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ASYMPTOTICS FOR GENERALIZED ESTIMATING EQUATIONS
WITH LARGE CLUSTER SIZES

BY MINGE XIE' AND YANING YANG

Rutgers University

Generalized estimating equations are used in regression analysis of lon-
gitudinal data, where observations on each subject are correlated. Statistical
analysis using such methods is based on the asymptotic properties of regres-
sion parameter estimators. This paper presents asymptotic results when either
the number of independent subjects or the cluster sizes (the number of obser-
vations on each subject) or both go to infinity. A set of (information matrix
based) general conditions is developed, which leads to the weak and strong
consistency as well as the asymptotic normality of the estimators. Most of
the results are parallel to the elegant work of Fahrmeir and Kaufmann on
maximum likelihood estimators related to the generalized linear models. The
conditions for weak consistency and asymptotic normality are verified for
several examples of general interest.

1. Introduction. The class of generalized linear models [Nelder and Wedder-
burn (1972)] plays a central role in regression problems with discrete or nonnega-
tive responses. This class of regression models was extended by Liang and Zeger
(1986) to analyze longitudinal or batch correlated data. In biostatistics, the Liang
and Zeger approach is known as the Generalized Estimating Equations (GEE)
method [see, e.g., Diggle, Liang and Zeger (1996)]. In the past, attention has been
paid to methodological development and modeling issues. Most of the work relies
on the asymptotic results presented by Liang and Zeger (1986), in which exact
conditions are not specified. There are some rigorous discussions of estimating
equation approaches, which may be applicable to the GEE setting. For example,
Crowder (1986) studied the (weak) consistency and inconsistency of the solutions
of general estimating equations. Li (1996) used a minimax approach introduced by
Cramér (1946) to identify a weakly consistent root of estimating equations. More
recently, Yuan and Jennrich (1998) developed weak consistency and asymptotic
normality conditions for estimating equations along the lines of Crowder (1986).
However, the estimating equations considered in Crowder (1986), Li (1996) and
Yuan and Jennrich (1998) are not particularly tailored for longitudinal data, and
their asymptotics do not cover cases when the number of observations on each
subject goes to infinity.
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Suppose (y;;, X;;) are observations for the jth measurement on the ith subject,
Jj=12,....m;andi=1,2,...,n, where y;; is a scalar response, X;; isa p x 1
covariate vector, and m; is the cluster size. Assume that the observations on
different subjects are independent and the observations on the same subject are
correlated. For i = 1,...,n, let y;= (yi1, ..., yimi)T and X; = (x;1, . --,Xim,»)T-
Liang and Zeger (1986) used a generalized linear model to model the marginal
density of y;; (with respect to a o -finite measure &),

(H fQijlxij, B, #) = expl{yij0ij — a(®;;) + b(yij)}/é],

where 6;; = u(n;;), u is a known injective function and 7n;; = XiTJ-,B. The vector 8
contains the regression parameters of interest, and ¢ is a nuisance scale parameter.
Under such a model specification, the first two moments of y;; are given by

wij(B) =E(yijlxij, B, ) = a'(6;)),
o (B) = Cov(yij|xij. B.¢) = a” (6;))¢.

Let g(t) = (a’ o u)_l(t); then g(u;;(B)) = XiTj,B. The function g(¢) is the link
function and its inverse function A(s) = (a’ o u)(s) is called the inverse link
function. Of importance are the canonical link functions, where u(s) = s, so
g(t)=(a)"'(t) and h(s) =a'(s).

Denote 1;(8) = E(yilXi,B.¢) = (uit(B)..... wim; (B)T and X;(B) =
Cov(yi|Xi, B, ¢). We write A;(B) = diag(cj(B),...,0,, (B) and A;(B) =
diag(u’ (XiT1 B),..., u’(xiTmi,B)), where, for any vector v, diag(v) represents a di-
agonal matrix whose diagonal elements are the elements of v. Let D;(8) =
Ai(B)A;(B)X; and Vi (B, ) = A}*(B)R; (@)A,"*(B). Here R; () is the “work-
ing” correlation matrix that one can choose freely, which may possibly contain a
nuisance parameter (or parameter vector) «. If R; («) is equal to the true (often un-
specified) correlation matrix R;, then V; (8o, o) = X;(Bo) at the true parameter Sy.

Liang and Zeger (1986) proposed solving the following equations:

2)

3) g:(B) =Y gm.i = Di(BT V(B ) (yi — 1i(B)) =0,

i=1 i=1

which are GEE. Note that (3) and its solution B, is “derived without specifying
the joint distribution of a subject’s observations” [Liang and Zeger (1986)],
that is, without specifying the R;’s. This is an appealing feature of the GEE
approach according to Liang and Zeger (1986), since, as they pointed out, the R;’s
should be considered a “nuisance” in many applications and could be “difficult
to specify.” Because (3) depends only on the first and second moments of the
marginal distributions of the individual observations, under a slightly more general
GEE model setting, the density assumption (1) can be replaced by the first two
moment assumptions, such as in (2); see Zeger and Liang (1986). In Liang and
Zeger (1986), Zeger and Liang (1986) and subsequent literature, the asymptotic
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properties of the GEE estimator B, are studied under the assumption that the
number of independent subjects n goes to infinity and the cluster sizes are finite
with an upper bound.

In this paper, we study asymptotic properties of the GEE estimator B, under a
broader setting when either the number of independent subjects n or the cluster
sizes m; go to infinity. The results, initially developed under the setting where
n goes to infinity and the maximum cluster size m = m(n) = max|<;<, m;, as
a function of n, can either be bounded or go to infinity, were motivated by a
consulting project in which the maximum cluster size is relatively large [see Xie
and Simpson (1998) and Xie, Simpson and Carroll (2000)]. At the suggestion of
the editors, we have also extended our discussion to cover the case when n is
bounded but m — oo, where possible. So, in particular, we are interested in three
large sample settings:

1. n — oo and m = m(n) = maxj<;<, m; is bounded above, for all n;
2. n is bounded but m — o0;
3. m— o0asn— o0.

Under setting 3, in order that the GEE estimators have good large sample
properties, restrictions on the speed at which the maximum cluster size m tends
to infinity are usually required. For convenience, we will rewrite g,(8) in (3)
as g, (B) and Bn as B;,m Also, since m; can possibly be a function of n (e.g.,
m; =n), we shall treat g,,, 1, &m,,2, - - - » &m,,n» the summands of g,,,, as a double
array sequence, when n — oco.

We present in this paper a set of (unified) information matrix-based conditions
which assures the weak consistency, the strong consistency and the asymptotic
normality of the estimator Bum. Most of the conditions parallel the elegant
conditions presented by Fahrmeir and Kaufmann (1985) for maximum likelihood
estimators in generalized linear models. Unlike many papers on estimating
equations [Haberman (1977), Crowder (1986) and Yuan and Jennrich (1998)] and
in the M -estimation literature [Huber (1981) and Yohai and Maronna (1979)], we
do not use a fixed-point theorem to develop our consistency results. Instead, we use
a lemma of Chen, Hu and Ying (1999) on injective functions, leading to simpler
proofs. In addition, because g, (8) essentially contains double summations and
both of them can tend to infinity, the GEE equations g,,,(8) = 0 are not a set of
M -estimation equations in the usual sense. The standard results for M -estimators
are not applicable.

Let Amin(T) (Amax(T)) denote the smallest (largest) eigenvalue of the matrix T.
Also, we denote

(42) Mun(B) = Cov(gum(B)) =Y _ D! BV, (B, 0)Z;(B)V; ' (B, 0)Di(B),
i=1
_ 9gum(B)

(4b)  Dum(B) = T
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n
(4e) Hun(B) =D D] BV (B, )D;().

i=1
The matrix Dy, (B) is not symmetric in general. Let Sy be the true regression
parameter. In the sequel, when the terms of functions of 8 are evaluated at By,
we will suppress fg. For example, we let g, = €um (B0), Hum = Hum (Bo) and
Mnm = Mnm (,30), etc. R

To prove the existence and weak consistency of §,,,, we present two sets of
general conditions. The first set of conditions requires the sandwich information
matrix F,,, = Han;,}lH,,m to be divergent and the second set of conditions
requires the marginal information matrix H,, to be divergent at a rate faster
than t,,,,, = maxliiin{kmax(Ri_l (@)R;)}, in additon to some mild local conditions;
see Section 2 for details. The second set of conditions depends on the R;’s only
through t,,,,. Also, t,,,;, can be replaced by minm, a term that does not depend on
the R;’s, where Xnm = maxj|<j<n Amax(Ri_l(a)).

We establish, as in Crowder (1986) but under a simpler set of conditions, that
the asymptotic distributions of Bum and g, differ only by a scale matrix. So
the asymptotic normality of Bum can be established by establishing asymptotic
normality of g,,,,. When m goes to infinity, the rate of m versus n is critical. When
n is bounded or m goes to infinity too fast, we usually do not have asymptotic
normality of g,,, or Bum without specifying the dependence structure on each
subject; see Example 3.1 in Section 3. When m is bounded above or tends to co
at a limited rate as n — oo, we present a set of sufficient conditions to ensure the
asymptotic normality of g,,, and Bom. This set of conditions relies mainly on the
marginal moments of the individual distributions.

Our condition for almost sure existence and strong consistency is that, when
n — oo and B is in a neighborhood of By, Amin(Dnm (,B)TM;,,ll Dy (B)) increases
at the rate (logn)a(14s) or faster, almost surely, for some small § > 0, plus some
additional minor conditions. A difficulty arises in proving the strong consistency
because €, 1, 8m,,25 - - &my,n, the summands of g,,,, should be treated as a
double array sequence and results like Lemma 2 of Wu (1981) cannot be applied.

