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EFFICIENT DETECTION OF RANDOM COEFFICIENTS
IN AUTOREGRESSIVE MODELS

BY ABDELHADI AKHARIF! AND MARC HALLIN?
Faculté des Sciences et Techniques de Tanger and Université Libre de Bruxelles

The problem of detecting randomness in the coefficients of an AR(p)
model, that is, the problem of testing ordinary AR(p) dependence against
the alternative of a random coefficient autoregressive [RCAR(p)] model is
considered. A nonstandard LAN property is established for RCAR(p) models
in the vicinity of AR(p) ones. Two main problems arise in this context. The
first problem is related to the statistical model itself: Gaussian assumptions
are highly unrealistic in a nonlinear context, and innovation densities should
be treated as nuisance parameters. The resulting semiparametric model
however appears to be severely nonadaptive. In contrast with the linear
ARMA case, pseudo-Gaussian likelihood methods here are invalid under
non-Gaussian densities; even the innovation variance cannot be estimated
without a strict loss of efficiency. This problem is solved using a general
result by Hallin and Werker, which provides semiparametrically efficient
central sequences without going through explicit tangent space calculations.
The second problem is related to the fact that the testing problem under
study is intrinsically one-sided, while the case of multiparameter one-
sided alternatives is not covered by classical asymptotic theory under LAN.
A concept of locally asymptotically most stringent somewhere efficient test is
proposed in order to cope with this one-sided nature of the problem.

1. Introduction.

1.1. Random coefficient time series models. Nonlinear models, in time-series
analysis as well as in many other areas, were developed as a reaction against the
supremacy of linear ones—a situation inherited from strong, though often implicit,
Gaussian assumptions. Much attention has been given, in this respect, to bilinear
models, threshold models, and the many refinements of ARCH models; see, for
example, the monographs by Granger and Andersen (1978), Priestley (1988), Tong
(1990), Guégan (1994) and Taniguchi and Kakizawa (2000).

Random coefficient time series models are another tool for handling the possible
nonlinear features of real-life data [see Vervaat (1979)]. A random coefficient
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676 A. AKHARIF AND M. HALLIN

autoregressive model of order p [in short, RCAR(p) model] is a stochastic
difference equation of the form

p
(1.1) X; =) (ai+ui)Xi—i+e, €L,
i=1

where a = (ay,...,ap) is a vector of autoregressive parameters, {u, = (u1.;,
Lo u p;t)’ ;t € Z} an i.i.d. sequence of unobservable p-dimensional random
vectors, and {&;;¢t € Z} another unobservable i.i.d. sequence; {u;} and {&}
throughout are assumed to be mutually independent, and to have mean zero. In
the same spirit as in random-effect analysis-of-variance models, the autoregressive
coefficients a; are thus randomly perturbed; when u; is almost surely zero,
(1.1) reduces to an ordinary autoregressive model, of order less than or equal to p.

Early contributions to the study of RCAR models are due to Andél (1976),
Conlisk (1976), Robinson (1978), Nicholls and Quinn (1980, 1981), Feigin
and Tweedie (1985), Weiss (1985) and Guyton, Zhang and Foutz (1986).
A comprehensive treatment can be found in the monograph by Nicholls and
Quinn (1982). A systematic investigation of asymptotic inference in a general class
of nonlinear models (which includes that of random coefficient autoregressive
ones) has been carried out in a series of papers by Hwang and Basawa
(1993a, b, 1998) and Hwang, Basawa and Reeves (1994); Schick (1996) has
proposed a ./n-consistent estimator, and Koul and Schick (1996) an adaptive
estimator, of the mean a of the random autoregressive parameter in a RCAR(1)
model. The local asymptotic normality (LAN) results obtained by these authors
however do not hold on the boundary between random coefficient models and
the classical ones, and thus cannot be invoked in the detection problem we are
considering here.

1.2. Detection of random coefficients: nonadaptivity. Before proceeding to
identifying and estimating a RCAR model [as in Pagan (1980), Hwang and Basawa
(1993a, b, 1998), Schick (1996) or Koul and Schick (1996)], one should make sure
that such a sophisticated model is justified. The problem of testing traditional AR
dependence against RCAR dependence is thus of basic importance in this context.

This detection problem was first considered in Nicholls and Quinn (1982),
where a Gaussian Lagrange multiplier test is derived for the problem. This
approach however is not totally appropriate in the context, as it is extremely
inefficient for high values of p, due to the intrinsic one-sidedness of the alternative
(see Section 2). An interesting attempt towards a non-Gaussian perspective is
proposed by Ramanathan and Rajarshi (1994) for the first-order [RCAR(1)] case.
Their approach is based on the ranks of squared residuals, and thus leads to tests of
the signed rank type—since ranking squared residuals is equivalent to ranking their
absolute values. Signed rank tests however require a symmetry assumption on the
innovation density, which is highly unnatural in this context. Moreover, optimality
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issues are not addressed (only Wilcoxon scores are considered). And, higher order
extensions (p > 1) would run into similar one-sidedness problems as the Lagrange
multiplier approach. Still for the RCAR(1) models, a locally best invariant test
is studied by Lee (1998), which, unlike the preceding methods, does not require
independence between the innovation process {¢;} and the random perturbations
of the autoregressive coefficient {u,}, but unfortunately is not valid unless the very
strong assumption can be made that {(e;, u;)} are jointly Gaussian.

The same detection problem is addressed here, in the general case of order p,
and in a semiparametric context where neither the density f of &;, nor that
of w;, is specified. Except for standard regularity conditions (finiteness of
moments, finiteness of Fisher information, . ..), no restrictions are placed on these
densities. Emphasis is put on asymptotic optimality issues. A LAN property,
relying on a nonstandard mean-square differentiability property (quadratic mean
differentiability here involves second-order derivatives of innovation densities),
is established in Section 2 for fixed f. Even in the first-order case, this LAN
property does not follow from and does not have the same form as the one
established by Koul and Schick (1996) for the “open” RCAR(1) model; just as
in the traditional AR case in the vicinity of unit roots, a discontinuity in the nature
of local experiments is thus observed here on the boundary of the model.

Inspection of the central sequence reveals that the model is strongly nonadap-
tive: semiparametric efficiency is thus strictly less than parametric efficiency, at all
innovation densities, including the Gaussian. Even the variance of the innovation—
which in classical time-series models safely can be replaced with its empirical
counterpart—cannot be estimated here without a loss of efficiency. As a conse-
quence, the traditional pseudo-Gaussian approach to the problem is not valid.

Several approaches can be considered in order to solve these problems related
to unspecified innovation densities.

(ia) The “fully orthodox™ semiparametric approach consists in extending the
“fixed- f LAN result into a “joint” LAN result involving both the parameter of
interest and the unknown innovation density f; tangent space techniques, and an
adequate estimation fn of f then in principle allow for constructing uniformly
semiparametrically efficient estimation and testing techniques for the parameter of
interest (“uniformly” here means “uniformly in f”). Unfortunately, in contrast to
the more classical i.i.d. situation [treated in the monograph by Bickel, Klaassen,
Ritov and Wellner (1993)], no general “joint” LAN results are available in the
time-series context, and the existing ones [Drost, Klaassen and Werker (1996);
Koul and Schick (1996, 1997)] do not cover the present case. Moreover, experience
shows that “uniform efficiency,” just as adaptivity (which is a particular case) has a
high finite-sample cost (in terms of efficiency), due to the slow convergence of fn.

