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This article provides a historical overview of the philosophical, theoreti-
cal and practical contributions made by John Tukey to the field of simultane-
ous inference. His early work, culminating in the monograph “The Problem
of Multiple Comparisons,” established him as one of the pioneers in the field,
investing it with both academic respectability and a focus on practical prob-
lems. For many years afterward, Tukey only published sporadically in the
area but remained convinced that multiplicity issues were of fundamental im-
portance. During the last decade of his life, Tukey again devoted substantial
attention to multiplicity, experimenting with different graphical representa-
tions of multiple comparison procedures and exploring the implications of
new approaches to controlling family-wise error rates. He leaves a rich legacy
that should engage and inspire statisticians for many years to come.

1. Introduction. The problem of multiplicity or simultaneous inference is
concerned with making multiple inferences from a single set of data as well
as the appropriate interpretation and use of the results. Though not always
explicitly recognized, the problem occurs widely and often. The proper treatment
of multiplicity, which should take into account the “tradeoff between extracting
belief from data and payment of error” [Tukey (1991)], is regarded by many as a
critical component in a disciplined program of scientific research.

While the issue of multiplicity was recognized by some investigators long ago,
efforts to grapple with the problem were rather scattered until the post-WWII era.
John Tukey is rightly considered one of the pioneers of the field. His early work,
culminating with the informal release of the magisterial “The Problem of Multiple
Comparisons” (PMC) in 1953, did much to shape the philosophy, mathematical
development and practical applications of simultaneous inference.

Philosophy. Tukey proposed a proper framing of the problem of multiplicity,
examined different kinds of error rates, their advantages and disadvantages, and
considered the appropriate targets of inference as well as the quantification of the
uncertainty surrounding those inferences.

Mathematical theory. Tukey developed techniques and probabilistic inequalities
to prove properties of certain methods. He also suggested strategies for generating
different methods for controlling error rates and provided heuristics for their
operating characteristics.
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Practical applications. Tukey developed a variety of methods, as well as a
number of graphical techniques and reference tables to support their use. In
addition he published interesting applications as exemplars of good statistical
practice.

We claim, and attempt to substantiate in the following section, that not only
was PMC the first full treatment of the subject, but also it largely set the terms
for research and practice in the field for the next 35 years. Indeed there is hardly
an aspect of the problem that has arisen over the years that was not addressed,
often quite thoroughly, in the pages of PMC. No other work or writer has had
comparable influence.

PMC summarizes Tukey’s work in the field of multiple comparisons over the
period 1947-1953. A long dry spell (in this area) followed as his attention shifted
to other topics (many of which can be traced back to PMC), but he resumed
intensive activity in this field during the last decade of his life. Throughout the
second half of the twentieth century, the field of multiple comparisons has been a
source of continuing debate at both the philosophical and methodological levels.
Even when Tukey was less active in the area, he was strongly identified with
a particular perspective on the topic and engaged in vigorous debate with other
scholars (particularly David Duncan and Henry Scheft¢).

In his second period of intense involvement, Tukey revisited the major
philosophical issues, usually reconfirming his original views but with some
elaboration based on the progress made since PMC appeared. He continued to
suggest new methods while critiquing and applying various procedures developed
by other investigators. Most importantly, perhaps, he set out an agenda for the
future that identified the critical problems along with plausible directions for
researchers and practitioners to explore. It is entirely possible that his later work,
some of which has been published posthumously, will have a substantial impact
on the field’s future trajectory.

We will review in some detail John Tukey’s contributions to this important
area in theoretical and applied statistics. The structure of our presentation reflects
the two separate periods of sustained activity. Section 2 highlights Tukey’s
contributions to simultaneous inference during the 1950s. Section 3 provides both
a chronology of Tukey’s later work and a more thematic discussion of his activities
and influence on the field, spotlighting the 1990s. Some concluding remarks are
offered in Section 4.