The conditions for weak consistency and normality are verified for several
examples of general interest, including (i) linear regression models, (ii) generalized
linear models with regressors in a compact range, (iii) Poisson regression models,
(iv) models with bounded responses, for example, logistic, probit and other
categorical regression models, etc. Although our conditions may not be the best
set of conditions for each specific model, the technical assumptions are very mild
in general and are typically satisfied in practice.

Following Fahrmeir and Kaufmann (1985), we will ignore the nuisance
parameter ¢ in (1) and (2). The estimator Enm remains the same with or without ¢,
and the information matrices defined in (4a)—(4c) and F,,,,, only change by a scale
factor that can often be estimated consistently. For our asymptotic results, we do
not need to estimate the nuisance parameter ¢. Also, to simplify our discussion,
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we will not study the other nuisance parameters « that appear in the working
correlation matrix R;(«). The standard assumption on the estimator of « is that
it is consistent, given B and ¢. The results presented here can be extended to this
case by the standard arguments similar to those used in Liang and Zeger (1986).

Let ® be the natural parameter space of the exponential family distributions
presented in (1), that is, ® = {0]0 < [exp{y0 + b(y)}d&(y) < +o0o}. The interior
of ® is denoted as ®°. Throughout the paper, we assume the following regularity
assumptions:

1. B isin an admissible set B, where 8B is an open set in R”.

2. XTﬁ € g(M) for all B € B and x € X;, where M is the image of a’'(©°) and X
is the set of all possible covariate variables.

3. a’(#) is three times continuously differentiable and a”(0) > 0 in ®°. Also, u(n)
is three times continuously differentiable and u'() > 0 in g(M)°.

4. H,,, and M,,;,, are positive definite when n or m is large.

The rest of the paper is arranged as follows. Section 2 presents general theorems
on the existence and weak consistency of the GEE estimator B;,m Section 3
studies the asymptotic distributions of the GEE score function g,,, and the GEE
estimator B,. Section 4 develops conditions to ensure the existence and strong
consistency of the GEE estimator Enm. Section 5 studies several examples of
general interest in practice.

2. Asymptotic existence and weak consistency of the GEE estimator. In
addition to the regularity assumptions listed at the end of Section 1, we need
some further conditions to ensure the existence and weak consistency of the GEE
estimator. These are:

(Ip)  Amin(Fam) — o0.
(Ly) There exists a constant c¢g > 0, for any r > 0, such that

P(®!, (BM, LD, (B) > coFpm and

Dym(B) is nonsingular, for all B € By, (r)) — 1,

where By (r) = {8 My’ "Hym (B — Bo)| <7}.

In (Ly) (also in the sequel), the square root of a positive definite matrix
is the (unique) symmetric positive definite square root [see, e.g., Gourieroux
and Monfort (1981)]. Also, we define ordering between two square matrices as:
C; > C, ifand only if AT CyA > AT C,A for any vector A, ||A|| = 1. The two square
matrices need not be symmetric. When both C; and C; are symmetric, C; > C;
is equivalent to C; — C; being nonnegative definite.

REMARK 1. Condition (L) is a local condition. One can write

(5) °©nm(ﬁ) = Hnm(,B) + Bnm(lB) + gnm(ﬁ),
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where B, (B) = E{Dum(B)} — Hum(B) and &, (B) = Dpm(B) — E{Dum(B)}.
Exact formulas for B,,,,(8) and &,,,(B) are provided in Appendix A. It is easy
to see that

Bun(Bo) =0 and E{&,,(B)}=0.

Intuitively, if B,,;,(8) is continuous in B and one can apply a uniform law of large
numbers to &,,,(B), Dnm(B) will be close to H,,,,(B) for any B close to the true
parameter fBg. As pointed out by a referee, i)nTm (ﬁ)M;nﬁ Dpm(B) = coFpm in (Ly)
may be replaced by H,,, (,B)M,j,}lH,,m (B) = coFum. The conditions required for
H,,,(8) to be continuous around By are almost the same as those required for
B,.;» (B) to be continuous around Sy. Typically, one would directly verify (L,).

REMARK 2. Clearly, D, (B) is a random matrix. Such a random matrix was
also used by Fahrmeir and Kaufmann (1985) in their conditions (C*) and (S})
when they specify their consistency conditions for noncanonical link generalized
linear models [their H,, (8) matrix].

THEOREM 1. Under conditions (1,,) and (Ly,), there exists a sequence of
random variables B, such that

P(gnm (B\nm) = 0) — 1
and

Enm — fo in probability.

PROOF. For any ¢ > 0, take r =,/ 020—’2, define B,,,,(r) as in (L,,) and let

I

where 0B,,,,(r) is the boundary of sphere By, (r). Under the regularity as-
sumptions listed at the end of Section 1, it follows that the mapping 7 :8 —
M,T,},/ 2gnm(,B) is continuously differentiable. Since Dy, (B) is nonsingular for
B € By (r), it is clear that T is also an injection from By, (r) to T (Bpy(r)).
According to Lemma A of Chen, Hu and Ying (1999), on the set E,;, N
{Dpnm (B) is nonsingular}, there exists a 3nm € By (r) such that g, (Enm) =0.
Therefore, we only need to prove P(Ey;) > 1 — ¢ for n or m large enough. After
that, we prove P(||,§nm —Boll <6)>1—e¢,forany § > 0.
By Taylor’s expansion,

M;nl/z(gnm (,3) - gnm) = M;,}/zo@nm (B) (ﬁ - ,30)
=M, 2D, (B)H, M/2M 1/2H,,,, (8 — Bo),

m

Epm = {w: IMC gl < inf M2 (g (B) — gum)|
568Bllln(r)
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where ,B_ lies between g and Bg. So, for 8 € 9B, (r), we have ,B_ € B, (r) and
HM;rrll/z(gnm (,3) - gnm)” > rzi/z,
1/2 1
where z;, = )me(M/ 1@T (,B)M nm(,B)H IM / /2). By (Ly), P(z >
co) > 1 —&/2 when n or m is large enough By the Chebyshev inequality, we
have

1/2

EMym' " gum |I? p
LY e <col2r)>1— - - )
({” gnm” €] r}) - C()Vz C()r2 2

Therefore,
P(Eum) = P(IM; gl < rz)/?) = P({IM; ) 2g, | < rz/?) 0 {2 > co))
PUIM; Y gl <rcy*}) + P23 > co) — 1> 1 —e.

On E,,,, there exists a GEE estimator Enm € By (r). This implies ||M,:n11/ 2 %
H,. (Enm — Bo)ll < r. Since Amin(Fum) — 00, we have r/Amin(Fum) < & for any
given §, when n or m is large. Therefore, on E,,, we have ||f3;,m (w) — Poll <.
This leads to

P(w:[|Bum(@) = Boll <8) > 1 —e,

when n or m is large enough. [J

The matrix M, in conditions (I,,) and (L,,) depends on the R;’s, and often it
is not completely specified in a GEE model. Next, we study an alternative set of
conditions not depending on the matrix M,,,,,. Although the conditions stlll depend
on the R;’s, the dependence is only through 7, = max;<;<;{Amax(R; (oe)R,)}
and they can be further reduced to conditions free of the R;’s (see Remark 5 for
further details).

Note that M,,, < t,uH,;,. Condition (I,) is implied by the following
assumption:

(I?L) (Tnm)_lkmin(Hnm) — OQ.

When (I,,) is replaced by the stronger condition (I},), we can replace (L) by
the following (L} ), which does not depend on M,;,;,.

(L} There exists a constant ¢y, for any § > 0 and r > 0, such that
P(@nm (B) = coHpyn and Dy, (B) is nonsingular, for g € By, (r)) — 1,
(:B - ,30)” =< (Tnm)l/zr}~

where B, (r) = {8 : |[Hp\w

REMARK 3. In response to a comment by a referee, we note that the

eigenvalues of Ri—1 (o)R; are the same as the eigenvalues of R; 12 ()R; R, 12 (o).
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This can be proved using, for example, Theorem 3.2(d) of Schott (1997), page 88.
By the same argument, the elgenvalues of M, Hnm and M,,m/ Hannm/ 2 are the
same, and the same applies to H,, M,,m and H,, 1/2M,,mH 172
use these results without further comment.

. In the sequel, we’ll

REMARK 4. When D,,,(8) is positive definite, i) (,B)M Dum(B) =
coFym implies Dy, (B) > cl/ 2Hnm. This is an immediate result from a basic matrix
theorem: For p x p matrlces A, B and G, if A and G are positive definite and
AGA > BGB, then A > B [Ni (1984), Theorem 2.5, page 107]. So, when Dy,;,, (B)
is positive definite, the statement in (L)) is weaker than the statement in (L,,).
However, in general, D, (f) is not symmetric and B, (r) C B, (r), hence, neither

(L) nor (L)) can be implied by the other.

THEOREM 2. The results of Theorem 1 hold if (1,) and (L,,) are replaced by
(I¥)) and (L},), respectively.

We first need to prove a lemma.

LEMMA 1. Suppose C is a p x p matrix. For any p x 1 vector A, ||| =1,
we have A\TCTCL > (AT C))2.

PROOF. For any given p x 1 vector A with A, ||A|| = 1, construct an orthogonal
matrix T such that its first column is A. Denote b = I'7 CA. The first element of b
is then by = ATCx and CA =Tb. So, ATCTCA=bTb > b7 = A TC1)2 O

PROOF OF THEOREM 2. The proof is the same as the proof of Theorem 1,
except for a few changes. We consider here the mapping 7*: 8 — H,,, » zgnm B,

1nstead of T:8 — M, 1/ 2g,,m (B). In addition, we replace the ball By, (r) by
By, (r), replace the set E,,m by

E;;m—{ ||H-1/2g,,m||<ﬂaiggn()||H—”2(gnm<ﬂ> gnm)||}

1/2 o

withr = /=P 2p >, and replace the z; by 25 = Amin(Hyn DI (BH, ) Dy Dy (BYHo' ).