(ib) A slightly less ambitious objective is that of reaching semiparametric
efficiency at some chosen (up to a scale parameter) f only, thus avoiding the
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problems arising from an estimation of f. This objective, when semiparametric
efficiency is sought at Gaussian densities, is (or should be) the starting point
of pseudo-Gaussian methods. Its implementation requires the derivation of
semiparametrically efficient Gaussian central sequences and thus, in principle, the
same LAN results and tangent space techniques as in (ia); from a mathematical
point of view, (ib) thus is just a variant of (ia).

(ii) A third approach, based on a classical invariance principle, leads to rank-
based inference [based on ranks, not on signed ranks as in Ramanathan and
Rajarshi (1994)]. This approach can be viewed [see Hallin and Werker (2003)]
as a nonstandard sample-splitting method, where the sample is split into residual
ranks on one side, and the order statistic of residuals on the other. It allows either
for somewhere semiparametrically efficient (at chosen f) tests, or for uniformly
(at all f) semiparametrically efficient permutation tests. This third approach is the
subject of ongoing research, and is not touched here.

We deliberately put emphasis on the pseudo-Gaussian approach (ib) because we
feel its practical implementation is easier; moreover, as we shall see, it involves
autocorrelations of residuals and squared residuals, which are well-accepted tools
in other time series contexts.

The method we are using is based on results by Hallin and Werker (2003)
which, via invariance arguments, allow for bypassing the usual steps related to
establishing “joint” LAN results and explicit tangent space calculations. These
results actually provide the efficient score functions for a wide range of time
series models. The same results also could be invoked for deriving the “uniformly
efficient” procedures, mentioned in (ia) above, but this would overload the paper
while obscuring the implementation of the Schaafsma and Smid (1966) stringency
concept, which we now briefly present.

1.3. Detection of random coefficients: one-sidedness of alternatives. Another
important question to be faced is related to the intrinsic one-sided nature of
the testing problem under study. Local experiments under LAN indeed converge
weakly, in the Le Cam distance, to p-dimensional Gaussian shift experiments.
In these Gaussian experiments, the alternative of interest is the positive orthant
in R?. For p = 1, this orthant reduces to a half line, and the theory of one-
sided tests in one-parameter location families applies; overlooking the one-sided
nature of the alternative wastes away about 1/2 of the type I error of the
test. For p = 2, depending on the covariance matrix, the same attitude may
cost about 3/4 of the type I error; in general, this wasted proportion of
type I error can be as high as 1 — (1/2)”, which is clearly prohibitive as
p increases!

This problem of testing against convex cones other than half-spaces has seldom
been considered in the LAN context; see, however, Ehnm, Mammen and Miiller
(1995). The related question of asymptotic variance bounds for estimators at
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boundary points of the parameter space is briefly touched in van der Vaart (1988,
1989), and more systematically treated in Rieder (2000).

Testing problems involving one-sided multiparameter alternatives also have
been treated in the more traditional setting of finite-sample Gaussian location
models, where no universally satisfactory solution seems to have emerged (see
Section 3.3 for a short review). We are adapting here to the LAN context a concept
of most stringent somewhere most powerful tests introduced by Schaafsma and
Smid (1966). Combined with efficiency considerations, this concept allows for
defining locally asymptotically most stringent, somewhere efficient tests of the
pseudo-Gaussian type.

1.4. Outline of the paper. The paper is organized as follows. Section 2
is devoted to the “fixed-f” LAN structure of the model (Proposition 2.1).
A “correlogram-based version” of the same LAN property is given in Proposi-
tion 2.2; this version allows for a better intuitive interpretation of the central se-
quence, and an easier diagnosis of its adaptivity/nonadaptivity features. Section 3
deals with semiparametric efficiency: the explicit form of the semiparametrically
efficient Gaussian central sequence is derived in Proposition 3.1, and its asymptotic
linearity property is established in Proposition 3.2. Section 4 then deals with the
proposed tests and detection procedures. The proof of the nonstandard quadratic
mean differentiability property which serves as a basis for the LAN results of Sec-
tion 2 is given in Section 5.

2. Local asymptotic normality (LAN).

2.1. Notation and main assumptions. Let f and g, denote the probability den-
sities of &; and u;, respectively, in the RCAR(p) model (1.1). The null hypothesis
we are interested in is that of traditional AR(p) dependence, with unspecified in-
novation density f, that is, the hypothesis under which P[u; = 0] = 1. The tests we
are deriving should be valid (have level o), or asymptotically valid (have asymp-
totic level &) under arbitrary innovation density f, except perhaps for some mild
technical assumptions. As usual, unless estimated-score procedures are adopted,
uniformly (with respect to f) optimal tests typically do not exist, and a specific
choice of the density f at which optimality is expected has to be made. The situa-
tion is somewhat better with the perturbation density gy, since only the correlation
matrix p, of u; happens to have an impact upon asymptotic Fisher information
quantities. Deriving an optimal procedure against specific correlation structures p,,
would make little sense, though, and we restrict our optimality considerations to
diagonal structures, under which p,, is diagonal, with diagonal elements equal ei-
ther to zero (absence of randomness in the corresponding component) or one. This
can be achieved through the following parametrization.
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Denote by Pifl)a »2 the probability distribution of an observed series XM =
(Xi”), ..., X\ generated by

p
(2.1) X =) (ai +oiui)Xi—i + &, teZ,

i=1
where a := (ajy,...,a),) € A, the set of all values of the (mean value of the)
autoregressive parameter a satisfying the traditional causality assumptions, and
o2 = (012,...,05) € RP; the two noises {¢} and {u,} = {(i, oo up)s
t € Z} are mutually independent, as in (1.1), with the additional assumption that
E[w,u;] =1,, the p X p unit matrix.

Writing Jf}n)(al, ceesAp;s 012, e, al%), or J(.’](pn)(a; o2) for the simple hypothe-

sis {ng’,)a 52> the null hypothesis we are interested in is
22) HW =y = JU " @0,
f foa

where the union is taken over a € 4, and over all densities f satisfying
assumptions A2(i) and A2(ii) below. The alternatives we would like to detect are
of the general form (1.1), with completely unspecified f and nondegenerate g.

Optimality will be sought against alternatives of the form U, Uq2.9 Jf}n) (a; 02),

where the union (J,2. is taken over all vectors o such that o > 0 for at least
one valueofi =1,..., p.

Such alternatives are typically one-sided (0; < 0 makes little sense); the
corresponding set of parameter values is the positive orthant of R” (deprived of
its apex, located at the origin). Even in simple Gaussian location models, finite-
sample optimality in one-sided testing of multivariate parameters is a delicate
issue, which has no clearcut solution—except for the half-space case, which
essentially reduces to the one-dimensional situation. The asymptotic version of the
problem apparently has not been considered so far in the LAN context—except,
again, for the half-space case, for which locally asymptotically most powerful
procedures are well known [see, e.g., Le Cam (1986), page 297]. Two attitudes
then are possible:

(1) either a formal hypothesis testing approach is maintained; one-sided
procedures then can be imported, via the weak convergence property of local
experiments, from the literature on one-sample location testing against one-sided
multivariate alternatives;

(ii) or, emphasis is put on heuristic detection rather than on formal hypothesis
testing; for instance, p one-dimensional alternatives of the form o; = 0§(i, ip),
i=1,...,p [0 > 0; §(,-) stands for the Kronecker symbol], one for each lag
ip =1,..., p, are considered separately; this latter approach is closer to the
spirit and practice of correlogram inspection methods, which most time-series
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practitioners would favor. Both approaches are considered, in Sections 4.1, 4.2
and 4.3, respectively.