2. Early contributions.

2.1. Introduction. Our attention will be focussed on PMC, since Tukey’s
earlier work was fragmentary while the later work (from this period) expanded
on specific issues. PMC was released in mimeograph form, and made available to
others only by request. The fact that it went on to have such a powerful influence
on the field is therefore both noteworthy and surprising. The interested reader is
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referred to Shaffer (1995) for further details or to Tukey [(PMC), pages 104-110].
It should be said at the outset that our claim for Tukey’s contributions and influence
is much greater than his.

It is not the intention of the present account to claim or suggest that novel statistical
ideas or components are here assembled into a coherent and workable approach to the
multiple comparison problem and its relatives. The ideas and components are almost
all old and well known, the novel feature is their assembly.

(PMC), page 104

While this may be true in a narrow sense, the value of Tukey’s work lies
in the fact that his methodological innovations were embedded in a theoretical
framework and a philosophy of practice that offered both the academic statistician
and the practitioner a coherent approach to simultaneous inference.

2.2. Philosophy. While PMC does not provide a pithy characterization of
the multiplicity problem, it illustrates how the problem arises in the context
of scientific investigations. For example, Tukey notes that carrying out 250
independent tests of significance, each at the 0.05 level, will result on average
in 12.5 apparently significant results when the intersection null hypothesis of
no effects is true. Thus obtaining (say) 18 significant results is no cause for
exultation [(PMC), pages 75-76]. This sort of argument, later dubbed “The Higher
Criticism,” found repeated use for pedagogical purposes.

Tukey believed that statisticians have much to learn from the activity of able
scientists. The latter usually carry out exploratory analyses of their data, often
desiring to attach some statistical meaning to their results. While remaining
appreciative of serendipity, Tukey sought to discipline it in order to make it more
valuable. He argued that it is important to distinguish between the two main
sources of statistical problems: Administration or “for the moment” versus Science
or “for the record” [(PMC), page 163]. Equally important is the recognition of the
different principal aims of statistical activity, which he defined as action, indication
and sanctification [(PMC), page 169]. Confidence intervals are identified with
indication and significance tests with sanctification and action.

In an extended discussion of the pros and cons of confidence and significance,
Tukey expresses a clear preference for confidence where it is feasible. In deciding
among confidence procedures, he is comfortable using conventional statistical
ideas to guide the choice [(PMC), pages 241-260]. Figure 9 on page 250, which
illustrates the operating characteristics of three “pure” procedures and various
combinations, anticipates the graphical representations employed extensively in
the report on the Princeton Robustness Study [Andrews et al. (1972)].

Tukey repeatedly emphasized that intelligent control of multiplicity depends
crucially on the appropriate choice of the family of statements, be it all
determinations, all pairwise comparisons, all contrasts, all linear combinations, or
the like. Different methods may prove useful for different purposes and one role for
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the statistician is to provide guidelines for use based on the nature of the problem
and the aim of the analysis. Tukey goes on to establish some general criteria that
multiplicity procedures ought to satisfy, providing a rationale for each. Later on,
this framework is employed to attack the problem of developing new procedures
and establishing their properties.

It is worth noting that Tukey’s long running debate with Duncan on this
topic was a philosophical one, focusing on what is meant by control of the
overall error rate in a situation of multiplicity [(PMC), pages 276-278]. On
the other hand his disagreement with Fisher on the use of LSD was more
methodological and concerned with the extraction of maximum useful information
from the data at hand for a given simultaneous error-rate. He assigned credit to
Fisher for recognizing and addressing the problem of simultaneous inference in
special situations. Finally, his continuing argument with Scheffé on the use of
F -projections had both philosophical and methodological components.