By Taylor s expansion, we have
[H,/ (20 (B) = gum) | = 1 (Tam) /2 @) 2,
for B € 9B, (r) and B between B and fy. By Lemma 1 and (L})), we know that
z; > c(z). By the Chebyshev inequality, we have
P (I8, > gum || < cor (Tam)'/2)

—1/2 _
B g’ | w® M) e
- c&ritum &ritum 2
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With these changes, the proof proceeds exactly the same as that of Theorem 1. [J

REMARK 5. The results in Theorem 2 still hold if 7, in (I},) and (L)) is
replaced by mxnm or )»max(H;nﬁMnm), where X,,m = max|<;<p Amax(Ri_l(a)).
The proof is similar to that of Theorem 2. Note, when t,,,, is replaced by mX,,m,
the conditions (I})) and (L)) only involve terms that are related to the marginal
distributions of the individual responses.

Before we end this section, let us give a brief discussion of the conditions (1)
and (I})) on the information matrices. In particular, we examine the divergence
rate of the information matrices F,,,,, and H,,,, in these conditions. Clearly, the
rate depends on the correlation structure of clusters, the choice of the working
correlation matrix, the covariates design matrix as well as the assumed marginal
model, although the correlation structures may not be that critical for consistency
when n — oo. Generally speaking, in the case when n — oo, with some mild
restrictions on x;;, there exists a set of working correlation matrices R;’s such
that both (Tym) ™ "Amin (Hym) in (I¥) and Amin(Fp) in (I,) diverge at the rate n
or faster, regardless of the dependence structure for each cluster and whether
m = m(n) — oo or not; the rates can be nm, depending on the correlation structure
of clusters. In the case when n is bounded and m — oo, our theorems can still
apply. However, in order to obtain a consistent GEE estimator in this case, it is
necessary to impose restrictions on the correlation structure. We use the following
example of a simple linear regression model to illustrate some of the details. Note,
conditions (L,,) and (L)) are trivially true for this model.

EXAMPLE 2.1. Assume the random response y;; follows a marginal regres-
sion model,

(6) yijzxijﬁ+sij forj=1,2,....m,i=1,2,...,n,

where E(¢;;) = 0 and, without loss of generality and to simplify our notation,
we assume that var(g;;) = 1 and the x;; are scalars. The observations between
clusters are independent and the observations within a cluster may or may not be
correlated. The random effects model y;j = u + b; + slf > with random effect b;

/

ij
n T _ n m

are from a compact set and 3 i X; X; =3 i 2L X

and independent error ¢;;, is a special case of model (6). We assume that the x;;

2
ij
pi: jjr = corr(g;j, &), s0 pj, jjr is the (j, j’) element of R;, for j # j’. Under the
current setting, Hy, = Y7 XiTRi_l(Ol)Xi, Mum =31, XiTRi_l(Ol)liiRi_l(Ol)X,'
and Fy,, = (Hnm)z/Mnm-

When n — 00, no matter what value p;, ;- is and whether m tends to infinity or
not, by taking the working correlation matrices Rj(«)’s to be an identity matrix,
we always have Hn_m1 = O((nm)~"). Therefore, the rate of (tyy) "' Hyy in (I¥) is

is of order nm. Denote



ASYMPTOTICS FOR GEE ESTIMATORS 319

at least n or faster. Since (I},) implies (), Fy, in (I,) diverges at the rate of n or
faster. When m tends to infinity and with some special correlation structures, we
can get even faster divergence. For example, in the extreme case that p;; j;» =0, by
taking the R;’s to be an identity matrix, both H,,, (now t,, = 1) in (I},) and Fj,,
in (I, ) diverge at the order of nm.

Suppose now the number of clusters n is finite. Without loss of generality,
one can assume n = 1. In the case when py,;;» = 1, we essentially have only
one random observation, () 'H,n and F,, are bounded, and we usually
cannot get a consistent GEE estimator. Suppose, however, max ;- |py. ;| is
uniformly bounded away from 1. In particular, if py,;;7 = p for 0 < p <1, we
can easily conclude that there exists a consistent GEE estimator if and only
if x1; # x1r, for some j # j’. Further, when |py. /| < p|j—j, for j # j’ and
limy_ o px = 0, taking Ry () = I, we have that H,, diverges at the order of m and
M, < 2max{|x11|2, e |x1m|2} i om—k)pr = o(m?).So F,, diverges and we
can always find a consistent GEE estimator in this case.

3. Asymptotic distribution of the GEE estimator. The asymptotic distribu-
tion of the GEE estimator Enm is closely related to the asymptotic distribution of
the score function g,,,. The following condition is used in establishing the rela-
tionship.

(CC) For any givenr > 0and § > 0,

P( sup  |H V29, (HH, 12— 1) < 5) —1,
BeB, (r)

nm

ES
where B,

norm.

(r) is defined in (L}, ) and the matrix norm is the Euclidean matrix

Note (CC) implies (L}). We have the following result.

THEOREM 3. Suppose that conditions (1), (Ly) and (CC) hold, or the
conditions (I})) and (CC) hold. Then, there exists a sequence of solutions B
to the GEE equation in B}, (r) such that M;,},/ 2H,,m (Bum — Bo) and M,T,},/ 2gnm

are asymptotically identically distributed.

PROOF. By Theorem 1 or Theorem 2, there exists a GEE solution Enm such
that Enm € By (r) or B;,m € B}, (r), respectively. Since B, (r) C By, (r), B;,m €
B}, (r) in either case. By Taylor’s expansion, there exists Bum € B, (r), which
lies between Enm and By, such that

H;Jl/zgnm = H;yil/zgonm (Bnm)(//g\nm - ,30)
= {H;yrll/zi)nm (Bnm)H;y},/z}H},{nz(,B\nm - ﬁO)
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By (CC), the pair H,ll,/n2 (Enm — Bo) and H;nl/ Zgnm are asymptotically identically
distributed. Therefore, the pair M,T,i,/ 2g,,m and M,f,,l,/ anm (Bum — Bo) are asymp-
totically identically distributed. []

In order to establish the asymptotic normality of Brm using Theorem 3, we
need to establish that g,,, is asymptotically normally distributed. Since g, is
a summation of n independent terms, when n — oo, one immediate sufficient
condition is the Lindeberg condition [see, e.g., Billingsley (1986), page 369] on
the double array series Z,,,.; = )»TM,T,}/ZDI-TVZ._I (yi — i) = ATM,Tnll/zgmi,i where
A is any p x 1 vector with ||A|| = 1. However, direct verification of the Lindeberg
condition for the Z,,,.; requires knowledge of the R;’s, which is usually unknown
in a GEE model. It is natural to ask the question whether we can establish the
asymptotic normality for g,,, without specifying the R;’s. If m tends to infinity
too fast compared to n (this includes the case when n is bounded and m — 00),
the answer is no. In these cases, one or a few of the summands in g,,;,, can dominate
the rest. Example 3.1 below demonstrates that, when m tends to infinity too fast,
g.m (however normalized) may not converge to a normal distribution, even if the
marginal distributions of the responses are fully specified and have nice properties.

EXAMPLE 3.1. Suppose {Y;;, j =1,...,m}, for i =1,...,n, are n in-
dependent batches of random variables. The marginal distribution of Y;; is a
Poisson(y;;) distribution with p;; = exp(xiTj B), where x;; = 1 (scalar). The m
observations in the first cluster are identical, and the observations within the other
n — 1 clusters are independent. If we take R; = I, then the GEE score function is

n m
gum(B) =m(yi1 —eP )+ Y (vij —eP).
i=2 j=1
All terms in the above score function are independent of each other. When
m/n — oo, the first term is dominant and g,,,(8) has asymptotically a centered
Poisson distribution (after proper normalization). When m/n — ¢ € (0, 00),
gnm(PB) is asymptotically a linear combination of a centered Poisson distribution
and a Gaussian distribution. In fact, g, () is asymptotically normally distributed,
if and only if m/n — 0.

When n — o0, if m is bounded or m — oo at a limited rate, we can establish
asymptotic normality for g,,,. Next, we present such a result.

For ¢t > 0, let ¥ (¢) be a positive nondecreasing function such that lim;_, 5 ¥ (¢)
= oo and (1) is a convex function. Examples are v (1) = €', or 18 foras >0,
etc. Also, we denote ¢;;; = Amax (M,T,}lHnm) and
(D) — max Amax(H,2DI VD H, 12y,

nm m
1

The following lemma holds.
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LEMMA 2. Under the GEE setting, suppose there exist a constant K
(independent of n) and an integer ng such that, for j =1,2,...,m; and i =
1,2,...n, when n > no,

E[y; v ()] <
wherey? = (y}|, ..., ylm )y = 1/z(y, wi). In addition, for any ¢ > 0,
~ 82 !
(7N Cnm)\nmm|:l//(~—®>:| — 0.
CrnmAnmMYnm

Then, when n — 0o, we have

Mg, — N(O,I) indistribution.

PROOF. We only need to verify the Lindeberg condition for the double arrays

Zumi = =AM, 1/2D-TVI-_1(yi — W), for any given p x 1 vector A, ||A|| = 1. By the
Cauchy-Schwarz inequality,
Zom i < dmax (Mo Hop )W H 2D VEIDHG 20 (v — )TV (v — i)

g D T
= Cnm)‘nmyn(m)l yl* y;k

Here, y(D) =1TH,,, 1/ ZDTV;IDiH;,},/ ZA. Let I(c) be the indicator function of the

set c. By the deﬁnltlon of ¥ (¢) and the Jensen inequality, we have
ZE o i X1 Zum.i| > €)]

&

2

Cnm)\nm yn;n i

Zm;1y?k‘2 Z'lzly?k'
= Cnm nmzmlynml { ! Y v : .ZJ

m; mi
X - ~ Ny
CnmAnmMi Vn(nlz)l
YL B O5D) 2
D =1 &
e )
nm

AnmIMYnm

~ g2

< Kcyminm w<~—(D)> — 0.
CnmAnm™MYnm

—1

-1
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Thus, the lemma holds, by the Lindeberg central limit theorem and the Cramér—
Wold theorem. [J

We introduce the following condition (Ng). Aside from cy,,, condition (Ng)
only involves terms that are related to the marginal distributions of individual
observations.