The basic tool, as usual, is the local asymptotic normality structure of the
family of likelihoods associated with (1.1), in the vicinity of 6> = 0. Establishing
LAN requires some technical assumptions which, for convenient reference, we are
listing here. Not all of them are required to hold throughout.

(A1) The autoregressive parameter a € R” is such that the roots of z” —

>P  aizP7" =0, z € C all lie inside the unit disc; the resulting parameter
set is denoted by .
(A2) The innovation density f is such that:

(i) f(x)>0,xeR, [xf(x)dx =0and (my4) r := f.x4f(x) dx < o00;

(iia) f is absolutely continuous, with a.e. derivative f and finite Fisher
information {4 (f) := fqb?p(x)f(x) dx < oo, where ¢ :=—f/f;

(iib-). f in turn is absglutely continuous, with right-continuous a.e. deri-

vative f; letting ¢y := f/f, assume that £, (f) := [ wj%(x)f(x) dx < o0.

Letting (7]% = [x2f(x)dx and (m3)y = [ x3 f(x)dx, note that under (A2)

O']% < oo and (m3) r < oo and

¢r(x)=0"'¢(x/0), Yr(x) =0 2Yp(x/0),
Lo (f1) = 024p(f), Ly (f1) =0y (),

where f(x) := O’_lfl (x /o). Moreover,

/ 1) f(2)dz = f 61 ()2 f(2)dz = f V@) f(@)dz

=/1/ff(z)zf(z)dz=0,

whereas

/¢f(Z)Zf(Z) dz = %/fo(z)zzf(z) dz=1.
For Gaussian densities,
b5 (2) =¢g(2) =2z, Ip(f1) =1,

v/fl :wg(Z):ZZ— 1 and 1w(f1) =2,
while, for logistic ones, we have

b (0) = 1(f)—”2~1097
fl <) = 1+e_z’ ¢ 1) = 9 ~ 1. )
e X’ _de i 41 74

Vi (2) A1 e2 and Ly (fi) = 5
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On the density g, of the random perturbations u;, we make the following
assumption:
(A3) [vgu(v)dv=0and [vVgy(v)dv=L

Finally, the continuity of Fisher information plays an essential role in local
asymptotic normality. This continuity follows without any additional assumption
about the Fisher information associated with autoregressive parameters; as for the
information associated with the scale parameter of u;, we will assume:

(A4) Denote by g;,i =1, ..., p, the marginal densities of g,. Letting

N S ! o f Fz— xvw)x*v?gi(v) dvdw]?
0= /Z=—oot_2 [ f(z—xtv)gi(v)dv
(2.3) _/oo l[ [ f(z = xtv)xvg; (v) dv T
 Jimmao 2LLf f(z — xt0)gi (v) dv]' /2] T

dz

i=1,...,p,t>0,

and 1" (f;0) := x41¢,( f), the functions t + J7 ( f;t) are continuous
from the right at r =0, for all x.

2.2. Local asymptotic normality (LAN). Assuming that X(") X(_"l), cee X(_”;H

have been observed [starting values have no influence on asymptotics; see Hallin
and Werker (1999) for a detailed discussion], let

p
(2.4) z,=2"@:=X" - > aiX",

(the notation Z; is used whenever no confusion is possible); under Jf}”) (a; 0),
Z; clearly coincides with ¢;. Considering local parameter sequences of the form

@; 0y +nY2¢™ with
(n)
. [&
T “ = (8(,,) ) s

where a™ := (a{”), .. )) € R? and §™ := (8(") .,8;"))/ € RY are such
that
(2.5) lim sup Z (")| + 8(”) < 00,

n— oo

i=1
denote by A(")(a' o™ §Wy = A('-’)(a' o™ g, xm. X(()") X(n)+1) the log-
arithm of the likelihood ratio of Jf(")(a + n= 12, p=1/ 28(”)) with respect
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to Jf}”)(a; 0) (conditional on X\, ..., x™ +1)- Then,

Aif)(a; a™ §m)

n

14
—_— Zlog|:/ f(Zt =Y (e 5;'(n)vi>Xt—i>gu(V) dV}
. RP

=1 i=1

n
— Y log[f(Z)1+op(1);
t=1
the op(1) term [under J(’ (a 0), as n — oo] corresponds to the influence of the

starting values Xy, ..., X_p+1

Also, let h,, = hy(a), u € Z, denote the Green’s functions associated with the
difference operator a(L) =1 — le a;L', where L stands for the lag operator
[/, (a) thus is characterized by (a(L) 1= o ohuL"]. Put

4o (f1)Tx(a) T4y (f1)(m3) 7, T2 (a)
2.7 l“f(a) = ,
3oy (M) Ty 0@ 3y (FOT px0 (@)

where
Loy (f) = /d)fl Y x) filx)dx,

I'x(a) and T fl;Xz(a) stand for the covariance matrices, under Jf}”)(a; 0), of

O’_I(Xl,...,Xp)/ and O’_Z(XZ,...,X]%)/, respectively, and (m3) ;, T'xx2(a) for
their cross-covariance matrix. Thus,

2.8) (Tx(@),; Z huhu—ji—ji,
u=li—j|

(erZ(a) (m4)f12huhu li— ]\+ Z Z h U li—Jjl

(2.9) O<u#v<oo
+4Z Z huhu—ji-jihvho-ji- |
u=0v=u+1
and
o0
Zh“hu—ll—ﬂ’ L=
(2.10) (Txxe @), = 1 &
S Bhaisge 0>
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Neither I'x nor I'yx> depends on f; the dependence on f lies in the multiplicative
effects of the information factors 4y and L4 (f1), and of the skewness parame-
ter (m3) f,, whereas T £:X2 depends on f through the kurtosis parameter (im4) f,,
in a slightly more complicated way. We then have the following LAN result.

PROPOSITION 2.1. Let (Al) and (A2) hold. Then, under Jf}”)(a; 0),

as n — oo, for all sequences T™ = (™', §™"Y satisfying (2.5):

@ AP @™, 8M) = 1WAV @) — Lr™T @)1 + op(1) with the
2 p-dimensional random vector (the central sequence)

Z?:g ¢f(Zz)Xt—1

() '
Aﬁl(a) ) — 12 Z:l=p+1‘lbf(zt)Xt—p

2.11) A%@):=
! ( IV (ZOXE

S Y (ZOXE,
(i) Ag?) (a) is asymptotically multinormal, with mean 0 and covariance T y(a).