2.3. Methodology. Part A of PMC presents an extended discussion of different
situations in which the problem of multiplicity arises and illustrates in “cookbook”
fashion how these can be treated. Tukey introduces the different error-rates per-X
and X-wise (where X stands for experiment or batch) for both significance tests
and confidence intervals. He asserts that the practical difference is usually small
but that recognizing the difference is important in the development of theory
as well as in guiding practice. The latter point is elegantly illustrated in a later
discussion on the relative robustness to deviations from normality for per-X and
X-wise procedures [(PMC), pages 100—102].

Undoubtedly, Tukey is best known in this field for his introduction of the Wholly
Significant Difference procedure (WSD, HSD, T-method) to control the X-wise
error rate for a set of multiple comparisons or multiple determinations. In the
former case, he demonstrates the connection to the distribution of the Studentized
range, which had already been tabulated in part by May (1952) and in the latter
case, to the distribution of the Studentized maximum modulus. Using a clever
argument, he goes on to show how this control can be easily extended to the case
of all contrasts and, ultimately, to all linear combinations, using what he called the
Studentized augmented range.

He proceeds to devote substantial effort to developing tables and algorithms,
rendering these methods usable by the practitioner. In the process, he derives
approximations to the distribution of the Studentized range that extend May’s
tables beyond 20 determinations and to different error-rates. He also constructs
tables of the ratio of the percent points of the WSD to the corresponding percent
points of Student’s ¢ for different combinations of degrees of freedom and numbers
of determinations. While these are of mainly historical interest now, the latter
tables do provide some qualitative insight into the effect of taking multiplicity into
account. The entire effort is a tour-de-force that illustrates a number of techniques
that are now associated with Tukey’s work. We return to this point below.
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Work in this direction is continued as he employs both analytic and graphical
techniques to compare the properties of different methods, such as the WSD with
Scheffé’s method. Perhaps of greater interest for the contemporary statistician is
Tukey’s extended treatment of the effect on various methods of departure from
normality, principally the introduction of one or more outliers [(PMC), pages 225—
240]. This approach combines painstaking analysis and insightful approximations.
The results point to a conflict between the forces of efficiency and robustness;
Tukey argues that,

The eventual choice will depend mainly on a judgment of the balance between these
two forces.
(PMCO), page 241

Still not satisfied with these results, Tukey goes on to examine the effect of
inhomogeneity of variance, coming to the conclusion that the procedures that
are more robust against nonnormality will also offer some protection against
inhomogeneity of variance.

In Part F of PMC, Tukey begins to explore different kinds of simultaneous
inference procedures, including the so-called gap-straggler methods, and provides
a general framework for generating what he terms “multi-layer significance
procedures” that include the Newman—Keuls procedure as well as the procedure of
Duncan as special cases. His intent is to clarify why such procedures work well in
some circumstances and to encourage the development of methods that have better
operating characteristics than those that were available.

2.4. The tale of Tukey’s Conjecture. Tukey’s practical approach to statistical
methodology did not explicitly rely on mathematical sophistication. Yet his work
has been a continuing source of interesting problems in mathematical statistics,
which may be of special interest to the readers of this journal. This is best
illustrated by tracing the efforts expended in proving the validity of “Tukey’s
Conjecture” (first discussed in PMC) concerning the use of the Studentized range
in the unbalanced case.

Consider k groups, with n; observations from a N (u;, aiz) population, and let
Xi,i=1,...,k, be the group means. When all sample sizes and all variances
are equal, that is n; = n and 0; = o, a simultaneous set of confidence intervals
for all pairwise comparisons of the form u; — u; was given by Tukey using the
Studentized range distribution 7':

1 1
Xi—Xj— Tk,v(a)\/;s swi—pj=Xi—X;j+ Tk,v(ot)\/;S,

where S is the pooled estimator of ¢ based on v degrees of freedom.

When the n;’s are not equal, Tukey (1953) suggests a modification to the above
set of confidence intervals, replacing n with (n; +n;)/2. He conjectures that this
modification “... is apparently in the conservative direction...,” for all values
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of k and n;. Kramer (1956), unaware of Tukey’s suggestion, proposed a similar
modification (in a somewhat different setting) that, unlike Tukey’s work, was
published. Hence, the modified procedure for the unbalanced case is referred to
as the Tukey—Kramer procedure.