(Ns) There exists a § > 0, such that E(y;"j)2+(2/ %) is uniformly bounded above,
and

(8) (Cnmxnmm)l+ayyl(£) — 0.
The next theorem proves asymptotic normality of the GEE estimator under
condition (Ny).

THEOREM 4. Suppose the marginal distribution of each individual observa-
tion has a density of the form from (1). If condition (Ns) is satisfied, then, when
n — oo, we have,

M;,}l/ Zgnm — N0, in distribution.

Further, under the conditions in Theorem 3, there exists a sequence of weakly
consistent GEE estimators B, and

(9) M;nl/anm (Bnm - ﬁO) — N(O, I) in distribution.

PROOF. Taking ¥ () = ¢'/% in Lemma 2, we can get the first result. The
second result follows immediately from Theorem 3. [
REMARK 6. In many cases, y,,(f,?) — 0 at the rate O(n~"). Condition (8)
imposes a restriction on the rate of m — 0o, as n — 0o.

REMARK 7. In the nonlongitudinal case with m; =my =--- =m, =1,
(8) reduces to y,,(,,lz ) = 0. This condition is equivalent to the infinitesimal array
condition in Feller’s theorem [see, e.g., Billingsley (1986), pages 373 and 374].
Also, the moment restriction in (Ns) is essentially the Lyapounov condition that
max; E(yi*j)2+‘3/ is bounded above, where 8’ = 2/§ [see also, e.g., Billingsley

(1986), page 371].

REMARK 8. The normalization term in (9) involves M,,,,, which depends on
the unknown covariance matrix X;. Following Liang and Zeger (1986), we suggest
estimating M,,;,, by

n
M, =3 D] BV (B, )V (B, )Di(B)] 5_p,
i=1
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where fi =(y; — /,L,'(/é))(y,’ — Mi(ﬁ))T. Using Theorem 1 and Corollary 2
of Section 10.1 in Chow and Teicher [(1988), pages 338 and 340], one can
prove that under conditions such as those in Theorem 4, M,T,},/ zﬂan;,,ll/ SN

(elementwise) in probability as n — oo. Details of its proof are omitted.

4. Asymptotic existence and strong consistency. As mentioned in the
introduction, when n — oo, we treat the summands g, 1, 8n,.2, -+ &m,,n Of
the score function g, as a double array sequence. It is well known that the strong
law of large numbers does not hold in general for an independent double array
sequence [see Romano and Siegel (1986), pages 112—114]. The next lemma gives
conditions under which a strong law of large numbers holds for double arrays.
It can be viewed as an extension of Lemma 2 of Wu (1981) for single array
sequences. We will use this result to give a strong consistency result for the GEE
estimators when n — oo.

LEMMA 3. Consider a double array sequence,

where, for each n, Zy\,Zn2, ..., Zny are independent and EZ, ; =0, j =
1,2,...,n. Suppose there is a constant cy > 0 (independent of n), such that
maXi<j<p | Zn.i

(10) lim sup M <c a.s.,

n—00 Sn
where s,% =", o*,ii, o*,ii = var(Z,, ;). Let ¢(n) be a positive nondecreasing
function satisfying
(1) ¢((n)/logn — oo when n — 00.

Then, for an A,, — oo which satisfies

(12) lim sup $nd (1) =K < o0,
n—o00 n
we have

1
Iim —
n—+o0o A,

n
ZZ”J =0 a.s.
i=1

The proof of Lemma 3 is quite technical and can be found in Appendix B.
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REMARK 9. InLemma 2 of Wu (1981), (12) is replaced by limsup,,_, . s}?/

n
A, = K < oo. Inadouble array sequence, ¢ (n) cannot be replaced by sﬁ and, also,
¢ (n) should tend to oo faster than logn. This can be seen in a simple example:

Suppose, for each givenn, Z, ;,i =1, ..., n, are n independent random variables,
with (Z, ; 4+ 1/n) following a Gamma(n ', 1) distribution. In addition, the rows
of the array {Z, ;, 1 <i <n},forn =1,2,..., are independent. In this example,

sp = 1 and (10) can be directly verified. Because )" | Z,; + 1 follows an
exponential distribution, 5% | P(|Y7_; Z,.i| > logn) > e~ %0, (1/n) = oo.
Thus, by the second Borel-Cantelli lemma, >} ; Z, ;/logn does not converge
to 0 almost surely. This suggests that Y 7| Z, ; /A, does not converge to 0 almost
surely, for either A, = s,lﬂ'(S or A, = s,¢(n) where ¢ (n) = O(logn).

REMARK 10. Condition (10) cannot be omitted. To see this, we use a
counterexample given in Romano and Siegel [(1986), page 114, Example 5.41(ii)]:
Suppose, for each given n, Z,;, i = 1,...,n, are n independent identically
distributed random variables taking on the values n, 0 and —n with probabilities
1/(2n%), 1 — 1/n® and 1/(2n?), respectively. In addition, the rows of the
array {Z,;, 1 <i <n} forn =1,2,... are independent. Note that EZ, ; = 0,
var(Z, ;) =1, s,% =n and (10) is violated. But (11) and (12) hold for ¢(n) =
(logn)'*%, 8§ > 0 and A, = n. Romano and Siegel showed, however, that

"_1 Zy,,i/n does not converge to 0 almost surely.

Condition (10) places a restriction on the tails of the random variables in the
double array sequence. We call such kind of sequence a strong infinitesimal double
array sequence. The definition provided next is for random vectors.

DEFINITION 4.1. An independent double array sequence of p x 1 random
vectors {Z,1,Zn2, ..., Zy,}, forn =1,2, ..., is said to form a strong infinitesimal
double array sequence if
. maxj<; z,; — Ez, ;
(13) hmsup 1/1251571”” n,i n,i ” <

REMARK 11. When p =1, z,; is a random variable, denote Z, ;, and (13)
becomes

maxi<j<n |Zn,i —BZy | -

(13Y lim sup <c¢o a.s.,
n—o00 Sn
where s,% =y, onz’ ; and o*f’ ; =var(Z, ;). Requirement (13)" is the same as (10).

By the Borel-Cantelli lemma, either

E{max| <<, | Zn.; — EZy.;|¥} ( 1 )
3 =0

Sn
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or

maxi<j<p{E|Zn; —EZ, "} of !
s k - n2+s
n

for some k > 2 and ¢ > 0, is sufficient to ensure (13)’. Note that, for an

independent single array sequence {Z1, Z», ..., Z,, ...}, s,% is a summation of
(although not always) order n. In such a case, if sup;.; -, E|Z; — EZ; |4+ has
an upper bound for some ¢ > 0, then {Z{, Z>, ..., Z,, ...} is a strong infinitesimal

double array sequence.
Before presenting our main result, we first prove the following lemma.

LEMMA 4. If gy, i, i =1,2,...,n, the summands of the GEE score func-
tion g,m, form a strong infinitesimal double array sequence, then

—1/2
M.,/ Sum

I Gogmi#s =0

where the convergence is elementwise.

PROOF. Without loss of generality, we look at the first element of the p x 1
vector M,/ gnm We define g(") =gy, iand Z,; =elM l/zg(") where the p x 1
vector e; = (1,0, ...,0). Then we have EZ, ni=0and sn =y var(Z,;)=1.

Since. 1Znil? < Amax(MzDIE I, maxizizn | Znil < (maxizizn g 1)/

rln/nzl(M,,m) The double array {Z,;, for i =1,2,...,n; n =1,2,...} satis-

fies (10). By Lemma 3, taking ¢ (n) = (log n)1 1% and An =s,¢(n), we have

oM
n—00 (10gn)1+3 - o ]

To prove the existence and strong consistency of the GEE estimator when
n — oo, we employ the following local condition.

(Lg) In a neighborhood of By, say N, there exists a constant ¢y > 0 (independent
of n) and § > 0 such that, when n — oo,

mln( nm (ﬂ)TM;nﬁ:Dnm(ﬁ)) > Co(IOgn)2(1+5)
and

Dpm(B) is nonsingular as.foreN.

REMARK 12. When Dy, (B) is symmetric, (Ly) is implied by
)Mmin{o(Dnm(,B)} > Co)xl/z (Mnm)(log n)1+5 a.s.

max
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This is comparable to the strong consistency conditions (Ss) and (S}) of Fahrmeir
and Kaufmann (1985) for multivariate generalized linear models [note, in their
setting, D, () is symmetric and H, = Mn = F,]. The difference is that, in
their conditions, (log n)1td is replaced by A8 (M,,). Under our setting, the term
(logn)'*? is unavoidable; see Remark 9.

max

Now, we state our main theorem for existence and strong consistency of the
GEE estimator.

THEOREM 5. Suppose gu, i, i = 1,2,...,n, the summands of the GEE
score function g, form a strong infinitesimal double array sequence. Under
conditions (Ly), there exist a sequence of random variables Enm and a random
number ng, such that

P(gnm(gnm) =0, foralln> nO) =1,
and when n — 00,

Bum — B a.s.