PROOF. The proof consists in checking that Swensen’s (1985) conditions
(1.2)—=(1.7), which are sufficient for LAN, hold. The quantities X, ; and Z, ;
appearing in Swensen’s paper here take the form (in Swensen’s notation)

Xn,t = f_l/z(zz)
1/2

P
><|:/ f(z,—z(n—lﬂa}”)Jrn—l/“ 8;")vi>X,_i)gu(V)dV} ~1
RP .

and

2 (n) 2 (n)
Zpyi= %n—”z(asf(zt) S o X+ 30 (Z0)Y 8" Xf_,-),
i=1 i=1

respectively. Conditions (1.3)-(1.7) follow more or less routinely from the
assumptions made; the only delicate one actually is the first one [(1.2) in Swensen’s
notation], which requires that

n
(2.12) Jim X;E[(X,,J — Zn)?]=0.
t=
This however is a direct consequence (see Swensen’s Lemma 2) of the quadratic
mean differentiability, at t =0 and forall x € R, of t— [ f(z — xt'v)g(V) dv]'/?.
This quadratic mean differentiability property is established in detail in the
Appendix (Lemma 5.1). O
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2.3. A correlogram-based version of LAN. The LAN result of Proposition 2.1
is unsatisfactory on two accounts. First, it is hardly interpretable, as the defini-
tion (2.11) of the central sequences A( )(a) conveys little intuitive content. Sec-
ond, the behavior of A( )(a) under 1nnovat10n densities g # f is hard to tell
from (2.11). For 1nstance it is all but clear whether the empirical innovation
variance 62 = (6™)2 :=p~! > th can be substituted, in (2.11), for the ex-
act one o2 (i.e., whether the scores associated with f3 can be used in case o2 is
unspecified). Proposition 2.2 provides an alternative formulation of LAN, based on
a central sequence Agf’)(a) which, contrary to Agf’)(a), is measurable with respect

to residuals, and allows for a better interpretation and for studying more easily the
impact of a variation of the underlying densities.

More precisely, A gf’) (a) relies on a generalized concept of residual autocorrela-
tions and higher order residual moments. Generalized residual autocorrelations are
the non-Gaussian counterparts of the traditional autocorrelation coefficients; they
play the same central role in all inference problems for linear ARMA processes
with innovation density f as the traditional residual correlogram does in classical
time series; see Hallin and Werker (1999) or Hallin and Puri (1994). The lag k
residual autocorrelation coefficient associated with density f (and computed from

the residual series Z1, ..., Z,) is defined as

13 o . r Zi—k —1/2

(2.13) rigi=m—k Z or | — (o))"
t=k+1

It is well known, however, that autocorrelation coefficients are not sufficient in
the detection of nonlinear serial features. Bilinear models, for example, typically
require a third-order generalization of classical correlograms, the so-called cubic
autocorrelations, associated with the concept of bispectrum [see Benghabrit and
Hallin (1996, 1998)]. In the present case of random coefficient models, another
class of serial statistics quite naturally enters into the picture. Their structure looks
quite similar to that of cubic autocorrelations, but with score function vy instead

of py:

Zi—k\? _
=t Y wfl( (= ") [y (e ]2
t=k+1
k=1¢,
@2.14) Y, =
Z
(n—0" Z wfl( ) L "[1 (2,
t=0+1
k<.

We then have the following result.
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PROPOSITION 2.2. The LAN result of Proposition 2.1 still holds, with

A @)
() 1
Ay @= (A(” (a))
=i

substituted for A('-l)(a), where [writing h, for h,(a)]

.15 (A% @), th i =2 (12 i=1, .,

k=i
and
(A%, @), : %}j L =102 [y () may ]
(2.16) + 3 Y ihei(n— 02\ Wy (FO12,

i<k< <n-—1

i=1,...,p.

PROOF. Central sequences always are defined up to op (1) terms [as n — oo,
under J(’ () (a; 0)]. Thus, it is sufficient to show that (2.15) and (2.16) are
asymptotlcally equivalent to (2.11). This easily follows from noting that

-1
(2.17) Xe=) m@Z_@+op(inl)  ast— oo,

k=0
uniformly in n, where A, is the inverse of the root of the characteristic polynomial
(see A1) which lies closest to the unit circle; the result follows from inserting (2.17)
into (2.11), and rearranging the sums. [J

In case of a Gaussian f (denote by Ag’) the corresponding central sequence),

(2.13) and (2.14) reduce to

n
(2.18) = -0 Y 2,2
t=k+1

(a classical residual autocorrelation coefficient) and

(n— k)_ll 21’;1<§_2 — 1)(2;_k>2[(m4)f'1 ((mg) 5, — 1)]_1/2,

2.19) ¢ = ) =t
w0 3 (1) ooy -1

= k<,

where, moreover, [(mg4) ;, — 1] =2 and [(my4) , ((m4) r, — 1)] = 6.
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2.4. Nonadaptivity. The central sequence Agf')(a) [equivalently, Agf')(a)]
allows for asymptotically optimal inference under innovation density f, hence for
efficient detection of random components at f. This efficiency is entirely based on
the fact that a “small” random component in (1.1) induces a shift in the distribution
of Agf')(a), which has expectation zero under the null hypothesis ij(l-")(a; 0).
Now, if Agfl)(a) is to be considered for testing the broader semiparametric
hypothesis # (", it is essential that a change in the underlying innovation
density does not induce the same shift as the alternative to be detected: A?)(a)
[equivalently, Agf')(a)] thus should remain centered under Jfé”)(a; 0), g # f.
Unfortunately, this is not the case.

The problem, as we shall see, is caused by the presence in Agf’;)” of the
statistic q}nik In general, when Z; has density g, where g # f, even assuming
that o, = 0y = o, we have that

Z\ Zi
S (5) 5 o
A change in the shape of the innovation density thus has the same impact on A;@H
as the alternative we are trying to detect. The same problem does not occur

o (2)(%))-o

with r Fike since
irrespective of the (centered) density g of Z;.

Gaussian densities at first sight are an exception. Indeed, for the central
sequence associated with the A (0, o2) density,

ZN\Zl, z; Zl
2.20 E — =E||—+ — =0,
(220) [w9(0> o? } [(02 ) o? }
under any g. This holds true, however, only if oy = o: even under Gaussian g,
(2.20) does not hold unless ag = o]%. A natural idea for overcoming this
problem consists in substituting (6™)? := n~! PR Z,2 for o2 and n%in) =
:’:l(Zf'/c}(”))4 for (m4)y (this latter substitution clearly has no asymptotic

impact); denote by c}}”}c « the resulting statistic. Then, a simple computation shows
that

P 1
ST = R 6§ — 1112

|2 G- 2 EC)

t=k+1
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+op(n™/?)
_ —1
[y (h{” — D112

+op(n!/?)
= O0p(n~ V) #£op(n~1/?).

Even under Gaussian densities, the estimated &2 thus cannot be substituted for o2
into q,EZ), hence into the Gaussian central sequence, without affecting its qualifica-
tion as a central sequence.

Summing up, the impact on Agf';)” of a variation of either the scale or the
shape of the innovation density in general is the same as that of a small random
component in the autoregression coefficient. This rules out the construction of
pseudo-Gaussian procedures for the semiparametric problem considered here.
Efficient procedures for the parametric Gaussian model are impossible as well, as
soon as the variance of the Gaussian innovation remains unspecified. The RCAR
model (1.1) thus is strongly nonadaptive.

To conclude this section, note that part (ii) of assumption (A2) requiring the
innovation ¢&; to have mean zero, remains quite innocuous. If indeed a specified
location parameter p is added into the model, the obvious modification of central
sequences consists in replacing Z; with Z; — uu. Elementary calculations show that,
in such a case, 4 in turn can be replaced with Z,, :==n~! Yr 1 Ziin rj(lni, q}-’t}d and
q}'iik provided that ¢y and /¢ satisfy some mild regularity assumptions, which
are trivially satisfied by the Gaussian score functions ¢g and vg.