In a doctoral dissertation, under Tukey’s supervision, Kurtz (1956) proved the
inequality for k = 3, and for nearly equal n;’s when k = 4. Based on these and
other specific configurations he expressed “a strong feeling” for the truth of the
conjecture for all k. However, without a mathematical proof, the truth of the
conjecture was doubted by others. Miller [(1966), page 87], in his influential book
on multiple comparisons, advised against the use of the “inexact” Tukey—Kramer
procedure, and suggested instead using the Scheffé procedure.

This overly conservative advice resulted in many efforts to solve the unbal-
anced pairwise comparisons problem; for example, Spjgtvoll and Stoline (1973),
Dunn (1974) and Hochberg (1974, 1975). Nevertheless, the Tukey—Kramer proce-
dure gives shorter intervals, and its validity was further supported by the results of
a simulation study by Dunnett (1980). Consequently, in spite of the warnings, it
steadily gained popularity among practitioners.

Theoretical interest in the validity of the conjecture remained high and, after
25 years, it began to yield. Using long and complicated proofs, Brown (1979)
proved the conjecture for the cases 3, 4 and 5. He then presented it as a difficult
dissertation problem to Tony Hayter. Accepting the challenge, Hayter (1984) was
able to prove the 31-year-old conjecture for all k in a remarkably short time, even
though the argument remained complex. Interestingly, a shorter proof has not been
found.

In PMC Tukey also made a more general conjecture that whatever the
correlation structure of the estimators of the means, Tukey’s procedure always
yields conservative confidence intervals. Specifically, consider the case that the
vector of means X, which estimates i has a covariance matrix V, so the variance of
(X; — X )/ o?is dij = vjj +vj; — 2v;;. In this setting Tukey’s procedure amounts

to replacing the term \/g in the original set of confidence intervals for the balanced

case by ,/d,;/2 , retaining the same critical value T} , (o).

As in the case of the diagonal matrix, this conjecture has received considerable
attention. Hochberg (1974) considered the case when the d;; are all equal, and
showed the procedure to be exact. Brown (1984) showed it to hold for k£ = 3.
Hayter (1989) extended the proof of the conjecture to those matrices V for which
there exist constants ay, az, ..., a; such that d;; = a; +a; for all i and j. In spite
of such advances the ultimate proof still awaits the courageous investigator.

Even though the conjecture remains to be settled for the comparison of
univariate means, a generalized Tukey conjecture has been advanced. It generalizes
Tukey’s procedure and the relevant conjecture to the pairwise comparisons of
multivariate means. Some results and a discussion of the open problems appear
in Seo, Mano and Fujikoshi (1994).
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2.5. Observations. (a) Tukey repeatedly addresses a number of issues of
concern to the practitioner. These include choice of error-rate (per-X or X-wise)
and choice of procedure. With respect to the latter, early on he makes the point
that most of the procedures that had been introduced were admissible so that the
choice among them would have to depend on the target of inference as well as on
auxiliary optimality criteria.

For example, he argues that if interest centers on pairwise comparisons the
WSD is to be preferred to Scheffé’s method since it yields substantially shorter
confidence intervals. This comparison, elaborated in Tukey (1951), is included in
comments on a paper by Scheffé. Implicit in this discussion is the notion of error-
rate budgeting and the concomitant advice that it is best to spend one’s allowable
error-rate wisely by a proper choice of the family of interest or setting priorities
among sub-families.

(b) Tukey is willing to make definite, if provisional, recommendations based on
the most thorough analysis possible at the time. In fact, most of the last section
of PMC, Part F, is devoted to a review and comparison of different procedures
(and even families of procedures) with clear guidelines for practice. These include
thoughtful warnings on the consequences of the failure of the usual assumptions
and prescriptions for how to proceed. Indeed, with few exceptions, it is only in
the face of severe departures from normality that Tukey recommends Scheffé’s
procedure because of the robustness of the F-statistic.