PROOF. For any & > 0, define B(e) = {B:118 — Boll < ¢}. By Taylor’s
expansion, there exists a ,B_ between 8 and Bg such that M,f,,ll/ 2(gnm (B) — gum) =
M’ Dy (B)(B — Po). Therefore,

. 1/2 _
(14 inf IM,, Y2 (20m (B) — g )| = e inf AH{m(@nmw)TM,ml,@nm(ﬁ)).
By Lemma 4, we have
1/2
(1Y ST
BT when n — o0 a.s.
(logn)1+‘3

So, by (Ly), when # is sufficiently large,
(15) M, 2gumll < inf M, /2 (g8 (B) — um)|  ass.

BEI By (r)

By (L), D (B) is nonsingular. Under the regularity assumptions listed at the
end of Section 1, the mapping 7 : 8 — M_l/ 2gnm (B) is a smooth injection from
Byum (r) to T (B (r)). According to Lemma A of Chen, Hu and Ylng (1999), (15)
1mphes that almost surely there exists a ,Bnm € B(e) such that g, (,Bnm) = 0. Note,
ﬁnm € B(e) implies ||ﬁnm Boll < € and, hence, the strong consistency conclusion
also follows. [

As in Section 2.1, condition (Lg) can be reduced to be stated only in terms of
H,,, and D,, B).
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(L¥) Inaneighborhood of By, say N, there exist a constant cp > 0 and some § > 0,
such that, when n — oo,

Aomin (D (B) THL Dy (B)) = coTum (log )21 +9)
and
Dypm(B) is nonsingular  a.s. for B € N.

Similar to Remark 11, when Dy, (8) is symmetric, (L}) is implied by

Amnin {Dum (B)} = cor 2 (M) (tum) /*(logn)! T8 as.for e N.

THEOREM 6. The results of Theorem S hold if condition (Ly) is replaced
by (LY).

PROOF. The proof is similar to that of Theorem 5, except that we prove

. . —1/2 . —1/2 .
the inequality ||Hnm/ |l <infgeyp(e) ||Hnm/ (81m(B) — 8um) || here. Details are
omitted. [

In a special case when m = m(n) is bounded above as n — oo, to get a strong
consistency result, Lemma 2 of Wu (1981) can be used, along with the following
two alternative conditions:

I Amin(Mp) — oo for some § > 0, when n — 0.
(Ly)*? In aneighborhood of By, say N, there exists a constant ¢y > 0, independent
of n, such that, when n — oo, for any p x 1 vector A, [|A] =1,

ALD,(BA = coAl/DT(M,)  as.forBeN.

THEOREM 7. Suppose m = maxi<j<,m; is bounded above by a finite
constant, independent of n. Under conditions (I5)*P and (Lg)*P, there exist a
sequence of random variables B, and a random number ng, such that,

P(g:(B) =0, foralln > no) = 1

and when n — 00,
Bn — B a.s.

The proof is similar to the proofs of Theorem 5 and Theorem 6, and is therefore
omitted.

Finally, before we end this section, let us briefly consider the case when n is
bounded and m — oo. Without loss of generality, we can assume that n = 1, that
is, we only have one single cluster. In this case, the score g1, is a weighted sum of
dependent random variables. We need to establish a strong law of large numbers
similar to Lemma 2 of Wu (1981) for the weighted sum of dependent variables. To
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do so, obviously, we need to make assumptions on the dependence structure. There
are many ways to do so. For example, one could impose martingale assumptions
or mixing conditions on the dependent sequence. Or, one can use Serfling’s (1970)
stability results where only moment conditions are assumed. This is a topic that
deserves further development. As the first step in this development, we provide
below a result for a special set of dependent sequences that is fairly common.
Here, the goal is to provide simple and “easy to verify” conditions, rather than the
best set of conditions.

Suppose, for j = 1,2,...,m, y; is the jth observation of a cluster of
m dependent random variables, and 1 ; and o; are its marginal mean and marginal
standard deV1at10n respectively. Denote e; = (y; — uj)/oj. We assume that, for

any] < ] ,
(16) EeZel < pji_j(BelEe})'/?,

where Y Pl p,i/ ? < o0. We set po = 1. We have the following lemma.

LEMMA 5. Supposeey, ..., ey are a dependent sequence satisfying (16) and
Ee? <M < oo, for j=1,...,m. If we have a set of double array coefficients
{am,j, j=1,2,...,m}, a constant K and an integer ly, such that

m
Z <K<+oo form=lp,lop+1,...,
j=1

then we have

lim Z] 14m,je€j
m— +00 m1/4(]0gm)(1+5)/4

The proof of Lemma 5 can be found in Appendix B.
In the case when n = 1 and m — oo, we employ the following condition to
assure the almost sure existence and strong consistency of a GEE estimator.

(Ly)Bm In a neighborhood of By, say N, there exists a constant ¢y > 0,
independent of m, such that, when m — oo,

hanin (D1 (B) M, D1 (B)) = com'/(logm) 1 +972
and
D1m(B) is nonsingular almost surely.
THEOREM 8. Suppose in a single cluster the dependent responses satisfy

(16) and the fourth marginal moments of (y1; — w1;)/o1; are bounded above. If
Amin(R1) > ¢y, for some constant c| > 0 independent of m, and condition (Lg)gm
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holds, then there exist a sequence of random variables Bm and a random number
my, such that

P(glm(,B) =0, f()r all m > I’I’lo) =1
and when m — 400,

Bm — Bo a.s.

PROOF. The proofis similar to that of Theorem 5, except that we use Lemma 5
instead of Lemmas 3 and 4. In Lemma 5, for any given p x 1 vector A, ||A]| =1,

we take a;,, j to be the jth element of the 1 x m vector )»TMl_ni/le Vl_l(a)Ai/Z.

“12 1/2p—1p—1 41/2 _1/2 -
So Yi_yay, ;= ATML, X A APRTTRTT AT A XM, P < A (R <

Cl 1 < 00. From Lemma 5, we have
M 1 ﬂ
lim s ” 1mgm( )”

m—oo mi/A(logm)1+9/4 =0.

The rest of the proof proceeds as the proof of Theorem 5 from (14) on. [

5. Examples. In this section, we first consider the linear regression model
and show how consistency and asymptotic normality can be deduced in this
special case. Subsequently, we provide some corollaries of general interest for
cases of practical importance, such as (i) marginal generalized linear models with
compact covariate set, (ii) marginal Poisson regression models and (iii) marginal
generalized linear models with bounded responses (binomial or polytomous
regression models). Poisson, binomial and polytomous regressions are the most
commonly used models in categorical data analysis, and the assumption of
covariate regressors in a compact set is satisfied in many applications.

EXAMPLE 5.1 (Linear regression model). Suppose the jth individual re-
sponse in the ith cluster follows a linear regression model,

T
Yij =X,‘jﬁ + &ij,

where ¢;; need not have a normal distribution. Without loss of generality, we
assume Ee;; = 0 and var(g;;) = 1. It is easy to see that the score function is

g (B) = _XIRi ' (@)(yi — XiB),

i=1

and the information matrices in (4a)—(4c) are

Dum (B) =Hym(B) =Hum =Y X Ri™ (@)X,
i=1
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and

n
My =Y X/ R (@)RR; (@)X,
i=1

Under this model, conditions (L), (L}) and (CC) are trivially true. By
Theorems 1, 2 and 3, if either (I,,) or (I}) is true, then there exists a consistent
GEE estimator Bnm, and M,T,,l/ 2Hnm (Enm — Bo) and M,T,,l/ Zgnm are asymptotically
identically distributed. Although conditions (I,,) and (I}) allow no general
reduction, both M,, and H,, have a simpler form and they do not depend on the
value of fy.

Ife; = (g1, ..., simi)T, fori =1, ..., n, are normal random vectors, M,f,,ll/z X
H,, (Enm — Bo) will follow a standard multivariate normal distribution. Otherwise,
we can use condition (Ns) to ensure the asymptotic normality of the GEE
estimator B,. In particular, (8) can be implied by

(17)  (cpmm) ' TOREHO max Amax(XH, XT) — 0 for some § > 0.
<i<n
In the nonlongitudinal case, each subject only has one observation (i.e., m; =
my=---=m,=1)and X; isa 1 x p vector XiT. In this case, both (I,,) and (I})
reduce to

n
T
Amin<2xixi ) — 00
i=1

and (17) reduces to
-1

n
Y, = max x?(inxiT) x; — 0.
i=1

1<i<n

These are exactly the conditions for consistency and normality of least squares
estimators in the standard linear regression models [cf. Eicker (1967)].

Next, we provide several corollaries of general interest for some cases of
practical importance. Unlike the case of the linear regression models, we need to
verify conditions (L,,) or (L), as well as condition (CC). The verification of (L,,),
(L}) and (CC) involves lengthy calculations in most cases. To save computing
effort, we provide in Appendix C (Theorems Al and A2) sufficient conditions
for (L), (L) and (CC) under a very general setting. In particular, we make the
following (smoothness) assumption on the functions a(6) and i (n):

(AH) kUl for1=1,2,3,4, are bounded, where we denote
a® (6;) }
a”(0;) 17

ki = sup m.aX{
BeBi(r) U
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R (nij)

K2l = su maxHiua"(H) },

i ﬂeB;lP(r) i Ly
(g,

kBl = sup max{ a”( i) }

BeB(r) 1 a’(6;;)
and

A (i)

k4 = sup max{ — "0 }

" ey i U (mip)}? Y

Assumption (AH) is usually satisfied in commonly used models. In models with
canonical link functions, kl!l = k(2] and k3] = k4] Theorems A1 and A2 are
developed under assumption (AH) and they are used to prove the corollaries in
this section.
Define
-1

yn(,%)z max max XiT~Hnmx,~j.
I<i<nl<j<m; "

We also adopt the notation

maxi <i<n {Amax (R} (@)))
min; <i<n (Amin(R; ' (@)))
In models with canonical link functions, «,,, = 1. When R; (o) = I, we have
T = 1.