3. Semiparametrically efficient pseudo-Gaussian methods.

3.1. Semiparametrically efficient Gaussian central sequence. Since the prob-
lem under study is not adaptive, parametric efficiency at given f, as measured by
the Fisher information matrix T y(a), cannot be reached when underlying innova-
tion densities remain unspecified. The best that can be hoped for is semiparametric
efficiency—at any density f if “estimated-score” methods (requiring an estimation
of the actual innovation density) are considered; at some chosen f if “fixed-score”
methods are used.

The results of Section 2, as well as those of Hallin and Werker (2003) which
are used in the sequel, allow for both types of methods. Instead of developing
uniformly efficient procedures [in the spirit of Choi, Hall and Schick (1996)], we
rather concentrate on a semiparametrically efficient pseudo-Gaussian method, that
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is, a “fixed-score” method which is valid under unspecified innovation density but
reaches semiparametric efficiency under Gaussian conditions.

Explicit derivation of semiparametrically efficient methods usually requires
tedious projections along tangent spaces. In the type of time series models under
study, a general result of Hallin and Werker (2003) allows for avoiding such
calculations. For Gaussian f, this latter result yields the following proposition.
Define

N Zi
s _ L=k ZiZik — ™ L op(n1?),

k™ (m—k)62
n 2 ~2
. 1Ly =02 Ly
Q/EZ) :: >i=e+1(Z; 1—kZy q(n)+0 (=112,

(n — 04" — 17172

[where op’s are taken under any J¢, (n) (a; 0) such that g satisfies Assumption (A2)]
and

q(n) . k+1(22_02>(zz k —0?)
Kl (n—kyo*(ma)p —11
) 1 (L =82 = 6D
Drks = ;

(n = k)64 — 1]
note that q,ﬁkl coincides with the autocorrelation (at lag k) of squared residuals—

a traditional heuristic tool in the analysis of nonlinear time series models.

PROPOSITION 3.1. The semiparametrically efficient central sequence for
Gaussian innovation density f has the form

A® (a) = (Agn)(a))
’ A% @)

with
(A @), : th =V =1, p,
k=i
and
n—1
(A 11(3) —zzhk i(n— k)l/zqkk)[A(n) 1]
(3.1) + 20 Y e in— 0245 TR — 12,

i<k< €<n-—1

i=1,...,p.
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Under Jfg(")(a; 0), A,(k”)(a) is asymptotically multinormal as n — oo, with mean 0
and covariance matrix

T'x(a) 3(m3)3 Txxo (@)
32  Wy@:= ,

30m3)% T o (@) §l0ma)g, — 11T x0 (@)

where
o
. 2,2 2,2
(Cugoxz @)y = [(ma)g, — 1] D hhiy iy + 3 D hihy i

(3.3) 0w e

+4>° " hyhu—ji—jihoho—ji—j).

u=0v=u+1

Note that, contrary to the Gaussian central sequence A(n), the efficient central
sequence Afk”) does not involve any unspecified quantity any more. Moreover,
asymptotic normality here is proved under Jf(”), whereas Propositions 2.1 and 2.2
provide information on the behavior of Ag’) under Gaussian density f only.

COROLLARY 3.1. The efficient information matrix (for Gaussian innovation
density) is

I'x(a) 0
(3.4) Lo (a) = ,
0 %r*g;x2 (a)

with

o0
: 2,2 2,2
(Cagexe @), =23 hahy_y_ji+ D Y hahiy_ij
u=0

0<uz V<00

o0 [e.e]
430 D0 huhucji-jihohojizj)-
u=0 U=M+1

PROOF OF PROPOSITION 3.1. The proof consists in showing that the
Assumptions (I) and (J) required for Propositions 3.1 and 3.3 in Section 3 of Hallin
and Werker (2003) to hold are satisfied. It follows from Proposition 2.2 that Ag’)
is a linear combination (with coefficients depending on € but not on f) of three
types of statistics: (n — k)!/ 2r]£n) defined in (2.18),

n
1/2 — _
= 0"2[ma)y, =114 = =07 o™ Y (22— 0N ZiiZis
t=0+1
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and

n
(=) [ma) 5 (ma) = D] g = =07 o™ 3 (22 —0NZ]
t=0+1
Each of these three statistics has the form (n — p)_l/2 Z;l:p—‘,—l J(Zs, ... Zi—p)
considered in Assumptions (I) of Hallin and Werker (2003). Let us show that
Assumptions (J(i))—-(J(iii)) (same reference) are also satisfied.

For (n — k)l/zrlgn), the score function J is (up to a factor o72) Jr
(20,215 +--»2p) > I (20,21, -.-,2p) := z02k- This function trivially satisfies
Assumptions (J(i)) and (J(ii)). The fact that, denoting by (go,...,&,) an iid.
N(0,02) p-tuple, we have E[J, (g0, ...,€p)|e0] = €oE[er] = O implies that
(n— k)l/ 2™ enters without modification the efficient central sequence: in
the notatlon of Hallin and Werker (2003) I = I} *. Assumption (J(iii)) thus
reduces to asymptotic linearity of r ) with respect to a, which is an immediate
consequence of the ULAN property of AR(p) models.

The same properties, and the same conclusion, hold for (n — k)!/?

X
[(my4) f, ((M4) g, — 1)]1/2qk£) k # £, with (up to a factor o~ the score function

i Zos Zimy) = (22— 02yt Zome = TE (Za . Ziyp).

As expected, the case of (n — k)l/z[(ma,)fl ((mg) g, — 1)]1/2q,EZ), with scores (up

to a factor o %) Jou Zys oo s Zi—p) = (22 — az)Zt «» 1s different. Conditions
(J(i)-((ii) are still satisﬁed but E[Jy, (0, ..., €p)leo] = (6§ — 0?)E[e}] =
(8(2) — 0202 # 0 implies that J qkk (€05 -5 8p) = Jg €0y ..., 8p) — (83 — o002,
so that

-k S (2} — 0D 2] — (2} — 0o}
t=k+1

( k) 1/2 —4 Z (22—62)(Zt k_GZ)
t=k+1

has to be substituted for (n — k)'/2[(m4) = 11V 2‘1152) in order to obtain the
efficient central sequence.

~ (1)

(m) f,gn) and q(n) Gy, are

In order to complete the proof, recall that r;
op(n~1/%);s0is qkk* qkk* since, under Jfg " (a; 0),

Y (ZF-oNZl—oN— > (Z7 -2zl —6D)

t=k+1 t=k+1

n
=—(62—0%) > (Z]+Z7_ ) +n@E*—o*
t=k+1
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=n(26%0%—6*—o*) 4+ 0p(1)

=n(2(6% —0Ho? — (6* — %)) + 0p(1)
=n6?—06>)(0>=6%+ 0p(1)
=—n(62—02240p(1)=0p(1)=0p(n'/?).

The asymptotic normality of Afk”)(a) under J(’én)(a; 0) follows along the same
lines as that of Agf-l)(a) under Jf}”)(a; 0). In the derivation of the off-diagonal
blocks of the covariance matrix, the (m3)§, 1 factor comes from the fact that

B [(A)" @) (A% @);]

n—1 n
=3 D ki j =7 Y B 177 1B (7]
k=i t=k+1
n—1
= %(m3)§1 Z hk_ih%—j'
k=i O
3.2. Local asymptotic linearity. The nonrandom part a of the autoregression
coefficient throughout plays the role of a nuisance, and thus has to be estimated
under the null hypothesis # . In order to control for the effect of substituting an

estimated value 47" for the exact one in the efficient central sequence Agf’) (a), we
need the following asymptotic linearity result.