(c) PMC is noteworthy for a number of characteristics we now associate with
Tukey, including the heavy use of graphics and clever data analysis. It also
addresses a number of issues that occupied Tukey’s attention throughout his career,
such as the robustness of statistical procedures to failures of the usual assumptions.
Tukey’s attack on the problem anticipates his well-known paper on sampling from
contaminated distributions [Tukey (1960)] as well as the use of sensitivity curves
in the Princeton Robustness Study [Andrews et al. (1972)].

(d) In PMC, Tukey expresses strong feelings on the role of the statistician and
statistical reasoning in scientific work. Professional statisticians, he believes, have
much to learn from the methods of good scientists and also bear an obligation
to offer alternatives (or entirely new approaches) that meet real needs and are
practical as well. Another obligation of the statistician, as a methodological
generalist, is to develop insights of value to the scientific enterprise.

(e) The role of mathematics in statistics is also addressed [(PMC), pages 183—
184]. Tukey argues that while it is clearly useful in deriving proofs and insight,
mathematics cannot do it all. To paraphrase Tukey, statistics is a part of science
and not a branch of mathematics. The discussion of how one is to choose among
admissible procedures (referred to above) is an example of where the statistician
must draw on more than mathematics to make an appropriate decision.
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3. Tukey’s later contributions to multiple comparisons.

3.1. A chronology. From the early 1950s to the early 1990s Tukey published
only two papers on multiple comparisons. Nevertheless, throughout this period
Tukey remained convinced that the issue of multiplicity was a fundamental
problem of practical importance. This was reflected, for example, in his including
topics related to multiple comparisons as a part of his famous Statistics 411 class
on Data Analysis at Princeton University, as well as in the Advances in Data
Analysis course which he taught intermittently over 20 years to scientists and
engineers.

His article in Science [Tukey (1977a)] was titled “Some thoughts on clinical
trials, especially problems of multiplicity.” Highlighted in that paper are the
problems of (i) multiple endpoints, (ii) the selection of subsets of patients for
which the new treatment seems to offer improvement, and (iii) the question of
multiple looks at intermediate points during the course of the experiment (‘“Not-
Very-Sequential designs”). The paper does not introduce any major new idea or
methodology, but it emphasizes the importance of a well-designed clinical trial,
with a clear protocol specifying in advance the decisions to be taken.

Further evidence of the importance that Tukey attributed to the problem of
multiplicity, comes in his discussion of the Bayesian framework for clinical trials:
“I have yet to see a Bayesian account in which there is an explicit recognition that
the numbers we are looking at are the most favorable out of k. Until I do, I doubt
that I will accept a Bayesian approach to questions of this sort as satisfactory”
[Tukey (1977a)]. Recent Bayesian efforts in this direction are reviewed by Berry
and Hochberg (1999).

While multiplicity was considered by Tukey to be of great practical importance,
at this stage he appeared to feel that the philosophy and methodologies were quite
mature, and little remained to be done in this area—a point he explicitly made
in his 1977 talk at the Annual Meeting of the American Statistical Association.
However, as one can see from his Statistics 411 class notes, he never stopped
trying new ideas. For instance, he elaborated a pedagogical example from the
PMC, pages 7477, into “The Higher Criticism.” On the other hand, handouts from
that period discussing the higher criticism [Tukey (1977b) and Tukey, Bloomfield,
Braun and McNeill (1978)] never became full fledged studies, suggesting that he
did not believe this was a fruitful avenue to pursue. Interestingly, this approach
has been explored by Donoho and Jin (personal communication), yielding some
asymptotic results.