First, we consider the case of generalized linear models with compact
regressors. We introduce the following assumptions:

T 2
Knm = IIIIE;X {”/(Xij,BO)} and 7y, =

(C1) The covariates {x;;, j=1,...,m;,i=1,...,n},forn=1,2,...,arein a
compact set X with x” 8 € ®° for any x € X and 8 € 8.
(C2) (1) Tnm)\max(H;Wl,) — 05
(i) 72, Tummysm — O.
(C3) (cnm)H‘S(X,,mm)ZMyn(?n) — 0 for some & > 0.

We have the following corollary.

COROLLARY 1 (Generalized linear model with compact regressors). Suppose
assumptions (C1) and (C2) hold.

(a) There exists a sequence of random variables Enm such that Enm — o in

probability, and M;,,I,/ 2H,,m (,B;Lm — Bo) and M;,,I,/ 2g,,m have the same asymptotic
distribution.
(b) If, further, (C3) is true, then, when n — 00,

M;nl/anm (B\nm - ,30) — N(O, I) in distribution.
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PROOF. It is clear that (C2)(i) is (I})). To verify conditions (L)) and (CC),

we use Theorem A1(ii) and Theorem A2 provided in Appendix C. Note that
a”(u(t)), h'(t) and their first and second derivatives are all continuous functions.
By conditions (C1) and (C2)(i), it is easy to see that, for g € By, (r), a”(6;)),
1a® @)1, 1a® (6;;)], and |h"(n;;)| are uniformly bounded above, and a”(6;;),
|h'(n;j)| are uniformly bounded below away from zero. Therefore, assumption
(AH) is true, K, is bounded above, and by, = min; {al%-} is bounded below away
from zero. Thus, by Theorem A1(ii) and Theorem A2, conditions (L)) and (CC)
hold. By Theorem 2 and Theorem 3, part (a) follows.
To %)rove the asymptotic normality in part (b), we use Theorem 4. Since
E(yi*j2 1+ 8)) is a continuous function of x;; for each i, j, it is easy to see
from (C1) that it is uniformly bounded above. Also by (C1), there exists a finite
constant K such that yn(nlz ) <K Xnmmy,,f,(q)f . Hence, (8) can be implied immediately
from (C3). By Theorem 4, part (b) follows. [

REMARK 13. One can prove that (C2) and (C3) are implied by the following
conditions (in terms of the design matrix X;):

(C2)/ (nnm)3mi)\max{(zlr'l:1 X,‘TXi)_l} — 0.
(C3) Tm ComAnm) Tom> T hmax (1, XiTXi)_l} — 0 for some § > 0.

REMARK 14. In the nonlongitudinal case, my = my = --- = m, = 1.
Condition (C1) is exactly condition (R})(i) of Fahrmeir and Kaufmann (1985).
In addition, both conditions (C2)" and (C3)’ reduce to

n
,\min<Zx,TXi> — o0.
i=1

This is the same as condition (R})(ii) of Fahrmeir and Kaufmann (1985).
In a marginal Poisson model, the marginal distribution of y;; is

(18) P(yij = y) = exp(y6;j — 1) /L,
where 0;; = xiTj,B. Under this model, a(6;;) = elii, wij(B) =e", h(n;j) =e" and
nij =bij-
We consider the following assumptions:
(P1) (1) Tnmkmax(H;y},) — 0;
(i) 72, TammYam — O;
(iif) {sij(Bo) =exp(x];B0), j=1,...,myandi =1,...,n} are bounded
above and below away from zero.
(P2) (o) Gopmm)* 3y, — 0 for some 8 > 0.

COROLLARY 2 (Poisson model). Suppose model (18) and assumption (P1)
hold.
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(a) There exists a sequence of random variables Enm such that B;,m — Bo in
probability, and M;nl/ 2Hnm (B;, — Bo) and M,T,,l/ 2g,,m have the same asymptotic
distribution.

(b) If, further, (P2) is true, then, when n — 00,

M;nl/anm (Enm — Bo) — N(0,I) in distribution.

PROOF. Itis clear that (I%)) is (P1)(i). Under model (18), i = 1 and k], =1,
for [ =1,2,3,4. Assumption (AH) is trivially true. By Theorem Al(ii) and
Theorem A2, we have both (L) and (CC). By Theorem 2 and Theorem 3, we
can conclude part (a).

To prove part (b), we only need to verify condition (Ng). Note that, for § in (P2),
there exist some constants Cy, C> depending only on § such that E(y;kj)z(l“/ 9 <

C1 + Ca{pij (Bo) I HY/DF! which is uniformly bounded above by (P1)(iii). Also,
it is clear that (P2) implies (8). So, (Ns) holds. By Theorem 4, we have the
asymptotic normality result in part (b).

REMARK 15. In the nonlongitudinal case with my =my =--- =m, =1,
condition (P1)(i) becomes Amin(H,;,) — oo, which is exactly the same as
condition (D) of Fahrmeir and Kaufmann (1985). Both conditions (P1)(ii) and (P2)
reduce to y,l(o) = max; {XiTH; Ix;} — 0, which is equivalent to (3.14) of Fahrmeir
and Kaufmann (1985). Although we require an extra condition (P1)(iii) here from
Corollary 2, we find that condition (P1)(iii) can be dropped in the nonlongitudinal
case, based on a step-by-step examination of the proofs of our related theorems.
But, in general, in order to ensure the uniform convergence and asymptotic
normality in the longitudinal case, we need to have condition (P1)(iii).

Finally, we consider regression models with bounded responses. These include
binary and categorical regression models. First let us verify assumption (AH) for
some special models:

Logistic  regression models. In this case, a(8;;) = log(l + by,
h(nij) =e"i /(1+e"/) and 6;; = n;;. We have k,[,lr,]l = k,[lz,,]l = SUPge pi () MAXj, j [1—
2h(nij)| <3 and ki) = kL) = supge gy maxi j [1—6{h(nij) (1 —h(nij)}| <2.5.
So, assumption (AH) holds.

Probit regression models. In this case, a(6;;) = log(1 + i), h(n;j) = (1)),
and h(n;j) = a’(6;;). Note that u'(n;;) = W(n;;)/{P ;)1 — ®(n;j))}. Here
®(n;j) and W(n;;) are the cumulative distribution function and the density
function of the standard normal distribution, respectively. From direct computa-
tion, k) = supge pe(y max; j |1 — 20 (), kb = supge gy max;, {0 1P (i)
x (1= ®mi))/Ynij)}, kB = SUPge g () Max;, j |1 — 6P (1;;) (1 — P (n;;))| and
KW = suppe gy maxi [0 — 1{@ij)(1 — @ ()} /{¥(0;j)}*]. Note that
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limmj_) +oo Mij 1P (i) (1 =D (n;;))/ W (nij) = 1. All the above terms are bounded,
and hence assumption (AH) holds.

Models with canonical link functions. In this case, 6¢;; = n;; and
kb = ko = supgepeymax; jlaPD@O)I/1a" @), k)l o= k) o=

SUPge i (r) MAX;, j la@® 0;)1/{a"(©;j)}. When y;; has a density function of
form (1), we have [a®(6;;)| = [E(yij — wij)*/¢? and [a® ;)| = |[E(yi; —
uij)4/¢3 — 3{a/’(0ij)}2/¢|. If the responses y;; are bounded, then Ia(3)(9,-j)| and
la® (6; ;)| are bounded, for each fixed scale parameter ¢. So, if one assumes
that a”(6;;) are uniformly bounded below away from zero, then assumption (AH)
holds.

We set the following assumptions:

(B1) Responses y;; are bounded.
(B2) (1) Tnm)\max(H;y},) — 0;
. 0, .
(i1) n,%mtnm/cnmmyn(m)/mmi,j o*l%. — 0.

~ 0 .
(B3) cnmkﬁm/cnmmzyrfn)/mlni,j ol%. — 0.

We now have the following corollary.

COROLLARY 3 (Generalized linear model with bounded responses). Suppose
assumptions (AH), (B1) and (B2) hold.

(a) There exists a sequence of random variables B;,m such that B;,m — Bo in
probability, and M,T,,l/ 2Hnm (3,, — Bo) and M;nl/ Zgnm have the same asymptotic
distribution.

(b) If further, (B3) is true, then, when n — 00,

M;nl/anm (Bnm - ,30) — N(O, I) in distribution.

PROOF. Under assumptions (AH) and (B2), the results in part (a) are
immediate by Theorem A2, Theorem 2 and Theorem 3. In order to prove the
result in part (b), we directly verify the Lindeberg condition on the double
arrays sequence Z,, ; = ATM,fnli/zDiTVi_l(yi — ui). By (B1), y;“Ty;k is uniformly
bounded above by m/min; ; o*l%. times a constant. So, by (B3), for any given

¢, when n is large enough, yf“Ty;" < &2 {cpmh?

