AT
0 l̇θ l̇Tθ (θ − θ0) dP0

= −
∫

(AT
0 A0)

−1AT
0 l̇θAT

0 l̇Tθ (θ − θ0) dG0

= −
∫

(AT
0 A0)

−1AT
0 l̇θ (AT

0 A0)(A
T
0 A0)

−1AT
0 l̇Tθ (θ − θ0) dG0

= −
∫

A0(A
T
0 A0)

−1AT
0 l̇θA0(A

T
0 A0)

−1AT
0 l̇Tθ (θ − θ0) dP0

= −E0
(
A0(A

T
0 A0)

−1AT
0 l̇⊗2

θ

)
(θ − θ0).

Note that (5.9) is not the same as the block inverse form in van der Vaart [(1998),
page 422]. Thus

V̇ = −I (θ0) = −I11 + E0
(
A0(A

T
0 A0)

−1AT
0 l̇⊗2

θ

)= −E0
(
l∗⊗2
θ0

)
,

which equals minus one times the efficient information matrix given in (2.11).
Here are the additional assumptions we will impose to establish joint asymptotic

normality of (θ̂ , Ĝ).

L4. X is a bounded convex subset of Rd with nonempty interior and H is
a universal Donsker class of real-valued measurable functions defined
on (X,B).
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Let h∗ ∈ (L0
2(G0))

m given by

h∗(x) ≡ (AT
0 A0)

−1(AT
0 ( l̇θ )

)
(x) = Q̇∗

π∗ (x)p + (Q̇ − C)M−1 Q∗

π∗ (x)(5.10)

denote the least favorable direction. Then we have:

THEOREM 5.1 (Joint asymptotic normality and efficiency of the MLE, i.i.d.
sampling). Suppose that conditions L0–L4 hold. Then it follows that

√
n

(
θ̂n − θ0

Ĝn − G0

)
⇒ −�̇−1

0 (Z) ≡ W ≡
(

W1
W2

)
in Rd × l∞(H)

where W1 ∼ Nd(0, I (θ0)
−1) and W2 is a mean-zero Gaussian process indexed

by H with

Cov
(
W2(h1),W2(h2)

) = 〈
h1 − G(h1), (A

T
0 A0)

−1(h2 − G(h2)
)〉

+ 〈h1, h
∗〉T I (θ0)

−1〈h2, h
∗〉, h1, h2 ∈ H,

where the inner products are in L2(G0). Moreover,

Cov
(
W1,W2(h)

)= −I (θ0)
−1〈h∗, h〉, h ∈ H .

Further, (θ̂n, Ĝn) is asymptotically efficient; in particular θ̂n has influence function
l̃θ given by (2.12).

PROOF. Replacing θ̃n by θ̂n in (4.20) and (4.21) yields
√

n
(
Ĝn(h) − G0(h)

)= √
n

(
Pn

(
R

ŝn(·, θ̂n)
h

)
− P0

(
R

s0
h

))

= Gn

(
R

s0
h

)
− Pn

(
Rh

√
n(̂sn(·, θ̂n) − s0)

ŝn(·, θ̂n)s0

)
≡ In(h) − IIn(h),

(5.11)

where the term IIn(h) can be written as

IIn(h) = −
J∑

j=1

√
n

(
Nj − nj

n
− Q0

j (1 − pj )

)
1

Q̂j (θ̂n)
Pn

(
Rh

s0ŝn(·, θ̂n)
Q∗

j (·, θ̂n)

)

+
J∑

j=1

√
n

{
Q̂j (θ̂n) − Qj(θ̂n)

Q̂j (θ̂n)Q
0
j

}
Q0

j (1 − pj )Pn

(
Rh

s0ŝn(·, θ̂n)
Q∗

j (·, θ̂n)

)
(5.12)

+
J∑

j=1

√
n

{Qj(θ̂n) − Q0
j

Q̂j (θ̂n)Q
0
j

}
Q0

j (1 − pj )Pn

(
Rh

s0ŝn(·, θ̂n)
Q∗

j (·, θ̂n)

)

+ Pn

(
Rh

s0ŝn(·, θ̂n)

) J∑
j=1

pjQ̇
∗
j (·, θ�

n)
√

n(θ̂n − θ0).
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Upon use of the differentiability arguments in the Appendix, careful grouping of
terms and using Proposition 4.1, equations (4.5), (5.11) and (4.21), we find that√

n
(
Ĝn(h) − G0(h)

)= Gn

(
A0(A

T
0 A0)

−1h
)− Gn( l̃T

θ )〈h∗, h〉 + Rn(h)(5.13)

where l̃θ = I (θ0)
−1l∗θ is given by (2.12) and ‖Rn‖H = op(1). Theorem 5.1 follows

immediately from (4.5), (5.13) and standard arguments. �

6. Discussion: other designs and further problems. The proof of Theo-
rem 5.1 given in Section 5 differs from our first attempts which are given in BMW.
Our present hypotheses L0–L4 are apparently weaker (and easier to verify) than
the hypotheses imposed there in D0–D5 and especially D5. Another advantage is
that the present Theorem 5.1 allows for many more classes of functions H . We do
not yet know how to use the Z-theorem approach of BMW to prove Theorem 5.1
under L0–L4.