PROPOSITION 3.2. Assume that (Al) and (A3) hold, and that the density g
satisfies (A2). Then, for all sequences 7 = (™ 8(”)’)’ satisfying (2.5):

@)
I'x(a)a®
AV @) - | |
b r*g;XZ (a)(s(n)

is asymptotically multinormal as n — oo, under Jfg(")(a +n 12, n_1/28(”)),
with mean 0 and covariance matrix W g (a);

(ii)

I'x(a)a™

A" @+n 2™y — AW (a) = - ( ) +op(1)

pxl1

as n — oo, under Jfg(n)(a; 0), hence also under Jfg(n)(a +n 2™, n_1/28(”)).
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PROOF. Part (i) of the proposition follows as an application of Le Cam’s Third
Lemma. Consider indeed the arbitrary linear combination (with 8 € R, y; € R?,
yu €RP)

n™ = BAY @™, 6" + (y]. yip AL (a)

n p
— 2 Z Z{[ﬂa@g(zt) +v1iZi) Xi—i

t=1i=1
+ 3 [B8i Ve (Z) + yui(Z7 — D)X}
— (B/2)(T "' T (@) T™) +op(1).

The first term is a sum of p-dependent variables with finite variance. From
classical central limit results, " is asymptotically normal, with mean —%d; =

— g (z™'T ¢@T () and asymptotic variance

( Y d§ (n) (a(”)’rx(a)’ %6(n)/r*g;X2(a)) B
B. Y7 vYu Ix(a)a' Yr |-
A%
%r*g;x2(3)3(") #¢(@) Yi

The result follows from the usual Cramér—Wold argument and Le Cam’s Third
Lemma. Due to the extremely simple form of the score functions J* entering
the Gaussian efficient central sequence Afk”), the asymptotic linearity property in
part (ii) of the proposition follows from straightforward direct computation. []

Next, consider an estimate a7 of a enjoying the following root-n consistency
and asymptotic discreteness properties.

(AS) (i) For all g satisfying (A2), all a satisfying (Al) and all ¢ > O,
there exist a positive constant B = B(g,a,¢) € Ry and an integer N =
N (g, a, ¢) € N such that, under Jfg(n) (a; 0), P[n'/?| (@™ —a)|| > B] < ¢ for
alln > N (] - || denotes the Euclidean norm).
(i) For all a satisfying (A1) and all ¢ > 0, there exists a positive
number K = K (a, ¢) such that the number of possible values of a®™ in balls
of the form {t € R? : ||t — a|| <} is bounded by K as n — oo.

Part (i) of assumption (AS5) is satisfied by all classical estimates of a under the
null hypothesis of AR dependence (Yule—Walker, exact or approximate MLE:s,
robust estimates, adaptive estimates, R-estimates, ... ), but also by the estimates of
Schick (1996), which take into account the possible RCAR nature of the model.
Part (ii) is the traditional requirement of asymptotic discreteness. It can be obtained
through classical discretization methods, but has little practical implications if any.
The following proposition is an immediate corollary of Proposition 3.2.
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PROPOSITION 3.3. Let a" satisfy Assumption (AS). Then, under the same
conditions as in Proposition 3.2, A,(S; @my — Ai’}; (@) =o0p(1) as n — oo, under
Jfé”)(a; 0), hence also under Jfg(")(a +n V2, y—1/2500)y,

The proposition is restricted to the asymptotic behavior of Ai’;}, which is
needed in the sequel; of course, it also holds that Afknl) @my — Ai’;) (a) = —n'/? x
T'x(@)@™ —a)+op(1).

4. Optimal pseudo-Gaussian detection methods.

4.1. Locally asymptotically most stringent somewhere efficient tests. The
problem of testing linear restrictions on the mean of a multivariate Gaussian
location model with known covariance structure against one-sided multivariate
alternatives has a long story; see Bartholomew (1961), Chacko (1963), Kudd
(1963), Niiesch (1966), Shorack (1967), Perlman (1969) and many others, who
all consider variants of Gaussian likelihood-ratio tests. A different approach is
developed in Schaafsma and Smid (1966), where the concept of most stringent
somewhere most powerful tests, extending Abelson and Tukey’s (1963) idea of a
maximin contrast, is introduced.

Though it has been shown that neither of the two methods uniformly dominates
the other, the advantage over likelihood-ratio tests of the Schaafsma and Smid
approach is that it relies on a clear finite-sample optimality concept, which makes
it particularly well suited in the LAN context. It readily extends, via the limit
Gaussian shift experiments, into a local asymptotic version. On the contrary, the
justification of likelihood-ratio tests lies in their asymptotic properties, which
make little sense when applied to a limit Gaussian shift experiment in which
the observation is unique in essence. Moreover, numerous anomalies of Gaussian
likelihood-ratio methods have been reported in the context of location problems
with known covariance structure: see Gutmann (1987), Berger (1989), Menéndez
and Salvador (1991), Menéndez, Rueda and Salvador (1992), among several
others. We thus propose to develop an asymptotic procedure along the lines of
the Schaafsma and Smid approach, which we now describe.

Denote by & a g-dimensional observation described by the full-rank Gaussian
location model (R?, 89, = {N (u, W) | n € R?}). Consider the null hypothe-
sis #¢ under which p lies in the (¢ — p)-dimensional linear subspace M of RY
characterized by the 1 < p < ¢ independent linear constraints H' s = 0, and the
one-sided alternative K under which the p components of H' u are nonnegative,
with at least one inequality strict. Thus, under K, p belongs to the half-cone
C = {x € R? |H'x > 0}. Denote by M* the p-dimensional orthogonal comple-
ment of M, where orthogonality is defined in the metric associated with the co-
variance structure W [namely, x_Ly iff XW~ly = 0, so that M* = M(WH), the
linear subspace of R? spanned by the columns of WH]. For each £ € C, define K,
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as the one-dimensional, one-sided sub-alternative under which g € {k€|x > 0};
let - = WHH'WH)'H'¢, and ¢* = WH(H'WH)'H'C denote the projec-
tions of £ and € onto M* (still in the metric associated with W). A uniformly
most powerful size-« test for # against Ky is ¢zi (&), which rejects J whenever
the test statistic

W et FHMH'WH) 'HY
(YW-lghl2 T [WHMH'WH)-TH¢]1/2
exceeds the (1 — «) quantile z, of the standard normal distribution.

Write T := {(,zﬁlL ()L € C)={p'(&)| £ € C*} for this class of somewhere most
powerful tests: Schaafsma and Smid (1966) show that J~ contains a most stringent
element, that is, a test ¢£* whose maximum shortcoming, with respect to 7, over
the alternative u € C, is minimal. The corresponding test statistic is TY, where

£* € C* is such that, after orthogonalizing the experiment by means of the linear
transformation W—1/2, W=1/2¢* lies along

4.1) T () = :

(i) the axis of the semicone of revolution circumscribing, in the g-dimensional
linear space W~!/2M" now equipped with the Euclidean norm, the polyhedral
angle €' := W~1/2@", in case this axis itself belongs to €, or, in case it does not,

(ii) the axis of the semicone of revolution circumscribing the sub-polyhedral
angle (9} formed by a subset of j vertices of G’ such that (a) this axis belongs
to @} and, (b) the angle of this axis with any of the vertices of €’ which do not
belong to G} is no greater than the j equal angles of this axis with the vertices
characterizing (9;..