In 1983 Tukey made another excursion into the field of multiple comparisons,
triggered by an invitation to write for the Lord festschrift volume. In this work,
Braun and Tukey (1983) explored the implications of recent developments in the
area of stepwise multiple testing, by Marcus, Peritz and Gabriel (1976), Begun and
Gabriel (1981) and Ramsey (1981), while building upon older ideas in the problem



1584 Y. BENJAMINI AND H. BRAUN

of pairwise comparisons. The goal was typical for Tukey: to develop stepwise
methods simple enough for use in practice.

By 1989 he was again deeply involved with multiple comparisons. His renewed
interest, probably sparked by the invitation to deliver the Rupert G. Miller
Memorial Lecture, resulted in a presentation which bore the title “The philosophy
of multiple comparisons” [Tukey (1991)]. It is also possible that this interest grew
from his involvement at the time in the statistical analyses of two substantial data
sets, characterized by large scale multiplicity problems. The first was the analysis
of data from NAEP, involving all pairwise comparisons among the states. The
second was the analysis of breeding experiments in which a multitude of properties
are compared among many strains, planted at many different sites.

In chronological order, following “The philosophy of multiple comparisons”
came “Graphic comparisons of several linked aspects” [Tukey (1993a)] which
is devoted mainly to the display of the results of simultaneous analysis, and
“Where should multiple comparisons go next?” [Tukey (1993b)]. Tukey had
become interested in the new criterion of the False Discovery Rate [Benjamini
and Hochberg (1995)], and this was reflected in the studies that followed. See also
Tukey’s remarks in Tukey (1995) and in Brillinger, Fernholz and Morgenthaler
(1997). The analysis of educational data resulted in a 1994 technical report by
Williams, Jones and Tukey, finally published only in 1999, and in “Controlling
the proportion of false discoveries for multiple comparisons—future directions”
[Tukey (1995)]. The first part of the analysis of the multiplicity problems in
breeding experiments was completed in 1995 [appearing in print in Basford and
Tukey (1997)] and culminated in the publication by Basford and Tukey (1998).

Through his last year he continued to work and write on these and related issues:
“Improved multiple comparison procedures for controlling the false discovery
rate” with Charles Lewis [Lewis and Tukey (2001)], “A sensible formulation of
the significance test” with Lyle Jones [Jones and Tukey (2000)] and a somewhat
unconventional encyclopedia entry on multiplicity [Jones, Lewis and Tukey
(2001)]. In the following sections we discuss the principal themes of this body
of work with little attention to chronological order.

3.2. The purpose of inference. QOver the last two decades the practice of testing
statistical hypotheses has become increasingly controversial. Hypothesis testing is
often contrasted with different, recommended practices of statistics. By favoring
confidence intervals (or exploratory data analysis, graphical methods, Bayesian
statistics, etc.), practitioners implicitly reject the use of significance tests.

Tukey’s approach was different. Objecting to the point hypotheses treated in
the Neyman—Pearson formulation, he went to great lengths to warn that pure
hypothesis testing is unrealistic: the “null hypothesis” never holds, at least to some
decimal point. Therefore, an “error” does not occur as a result of erroneously
rejecting a never true null hypothesis. On this issue he sounded his infamous
observation: “Statisticians classically asked the wrong question—and were willing
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to answer with a lie.” [Note: All quotations in this section are taken from Tukey
(1991), page 100.] At the same time, he valued significance testing as an important
practical tool. How could the two points of view be reconciled? By viewing
hypothesis testing through the lens of the three-decisions-rule: “What we should
be answering first is ‘Can we tell the direction in which the effect of A differs from
the effect of B?’ In other words can we be confident about the direction from A
to B? Is it ‘up,” ‘down’ or ‘uncertain’?”