A. Other designs. In this paper we have treated the variable probability
sampling (VPS1) or Bernoulli (i.i.d.) version of the two-phase designs. We expect
similar results to hold when the sampling is carried out without replacement within
strata. Indeed, McNeney (1998) shows that the information bounds calculated here
carry over to this. Proofs of asymptotic efficiency remain to be established for these
versions of the designs.

B. Choice of p’s to maximize information. It would be of interest to study
the optimal choice of pj ’s to minimize the asymptotic variance of some particular
function of θ . It is intuitively clear that an efficient choice of the pj ’s will often
entail choosing pj = 1 for the strata with small (rare events) Qj(θ,G).

C. Other models. If the basic model f (y|x; θ) is not just parametric, but
semiparametric as in the case-cohort sampling designs studied by Self and Prentice
(1988), then the methods of the present paper do not apply. Although some work
on information bounds has been carried out by Robins, Rotnitzky and Zhao (1994)
and RHN, we do not know of any easily implementable efficient estimators in
these models.

Although the LKW approach accommodates continuous outcomes, its key fea-
ture is that the phase one data, those available for all subjects, are reduced to
counts of subjects in a finite number of strata. This implies a loss of infor-
mation if in fact continuous outcome data are available. Chatterjee, Chen and
Breslow (2003) developed a semiparametric “pseudo-score” estimator that only
requires discretization of the phase one covariates. They demonstrated in simula-
tions that its efficiency was sometimes substantially superior to that of the LKW
profile likelihood estimator, even when 6 categories were used for discretization
of the continuous outcomes. The information loss for the pseudo-score estimator
in comparison with the semiparametric information bound for the general RHN
problem has not yet been investigated.
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D. Asymptotic distribution of the estimators of the model. It would be of
interest to apply the Z-theorem when the parametric model does not hold to
better understand what parameters are being estimated and how we should estimate
variances robustly.

E. Validity of the bootstrap. If asymptotic normality of the estimators could
be proved via the Z-theorem, then it would be straightforward to verify that the
nonparametric bootstrap (and many other weighted bootstraps) is asymptotically
valid via the results of Wellner and Zhan (1997).

APPENDIX

Differentiability arguments. At several points we need to understand how
Q

†
j (t, θ,G) changes with t and θ . Recall that Q

†
j (t, θ,G) = Qj(t,Gt (·; θ,G)),

j = 1, . . . , J , satisfy the following system of equations:

Q
†
j (t, θ,G) =

∫
s(x, θ)∑J

l=1(1 − (Ql(θ,G)(1 − pl))/Q
†
l (t, θ,G))Q∗

l (x, t)

× Q∗
j (x, t) dG(x), j = 1, . . . , J.

(A.1)

Differentiation across (A.1) with respect to θ yields

∇θQ
†
j (t, θ,G)

=
∫ ∑J

l=1 plQ̇
∗
l (x, θ)

st (x; θ,G)
Q∗

j (x, t) dG(x)

+
J∑

l=1

∇θQl(θ,G)(1 − pl)

Q
†
l (t, θ,G)

∫
s(x, θ)

[st (x; θ,G)]2 Q∗
l (x, t)Q∗

j (x, t) dG(x)

−
J∑

l=1

Ql(θ,G)(1 − pl)

[Q†
l (t, θ,G)]2

×
∫

s(x, θ)

[st (x; θ,G)]2
Q∗

l (x, t)Q∗
j (x, t) dG(x) · ∇θQ

†
l (t, θ,G).

Putting this in matrix form, we see that(
I + diag

(
Ql(1 − pl)

Q
†
l (t, θ,G)

)∫
s(x, θ)

[st (x, θ,G)]2 Q∗(x, t)Q∗(x, t)T dG(x)

)
× ∇θQ

†(t, θ,G)
(A.2)

=
∫ ∑J

l=1 plQ̇
∗
l (x, θ)

st (x, θ,G)
Q∗(x, t) dG(x)

+ Q̇ diag
(

(1 − pl)

Q
†
l (t, θ,G)

)∫
s(x, θ)

[st (x, θ,G)]2 Q∗(x, t)Q∗(x, t)T dG(x).
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Similarly, differentiating across (A.1) with respect to t yields

∇tQ
†
j (t, θ,G)

=
∫

s(x, θ)

st (x; θ,G)
Q̇∗

j (x, t) dG(x)

−
∫

s(x, θ)

[st (x; θ,G)]2

J∑
l=1

(
1 − Ql(θ,G)(1 − pl)

Q
†
l (t, θ,G)

)
Q̇∗

l (x, t)Q∗
j (x, t) dG(x)

−
∫

s(x, θ)

[st (x; θ,G)]2

×
J∑

l=1

Ql(θ,G)(1 − pl)

[Q†
l (t, θ,G)]2

Q∗
l (x, t)∇Ql(t, θ,G)Q∗

j (x, t) dG(x),

or, in matrix form(
I +

∫
s(x, θ)

[st (x; θ,G)]2
Q∗(x, t)diag

(
Ql(θ,G)(1 − pl)

[Q†
l (t, θ,G)]2

)
Q∗T (x, t) dG(x)

)
× ∇tQ

†(t, θ,G)

=
∫

s(x, θ)

st (x; θ,G)
Q̇∗(x, t) dG(x)

−
∫

s(x, θ)

[st (x; θ,G)]2

×
J∑

l=1

(
1 − Ql(θ,G)(1 − pl)

Q
†
l (t, θ,G)

)
Q̇∗

l (x, t)Q∗
j (x, t) dG(x).

(A.3)
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