Abelson and Tukey [(1963), Sections 8 and 17-20] establish the existence and
uniqueness of this solution £*, and show (Sections 10-12) how to compute it.

The LAN structure (Proposition 2.1) of the model under study entails the
weak convergence (in the Le Cam sense), as n — oo, of the sequences of local
experiments, of the form

eV (@ = (R", 8", 2" ={PY) oy 1ns]a €R?, §R})

to the Gaussian experiment
Er(a):= (Rzl’, B, P = {N(;L =T r(a) (;) , I‘f(a)) ‘oc eR”,§ eRiD.

Recall that this convergence entails convergence of the risk functions associated
with S}n)(a) to the corresponding ones in &y(a)—see Le Cam (1986) or Le
Cam and Yang (1990) for details. Denote by A an observation described by the
limit experiment &7 (a). If ¢*(A) is a most stringent somewhere most powerful
size-a test in the experiment &7 (a), for some linear space M and some half-cone
C of R27, then the sequences of tests ¢*(A5f)(a)) inherit, in the original LAN
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model, and under local and asymptotic form, the same optimality properties as
¢*(A) in &¢(a). This can be taken as the definition of a locally asymptotically
most stringent somewhere most powerful test, or, when applied to an efficient
sequence, a locally asymptotically most stringent somewhere efficient test (in short,
LAMSSE) for the problem under study.

Applying the general method of construction just described in the efficient
limit experiment 8; (a) associated with Gaussian innovation densities, with

q=2p, M =M, 0)’) [the linear subspace of R2P spanned by the columns of
dp, 0)1, ML= M(W(O0, I,)"), with the Gauss1an information matrix (3.4), yields
M —M((0 1)), C={(x,y) eR*”|I_ Xz(a)yGR }and C+={(0',y") €
R2P |r gx2 @Y€ R7}. Writing A, = (A}, Al,;))’ for A" (a) and €* = (£}, £}])’
for (0, Z 7)', denote by
AT, ' (a)e*

[T, @]/
V2L (Tge@) '
(T g e @)~ ]2 T T2 @
the resulting test statistic: the corresponding tests are LAMSSE for the problem

of detecting randomness in the coefficients of the autoregressive model (2.1) if
the innovation density is assumed to be Gaussian under the alternative. Since
£ = 4(a, I.4.x2(a)), they are Ai’};—measurable and depend on T,(a) only
through F*g;x2 (a).

These tests however remain unsatisfactory on two accounts: they explicitly
involve the parameter a which is unspecified under the hypothesis #" to be
tested; and, their asymptotic standard normal distribution relies on a Gaussian
assumption which should be dropped.

In order to palliate these two problems, we first show that the unspecified a can
be replaced by any estimate 4 of a satisfying (A7). The matrix I',g.x2 and the

Tlfj:a(A )=

4.2)

a(Asir)

cone C indeed are continuous functions of a. Hence, letting f*g = r*g;x2 @m)
and £ := €™, T',g), we have TA i A A" (@) = T‘~’* (A @) +

op(1), under #™ . Now, in view of Prop0s1t10n 3.3, the effect of substituting a7
for a in A(”)(a) [namely, the difference A(”)(a(”)) A(")(a)] asymptotically
belongs to .M, and hence is orthogonal to £* € M= . It follows that the difference

.A(n)(Ai';}(a(”))) — Tl* @ (A" (@)) is op(1) under #™ and under
contlguous alternatives, as n — 0.
Second, the fact that Tf .A(n)( H(a("))) is asymptotically standard normal

under Gaussian densities only is due to the Gaussian form of the standardizing
covariance matrix r*g;ﬁ(n). In order to get rid of this Gaussian assumption, note

that, under density g, the asymptotic covariance matrix (3.3) of Ag}; (a) [namely,



RANDOM COEFFICIENTS IN AUTOREGRESSIVE MODELS 697

I, 4.x2(a) which, under Gaussian g, coincides with lr*g.xz (a)] depends on g
through [(m4)g, — 1] only. This quantity is estimated consistently by (m(") 1).
Denote by I'(a) the matrix resulting from plugging this estimate into I, ,.x2(a):
the sequence r@am)y is asymptotically equivalent to 4[(m4)g1 — 1T, 4.x2(a)
under Jfg”) (a; 0), for any density g satisfying Assumption (A2). Part (i) of
Proposition 3.1 then entails that the statistic

ot (1)
4.3) T*:= Tf(ﬁ(rﬂ);ﬁ(n)(A*r;l(a(n)))’

in the definition of which the matrix f(ﬁ(”)) is used throughout (this includes
the construction of @*), is asymptotically standard normal under any Jfg(") such
that g satisfies Assumption (A2), and asymptotically equivalent, under Gaussian g,
to the Gaussian LAMSSE test statistic (4.2). Summing up, we have established
the following proposition [the local power, in part (iv), readily follows from the
distribution, under local alternatives, of A; see Propositions 3.1 and 3.2].

PROPOSITION 4.1. The test rejecting H'"™ whenever the statistic T* given
in (4.3) exceeds the (1 — «) quantile of the standard normal distribution:

(1) has asymptotic size a;

(i1) is locally and asymptotically most stringent somewhere efficient at the
Gaussian experiment within the class of tests having asymptotic size «, at the
Gaussian experiment,

(iii) in the one-dimensional AR(1) case (p = 1), is locally asymptotically
most powerful, at asymptotic size o, against Gaussian alternatives [of the form
U—_1<a<1Us=0 Jf}n)(a; 02), where f is Gaussian];

(iv) has asymptotic power

(4.4) 1= &(za — 8¢5 [ma)g, — 11T @8] ).

where Zz = £j(a, I, ..x2(a)) is obtained in the same way as £ (a, Ig.x2(a))
in (4.2), but with }t[(mé;)g1 — l]I'g;Xz (a) substituted for %rg;xz’ against alterna-
tives of the form Jfé”)(a; n~1/28), for which (A3) holds and g satisfies (A2).

4.2. A simple heuristic test. Obviously, the main difficulty with the method
just described lies in the derivation of the most stringent direction £*. This
derivation is relatively simple for small values of p, but its complexity is likely to
increase with p. A simpler method, based on a heuristic choice of a direction £ then
may be preferable. Basically, instead of selecting the axis £* of a cone of revolution
in the metric determined by the (estimated) efficient information matrix, one may
choose £1 = (0,...,0,1,...,1), which is the axis of the cone of revolution
circumscribing the positive orthant in the parameter space equipped with the



698 A. AKHARIF AND M. HALLIN

Euclidean norm—with intuitive justification that such direction corresponds to
alternatives under which all components of the vector o2 are given equal weights.
A locally asymptotically most powerful test then can be derived, for the one-
dimensional alternative associated with €1, along the same lines as in the previous
section. Denote by lf the projection of £y onto M+ = M((0, Ip)/ ). After due

substitution of 4" and nﬁf‘n) for a and (my4)g,, respectively, the resulting test
statistic takes the very simple form

~ A—1 .
2(A" @™)) Ty a1,

45) T (A ") = — ’
[DAg"” — 111, T2 (4M)1,]1/2

still to be compared with the (1 — «) standard normal quantile z,. We thus have
the following results (local power readily follows from Propositions 3.1 and 3.2).