; m/(nmmyn(g,)}_l. Therefore, when
n— 00,

n
Y E[Z, X1 Zum.i] > ©)]
i=1

n 2

~ T T &
< chm)xannmmVn(I%)E[y;k 3’?1{3’}k Vi > —= © ” -0
i Cnm)\annmmynm
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By the Lindeberg central limit theorem and the Cramér—Wold theorem, part (b)
follows. 0

REMARK 16. In the nonlongitudinal case, with m; =mp =--- =m, =1,
conditions (B2)(ii) and (B3) are implied by K,,myn(o) /min; ; al% — 0. In the
special case of probit models, 1i1‘n,7ij_>ioo u’(nij)/lnijl = 1. In such a case, if
min; o*l%. is bounded away from zero, then conditions (B2)(ii) and (B3) become
max;; {|n; j|2}y,,(0) — 0. This is equivalent to condition (A)(c) of Fahrmeir and

Kaufmann (1986).
APPENDIX A

Formulas for B,,,(8) and &,,(8). One can write B,;,(8) = B%(ﬁ) +
B2l (B) and &, (B) = 61)1(B) + €21(B), where

Bl (8) = Y X[ diag[R] @A 2(B) (i — wi(B)]GI (BIXi,
i=1
B (8) = Y X[ Ai(BA; (AR (@) diag [(1i — i ()]G (BIXi,

i=1

1/2

el g) =S XTI diag [R; (@A > (B)(yi — u)]GH (B)X;

i=1
and

€2 =3"XTA:(BA*(BR; ! (@) diagl(y; — 1) IGP(BX;.
i=1

Here, Gl[k] B) = diag(q,;(nij), e, q,;(nij)), for k =1, 2, where
q1 (i) = [d" @)1 2h (i), Qi) =[d" G172,

and their derivatives

, B a®®;) 2 h" (nij)
ql(’h}) - _EW{]/I (nl])} + [a//(eij)]l/Z’
1 a®@;)
ghnip = —~ 2O iy,

20a"(6)P
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APPENDIX B

Proof of Lemma 3. For ¢ = ¢o/(K + 1), denote ZZJ. = 7, 1(Z,,;] <
cA, /¢ n)), where I(C) is the indicator function for set C. We have

1 & 1 & 1 &
o > 7= o Y EZ¢ + - Y (z5,—EZ; D+ Z(zn i—Z)
ni=1 ni=1 ni=1

=I1+1+11.
Since EZEJ =—-EZ, ;1(|1Z,,i| > cA,/¢(n)) and by (12), we have

==Yz | <y Bz 11201 = o)
=\ i - i i c
AT T A T T e ()

¢1(42)ZE|Z,,,| — 0.
noji=1

Take Wy, ; = (Z,, ; —EZ;, )¢ (n)/A,. We have E|W,, ;|* = E|W,, ; PIW,. 72 <
E|W,.i1?(2c)' 7% < an’id)(n)z(Zc)s_zA;z, for s > 2. By the Bernstein inequality
[Chow and Teicher (1988), page 111],

2r(l

n

Z(z —EZ$)
P( Z Wh.i
i=1

2
i exp { —[edp(n)1?

2072y var(Zy ¢ (n)?) [ Af + ep(n)]

> s(b(n))

A

chexp{—fd)(n)} <,
n=1 2

for some finite constant C. The last two inequalities follow from (12) and (11),
respectively. Therefore, by the Borel-Cantelli Lemma, |I/| — 0, a.s.

Finally, Z, ; — ZZJ- = ZniX(Z, ;| > cA,/¢(n)). By (12), when n is large
enough,

K—I—l
B n¢>()

Z(zn, A9

Z | Z i [1(| Zn.i| > cosn)

<(K+1)MI max |Z, ;| > cos
- sap(n)  \isiza "

By (10), I(maxi<j<p |Zn.i| > cosp) = 0, a.s., when n is large enough. Thus,
[l — 0, a.s.
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Proof of Lemma 5. Note that

m
E(Zaw%‘)
j=1

2 2
= Z A, eQm, jam kaAm sE(egejeres) + 4 Z A ¢Am, jam kEejejex
l<j<k<s L#£j#k

4

m
2 : 2 2 2.2 2 : 4 4
+6 am’jamszejez + am’jEej
j<t j=1

=I4+1+114+1V.
First, we have

2.2 2 2\1/2
I< Y lamcllam,jllamkllam | (Eeje; - Eege)
l<j<k<s

172 1/2
<K Y lamellamllamillamslo) 0. %

l<j<k<s

—|—a
1/2 0 2
_K<Z|am,e||am,,-|p/_g) <K<Z . /_@)

I<j I<j

K(Sans) (Te?)

Slmllarly, 11 < 4K la,%“)Z(zp 5, I < 6K (X" " ag )* and IV <

K (Zl 14 m l
So, by the Markov inequality and for a constant C,

~c)
2 2

(B e (£

<Cm™! (logm)_(1+5).

2

IA

Y1 am, je;
m/*(log m)(1+9)/4

IA

Therefore,

i T1am,jej
X:: 1/4(10gm)(1+5)/4 < Fo00.

The result follows by the Borel-Cantelli lemma.
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APPENDIX C

Sufficient conditions for (L), (L},) and (CC). Denote

ynm_max{xlj nmx,j} and ynm_tnmmax{x Hnmx,]}
iJ

)Mmax(H;niMnm) , maxl<l<n )\max(R (Ot)R )
W = —————— and w —
)Mmin(Hannm) )\mln(Hannm)

—1 D
. < < max| <j<p {Amax (R; (‘X)Fi)}
It is clear that wy,,;, < w,,, < i< 2 Vo (R, (@R

First, we present three lemmas. Lemma A.1 provides conditions under which
H,,,(B) is close to H,,;,,. Lemma A.2 provides conditions under which B,,,,(8)
is dominated by H,,,,. Lemma A.3 provides conditions that assure the uniform
convergence of &,,,(8).

LEMMA A.1. Suppose assumption (AH) holds.

@) If wpmknmYnm — 0, then, for any p x 1 vector A, ||A|| =1, we have
—1/2 -1/2
supﬂEBnm(r) |)\' Hnm Hnm(lB)H / A= 1| :0(1).
(i) If Tumknm ¥y —> Ov then, for any p x 1 vector A, 1] = 1, we have
—1/2 —1 2
suPpey, () |+ Hon' B (B)Han “A = 1] = o(1).

LEMMA A.2. Suppose assumption (AH) holds.

G If wnm(n’nm)zlcnmynm — 0, then, for any p x 1 vector A, |A|| =1,
—1,2 M./2
SUPg ey 14T M’ "B (BYH My A} = o(1).
(i) If (nnm)zlcnmyjm — 0, then, for any p x 1 vector X\, |A| = 1,

SUPges o ih B! "B (B Mo * 2} = 0(1).

LEMMA A.3. Suppose assumption (AH) holds. Denote by, = min; J 3
Vpm = min{(nm/w!, Y2, (M) /bym} and v}, =min{(nm)'/?, (mm,,)b;1}.
G If Unmwnmﬂanannm — 0, then, for any p x 1 vector A, ||A| =1,

1/2
P )12 Mo'> €um (BYHL (BYMu A} = 0, (1).
i) If v, TnmknmV,, — 0, then, for any p x 1 vector A, |A| =

-1/2 -1/2
supge s (/1A Hon'*€un (BYHiun/ *2} = 0,,(1).

REMARK A.l1. There is an extra price one needs to pay for uniform
convergence in Lemma A.3, compared to the assumptions in Lemmas A.l
and A.2. In Lemmas A.1 and A.2, we essentially require y,,, or y,;, — 0; But

in Lemma A.3, we require y,, or y,;, — 0 faster than either (nm)_l/ Zorm™!.
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We have the following two theorems. Theorem A.1 provides sufficient condi-
tions for (L,,) and (L)), and Theorem A.2 provides sufficient conditions for (CC).
THEOREM A.l. Suppose assumption (AH) holds.

(i) [Sufficient conditions for (L,)]. If the conditions of Lemmas A.2(i) and
A.3(1) hold, then

P{DL (BM,) Dy (B) > coFym, forall B € By (r)} — 1.

(ii) [Sufficient conditions for (LY)]. If the conditions of Lemmas A.2(ii)
and A.3(ii) hold, then

P{Dyum(B) = coHpm, for all B € B, (r)} — 1.

THEOREM A.2 [Sufficient conditions for (CC)*]. If the conditions of Theo-
rem A.1(ii) hold, then condition (CC) holds.

Proofs of Lemmas A.1-A.3 and Theorems A.1-A.2. In the sequel, we use

the notation ’7;'(1(‘)) and 9,-(;)) to denote the values of 7;; and 6;; evaluated at By,

respectively. First, we state two additional lemmas, which are used in the proofs of
Lemmas A.1-A.3.

LEMMA B.1. Suppose assumption (AH) holds.

(1) When kpmVnm — 0, we have

Vi
a”(6;;)
Sa.nm = Sup max max

4 W) = 12
,BEB,,W, (r) 15,‘5" lfjfmi a//(ei(;))) H ((Knm ynm) )

and

=0 ((Knm Vnm)l/z)-

h'(nij)
Oh.nm = Sup max max N 1
,BEBnm (r) 15[5" lijimi hl(’l,j )

(ii) When kpmy,, — 0, we have

N a”(6;j)
8gnm = Sup max  max |——g —
BEBum*(r) I<isnl<j<m; a”(@ij )

1 } = 0((Knm)/:m)1/2)

and

N h'(nij)
Spnm = sSup max max N
BEBux(r) | 1Sisn1=j=mi | b/ (n;.7)
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LEMMA B.2. Suppose assumption (AH) holds.

(1) When kumYnm — 0,

3) 0; a(3)(9i@)) {a//(e(o))}3/2
sup [%{h’(mﬂ}z—Ty{h'mfj’))}Z 70)}
peBun(r) | @ (0if)] [a”(0;;) 1/ (' (2
= O((Knmynm)l/z)
and
"o n ©) 1 9.(9) 3/2
S |: : (TIU)I 2 (rf)l] : el UO)} :| ((Knmynm)l/z)
petun) LI @I (@@ 12 ]| (@)

(i) When kpmy,;, — 0,

3)(p 0 10 (0\13/2
= O((knm Vi)'
and
1" (nij) W' e O

su — = O ((knmy,)"?).
peBan(® [ La” @12 far @21 (e (")) } ()

PROOFS OF LEMMAS B.1 AND B.2. One can directly prove the results by
Taylor’s expansion around the true parameter 89 and assumption (AH). Details are
omitted.