It might appear that this is just a matter of rewording. It was not for Tukey:
“Unless we learn to keep what we say, what we think and what we do all matching
one another, and matching a reasonable picture of the world, we will never find our
way safely through the thickets of multiple comparisons.” He certainly adhered
to the consequences of this approach. In his later writings he repeatedly referred
to 5%, as the 2.5% directional error, and therefore was satisfied with an overall
level of 10%. He also suggested the “perinull situation,” which models negligible
effects by a low variance normal distribution centered at 0, and used it in simulation
studies.

Still, confidence intervals were viewed as the more important inferential tools,
primarily because they excluded a large set of values from the set of possible
values for the parameters. But even here his ideas about the role of confidence
intervals were somewhat unconventional. He treated the roles of the two ends of
the confidence interval differently. If A — B was definitely (significantly) positive,
then the “larger part of the follow-up question is what is the minimum size
of A — B. The smaller part, usually, answers: what is the maximum size of A — B.”
It may be of interest to relate these ideas to the growing theoretical interest in
nonequivariant confidence intervals, which can be tailored to the specific target
of inference [Hayter and Hsu (1994), Brown, Casella and Hwang (1995) and
Benjamini, Hochberg and Stark (1998)].

Why should the goal of establishing confidence intervals ever be compromised
by settling for confident directions? Two answers are given [in Tukey (1991) and
in Jones and Tukey (2000)]: The first argument is that sometimes the scale on
which A and B are compared is not quite fully developed and does not yet have
an interpretation of its own. Thus a quality-of-life questionnaire, summarized on a
scale of 1 to 34 may be enough to establish which of two treatments is better, but
has no importance or relevance of its own. The second argument is again practical,
depending on the fact that by restricting the inference to confident directions more
sensitive analyses are feasible.

3.3. The hierarchy of error-rates. Almost every time Tukey wrote about
multiple comparisons he used the opportunity to emphasize the importance of
controlling either the per family (per batch or per experiment) or the familywise
(batchwise or experimentwise) error-rate. Tukey viewed the difference between
these two as “a far lesser point,” and he was prepared to “neglect this difference
whenever neglect simplifies our discussion” [Tukey (1993b), pages 189-190], in
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sharp contrast to the per comparison (comparison-wise) approach, which amounts
to ignoring the multiplicity problem altogether.

He believed, and often expressed the opinion, that these concepts were not easy
to understand even by statisticians (at this point the reader is encouraged to conduct
a self-examination), let alone by other scientists who practice statistics. In each
paper Tukey explained the relevant concepts in a somewhat different way, as if
hoping that one of these variations might relieve the readers’ difficulty.

While remaining the most prominent proponent of simultaneous control, Tukey
always showed interest in compromise based on rational analysis. In Jones and
Tukey (2000) he explicitly says, “There has been a feeling for decades [e.g.,
PMC (1953)] that ‘individual’ or ‘unadjusted’ is too soft while simultaneous is
too severe.” It is not apparent from our reading that this belief is clearly expressed
in his earlier work, but it is evident in his later work, especially as he attended to
larger practical problems.

In this vein, we would argue that Tukey’s adoption of the stepwise methods
of Welsch (1977) and Ramsey (1981) represented a form of compromise. Since
stepwise procedures allow only significance statements (i.e., confident directions
only), they represent a relaxed form of control, which is tolerated only because
of its increased resolution. Braun and Tukey (1983) presented an approach to
achieving the same goal by simpler means. A decade later, Tukey (1993b)
suggested linking the goals of simultaneous inference to the magnitude of the ratio
of the usual size of a difference to the typical standard error. Strong simultaneous
inference (in the form of the Studentized range) is needed when this ratio is both
very large and very small. In intermediate cases stepwise testing procedures were
recommended.

Some versions of the graphical methods which he devised in later years also
attest to his search for a balance between stringent multiplicity control and concern
about power. He proposes the display of both individual intervals and simultaneous
ones on the same plot. He also encourages support of the usual simultaneous 95%
interval with simultaneous 50%, as a way of extracting more “hints” from the data
[Tukey (1993a)]. His most recent attempt in this direction was the use of m?/3
instead of m in the Bonferroni pairwise adjustment, which involves the divisor
m(m — 1)/2 [Hoaglin, Mosteller and Tukey (1991)].