PROPOSITION 4.2. The test rejecting H'™ whenever the statistic (4.5)
exceeds the (1 — «) quantile z,, of the standard normal distribution:

(1) has asymptotic size o;
(i1) has asymptotic power

(4.6) 1— <I><Za — & 1p[[(m4)g1 - 1]1;7I‘;;;X2(a)1p]_1/2>

against alternatives of the form Jfg(n)(a; n~—1/2§), where (A3) holds and g satis-
fies (A2).

PROOF. The result follows from Proposition 3.1 and, after some algebra, from
a routine application of Le Cam’s Third Lemma. [J

The main advantage of (4.5) over (4.2) is that it can be expressed in closed form,
and is easily computed. It would be interesting to compare the local powers (4.4)
and (4.6), but, unfortunately, 2; being a complicated function of a, this comparison
in general is not possible. Note however that, in the first-order case (p = 1), the
two tests coincide.

4.3. An order-identification/detection method. Instead of a formal hypothesis
testing approach, one may prefer a more flexible procedure, based on the
inspection of a series of statistics, one for each component of the parameter
o2 under study. Denote by 7;, j =1, ..., p, the asymptotically most powerful
test statistics of the form (4.1) associated with the unit vectors e; = (ej;), with
ejk: =08 prk- k=1,...,p:

. A
2(A0)@EM) T2 (A™)e;

A 1 .
[[mi”) — l]e’jrxz (a(n))ej]l/z

(4.7) T (A% @™)) =
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An inspection of the p values T;, j = 1,..., p, and their comparison with the
standard normal quantile z, allows for the identification of the lags at which
random effects may be present, whereas the tests described in the previous
sections only can detect the global presence of such effects. Such inspection of
course should be performed in the same spirit as correlogram inspection, and the
probability level « cannot be interpreted as a global type I risk any more.

APPENDIX:
A NONSTANDARD Q.M. DIFFERENTIABILITY PROPERTY

In this section, we establish the quadratic mean (q.m.) differentiability property
on which the proof of Proposition 2.1 relies. This q.m. differentiability property

is somewhat nonstandard, as it involves the second-order derivatives f of the
density f.
Letting

14 14
hox(t,10) = / f(z — D ifxi - Zfisvix,')gu(V) dv, x, t' eRP, £ eRY,
i=1 i=1

the log-likelihood (2.6) takes the form

n

Y [loghz,:x, (t*, ) —loghz,:x,(0,0)] +op(D),
t=1

with X; = (X,_1,.... X;_ ), t9=n"12a® and t* = n=4(/s, ... Vs
LEMMA A.0.1.  The function (t{, ..., 13, t})?, ..., (t5)?) > [hox(t*, )]/

is differentiable in quadratic mean at t* = 0 =t* (“from the right,” as far as t° is
concerned ), with q.m. gradient

1( f(Z)—m 7];&) X _lif.(z) X2, ... —l—f.(Z) xz)/
2\ f1R2) " fIR) T 2 f1R) T 2 f12() T
that is,
p —1
(tdltl“r)rlﬁo[z f )2+Z(t ) }
(A1) { hle @ ) = h2, 0>+; f{/(f())ft“xi
i=1

1 f(Z) o 2,2 .
TIFRE L | s
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PROOF. In view of Lemma 2.1 in Garel and Hallin (1995), it is sufficient to
establish partial q.m. differentiability (at t* = 0 = t®) of 4!/? with respect to each
component of t* and ((tf)z, e, (tg)z)’ . The problem for t* reduces (at t =0, of
course) to the classical AR(p) case, treated by Swensen (1985) and Kreiss (1987).
We thus concentrate on q.m. differentiability with respect to (ti‘3 ). Without loss of
generality, we assume p = 1, writing ¢, x, h;., (), and v instead of t, X, h,.«(t, 0),
and v, and g for g,. The proof is inspired by Hajek (1972) [Assumption (A2) of a
nowhere vanishing density allows for some simplification], and decomposes into
three parts.

(i) With the above notation, 72 hyx(t) = fvoi oo f(z — xtv)g(v)dv is

absolutely continuous in a right-neighborhood of # = 0, with a.e. derivative

1 rt o
(A.2) Yox(t) = —/ / f(z —xwv)xZUZg(v)dvdw.
2t w=0 =—00
Indeed, from the absolutely continuity of f and f and Fubini’s theorem, we obtain
o0
O —hO= [ 1fe—xt) - f@lgm)dy
V=—00

:—/oo t f(z — xav)xvda g(v)dv

=—o00 Ja=0

(A.3) 0o [ a

:/ / f(z—xwv)xzvzdwdag(v)dv
=—00Ja=0Jw=0

2 B2 oo
:% b_l/z/ / f(z—xwv)xzvzg(v)dvdwdb.
h=0 w=0 Jv=—00

The value (A.2) of the a.e. derivative follows for each > 0. At ¢ = 0, the right
derivative is defined as the limit, as ¢ | 0, of [A(z) — h(0)]/ 12, for which (A.3)
yields g. L’Hospital’s rule applies, however, leading to

: 2
1}{8[}1(” —h(0)]/1

(A4) = [lllfg Y1)/ ltlf{)l 1i|
o0

= %f“(z)xz/ vig(v)dv = %fn(z)x2

V=—00
since, from Assumption (A2), z > f'(z) is right-continuous. Thus, for all z, this
right derivative at t = 0 exists, and is equal to % f(2)x2.

(i) It follows that 72 Sz:x(t) i= [hz;x(t)]l/2 is also absolutely continuous in a
neighborhood of ¢ = 0, with a.e. derivative
. 1t 2 f(z — xwv)x2v2g(v) dv
(A.5) Szx(t) = — oooo 77 dw.
4t Jw=0 [[y=_o f(z—xtv)g(v)dv]
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L’Hospital’s rule (same reasoning as above) at t = 0 yields

. . 1 j"(z)x2
SZ;X(O) = ZW
It follows that, for all z,
(1 , 1 f(z)x?
(A6) fim| 2 [ () = 550 0] =50 0) = 3 55

(iii) The partial quadratic mean differentiability property to be proved takes the
form

1 2
(A7) lim / { 5200 (8) — 52:2(0)] — Zéz;x(O)} dz=0.
From (ii) above,
1 1 2
{t_z [Sz;x(t) - sz;x(o) } = <_2> ( Sz x )d)\)
1
_2/ sz x(\/_)
for all z; hence, from Fubini’s theorem and (A.5),
00 1 2
/z:—oo{t_z [Sz;x () — Sz;x(O)]} d
1 rt? poo . )
(A.8) =5/ /Z Dz
ot

with ix (f;t) defined in (2.3). The continuity assumption in (A4) implies that this
latter quantlty converges, as t — 0, to

(0= [ O

which, together with (A.8), entails that

o0 2 o0

1
(A.9) limsup {t—Z[sz;x(t)—sz;x(O)]} dz < / [5..x(0))% dz.

t—0 7=—00 =—00

In view of Theorem V.L.3 of Héjek and Sidak (1967) [also in Hajek, Sidak and
Sen (1999)], (A.6) and (A.9) jointly imply (A.7). This completes the proof. [
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