—1/2pr 12,

PROOF OF LEMMA A.1. Write 55 (8) = ATH,,,,/ "H,,,, (B)H,n
Cauchy—-Schwarz inequality and direct computation, we have

A —1.By the

12(8) — Al ART ()AL (B) A (B)XH Y2

ZXTH_I/ZXT Ai(B)A

12
(ZATH 12XT A AR (a)Al/ZA,-XiH;,}l/ZA>
i=1

x [ZATH;”ZX A BAPBR ()

i=1
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x (A7 A(BATPAP(B) — DR (@)
< (A7 ABAT AP () — 1)
172
xR (@) Ai (A 2<ﬁ>xiH;n£/2x}
< Gran)"/? max [ {167 81 (BA A2 (8) = 11)]

_ _ 1/2
x [ATHV/2H,, (B)H; /20"

< (Tum)'/? max max
1<i<n 1<j<m;

’ ey 172
h' (i) {" ©;j >} _ 1H 1 12
h/(ni(;))) a”(eij) ( + |S)\(,B)|) .

Similarly, we have

n

_ 1/259— 1/2 1/2 —
S OATH,Y2XT A AR @A) (B) A (B) — A} A)XH,Y
i=1

i m

<m!/2 max max
I<isnl<j<m;

W omy) {a”<9i5°)>}”2 |
w g La" @)

Therefore,

sup  [s:.(B)]

BEBum (1)

1/2
5{(1+ sup[5:()) +1}
BEBum (r)

X (7Tam) /2 sup {max max |:

BEBum (r) Isi=nl<j=m;

(i) {a” 65 }1/2 . }
w ) La"6;) ’
h' (i) {“”(Qi(ﬁ)) }1/2 — 1|} =0
@) La" @) T
W™ La"@;

So, sup BE By (r) |s,.(8)] = o(1). This proves part (i). The proof of part (ii) is similar.
O

From Lemma B.1(i), we have that

(7'1',,m)1/2 sup {max max |:

BEBum(r) I=iznl<j=m;

PROOF OF LEMMA A.2._ By Taylor’s expansion, (u;(8) — ui) = A; (B) X
A (B)X;(B — Bo), where B is between S and Bp. So, by Lemma B.1 and
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Lemma A.1, there exists a constant C; such that

n

> (ui — 1 B) AT P BRTAT(B) (i — i (B))
i=1
Amax (R; () ayVA—1 }
= (ﬁ ﬁO) H,, (,3)(,3 ﬁO) m )me(R (@) max{Al (IB)AZ (ﬁ)}
< Citpm(B — ,30) Hnm(ﬁ)(ﬁ —Bo) = Cir nnm)‘max(Man;nb-
By the Cauchy—Schwarz inequality, assumption (AH) and Lemma B.1, there
exists a constant Cy such that, for any 8 € By, (r),

XTM—I/ZB[I] U (6)H; IMI/ZK

—ZATM 12X GM () AT diag{ A X;H I M1/22)

x RN @A 2(B) (i — i (B))
_ _ 1/2
< 7 2T M, P, M, 2]
1/2
1/2

x [Z(ui —w(B) AP BRT @A (B) (1 —m(ﬂ))}

i=1
x max Ll 1824776001} max ([P R E ]

=< C27Tnmwyll/ (Knm¥Vn )1/2

In the above inequalities, we used the facts that SUPge B, (r) )Lmax{lAi_z(,B) X
{A~(ﬁ)}_1/2G[1](ﬁ)|} <k 1]/2 + km and the absolute value of the jth diagonal
element of diag{A; X;H,, IM,%)»} is less than u (nlo))(xTF X;j N2,

ij= nm
Similarly, there exists a constant C3 such that, for any B € By (r),

)\.TM 1/2B[2] (,B)H_IMI/ZX

— ZXTM;,}/ZXTA (BA) 2 (BR; (@) diag{A; X;H,, ) M/21}

x ATYG(B) (i — i (B))

= C37Tnmw 12 (Knm)/nm)l/2

where we use the fact that supsep,, () Amax{1{8:(8)) (A (B 26 (B} <
k,[ll,,]l /2. This proves part (i). Part (ii) can be proved in the same fashion. [J
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PROOF OF LEMMA A.3.
AI'm12g (BH ML/,

1/2

—ZxTM 12XT G AT diag{A X H MY 20R @) AT 2 (yi — i)

+ZxT M, 2XT A AR (@)
x diag{A;XH, M2 ATTGP (y; — i)
_ - 1
+ZATM,,,;/2x? ATGHB)

x diag{AXH I MUZAOR @) (A2 (8) — A, 2) (i — i)

1/2

+ZXT M, 2XT (A (BA*(B) — A AR (@)

x diag{ AXH; MY A7 G (8) (yi — i)

+ZATM;,}/2X? A6 ) - GY)

1/2

x diag{A; X H,, ) MI/20R 1 (@)A; (v — i)

+ZXT M, 2XT A AR (@)

x diag{A;XiH,, My AT (GP(B) — G (vi — i)
=I+10+1I+1V+V+ VL
Note that I and /I do not depend on . By direct computation, we have
n
_ 11 . —
P =Y E{™™, X G A
i=1

x diag{ A X;H,!M!/2R ()A;'/?

i — )}’

_ZATM 12XT G AT diag (A X H, I MY20R (@) R R ()
i=1

x diag{A; X H, L (M2 ATIGHIX M 12
= (ky[lln],/z + k[z])zkmax(M Hnm) max )\max(R_ (Ot)R )nanannm

’
= C4wnm77annm Ynm
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where Cy is a constant given by (AH). By the Chebyshev inequality, I = 0,(1).
Similarly, we can prove Il =o0,(1).

In Ill, 1V, V and VI, the terms involve the parameter §. To prove uniform
convergence, we need to separate the terms with y; — u; from the terms that
involve 8, so that expectations can be applied directly to the terms with y; — w;
We consider here two different ways to separate the terms with y; — u; and the
terms with 8, which correspond to the two terms in the definition of vy,,,. The v,
has the same rate as the first term when m — oo very fast (compared to n), and it
has the same rate as the second term when m is bounded or m — oo at a slow rate
(compared to n). Next, we prove the uniform convergence for //1. The proofs for
1V, V and VI are similar.

By the Cauchy—Schwarz inequality, assumption (AH) and Lemma B.1, there
exists a constant Cs such that

E{ sup |III|2}
BEBum (r)

n

=E{ sup [ZXTM;,}/ZXiT 161 (B) diag{A X H,, ) M1/20)
BEBum (r)

2

_ —1/2 1 2
xR @A B) — AT (i — lm} }
< (um) (AT MV 2], M 20 )
1/24— —1/2
{Z(y, u) AT PR @AY (yi—/m}
X sup max [kmax{(Ai_l/Z(,B)Ail/Z— 1)2}
/3€Bnm(r)1 i<n
— — 2
rmax ((GH(B)A2A7 %))
X hmax {diagl A X; Hipy MY/ 23121
n -
< C5(Tm)* hmax My Hu) D (R (@R Yem v,
i=1
<GCs (nm)w;lm(ﬁnm’(nmynm)z-
Alternatively, we set s;; = e; R_ (oz)(A_l/z(,B)Al/2 )ZRi_l(a)eij,where €

is the m; x 1 indicator vector w1th the jth element equal to 1. By the Cauchy—
Schwarz inequality, assumption (AH) and Lemma B.1, there exists a constant Cg
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such that

E{ sup |III|2}
BEBum (1)

n
= E{ sup [ZXTM#X? Gl
BEBum (r) i=1

X diag{Ri_l(oe)(Ai_l/z(,B) —Ai_l/z)(}’i — i)}

2
X XiH;nﬁM;gfx} }

< max [ {Ri (@)} (A" M., 2y M., 20}
—2,—1/2y2
X sup makaax{Gl[l](ﬁ)Ai 2Ai /}
BEBum(r) !
n
xE] sup ZXTM,ll,/?fH_lXTAi

nm 1
ﬁeBnm(r)izl
. _ —-1/2 —1/2 2
x diag R (@) (A7 2(8) — A7) (i — i)
X A,-XiH;,,llM}l{nZk}

< Co max [Mmax (Ri (0} Amax (M Hum FE{(yi — )" A7 (v — 1)}

1<i

n
x sup > ATMyH, XTA; diag(sit, ..., Sim; }AiXiH;,}lM}l{fx}
BEBun(r) | j=1
_ —-1,2 1/2
< Co m(Tum) Wby sup  max {AmanlA;(BA; 1))
BEBum (1) I=i=n
<Csg mb;niw;lm(n'nm)z’(nm Ynm-
Hence, E{supﬂeBnm(r) I} < max{Cs, C6}VumW,,, TnmKknmYnm- By the

Chebyshev inequality, supgep, () | =0,(1). U

PROOF OF THEOREM A.l. By (5), Lemma A.2(i) and Lemma A.3(i), we
have, for any p x 1 vector A, ||A] =1,

sup {12 M 2D (BYH L (BYML23 — 1]} = 0, (1).
BEBum (1)
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By Lemma 1, it is easy to see that the result in part (i) is true. Part (ii) follows
similarly, using the representation given in (5), Lemma A.2(ii) and Lemma A.3(ii).
O

PROOF OF THEOREM A.2. Note p is fixed. We only need to prove that, for
any k,[, 1 <k,l <p,

sup ef {Hi, /2Dy (BYH,Y? — Ihey| = 0,(1),
BEB;,, (1)

nm

where e; is a p x 1 vector with the kth element equal to 1 and the other elements
equal to 0. Using the representation given in (5), the proof can be broken into three
pieces. The proofs of these three pieces follow as in the proofs of Lemma A1(ii),
Lemma A2(ii) and Lemma A3(ii), respectively, except that A must replaced by ey
or e; in the appropriate places. Details are omitted. []
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