The false discovery rate (FDR), offered by Benjamini and Hochberg (1995)
typifies such an intermediate approach. Tukey learned about the new error-rate
as early as 1990, and initially offered slight modifications to its definition, finally
settling on the original definition [Jones, Lewis and Tukey (2001)], except for what
he regarded as an error. In the original definition a false discovery is the rejection
of a true null hypothesis. For Tukey, an error occurs in making a definite statement
about the direction of a difference, when the true direction is in fact the opposite.
Thus, the FDR could stand for “False Definite Rate” (or False Directional error
Rate), as a type I error is not considered possible. Incidently, a type II error is
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also not considered a real “error”—just a missed opportunity for making a definite
statement.

By 1993 Tukey and his collaborators tried the FDR-controlling procedure
on both the NAEP data and the breeding data, and appreciated its operating
characteristics. He adopted the approach and in the years that followed contributed
his own ideas to FDR methodology. His preference was based on the following
rationale [Jones, Lewis and Tukey (2001)]:

In a situation where only very few of the results are definite, the “false discovery”
approach performs much like the simultaneous approach. Since these situations include
those where “definite” is purely accidental, as in extreme situations of data mining, it
is important to have a severe procedure. In a situation in which most comparisons earn
a definite result, the FDR algorithm behaves rather like the individual (i.e., unadjusted)
procedure. Again if many comparisons deserve a definite result, it is reasonable that
looking for the most extreme is not going to lead to excessively many “errors.”

3.4. The hierarchy of families in ANOVA. In his early work, Tukey empha-
sized four families or sets of inferences of importance, all of which have already
been mentioned: the set of determinations, the set of pairwise comparisons, the set
of all contrasts and the set of all linear combinations. To a lesser extent he was in-
terested in the set of comparisons with a single control, although he did make a late
contribution to the area [Almond, Lewis, Tukey and Yan (2000)]. His later work
in data analysis of variance, culminating in the book by Hoaglin, Mosteller and
Tukey (1991), awakened interest in other natural families of practical importance
in ANOVA. With respect to the two factor case, one might be interested in the two
sets of pairwise comparisons among main effects, the interactions, the pairwise
comparison of interactions, the conditional comparisons within a row or a column,
and so on.

It is true that in a two-way ANOVA setting with replications, viewing the
problem as that of comparing /J samples each with mean p;;, these questions
can be answered by applying the Studentized range to contrasts and linear
combinations. Tukey, however, was interested in utilizing the structure of more
limited families to get higher sensitivity. Thus he suggested looking separately
at the family of bicomparisons, which are comparisons of the form (y;; — ypi) —
(Yaj — ypj) foralla < b andi < j, and went on to study the theoretical distribution
of the maximum of the absolute size of the such Studentized deviations. We have
no direct reference to such work, but Hoaglin, Mosteller and Tukey (1991) give a
working approximation using the easily available Studentized range distribution.

Even in the pairwise comparisons of main effects, he attempted to gain more
sensitivity by studying families defined by deviations from a pooled 25% trimmed
mean cluster. In view of his interest in a richer collection of families of inference,
he found the FDR approach a relief in that it offered “less dependency on the exact
definition of the family” [Basford and Tukey (1998)].
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3.5. Pooling. On various occasions Tukey advocated the method of “Leaving
out or pooling noisy estimates.” In a large breeding experiment, clustering was
used to join such effects into many fewer groups. This was not meant to imply
that the means within a group are equal, but rather that we do not know in what
direction the difference lies, so we might as well treat them as a batch. For Tukey
“the importance of grouping as an aid to clarity” [Tukey (1993b), page 195] was
paramount.

The same idea took the form of “sweeping” lines in complex ANOVA tables
[e.g., Hoaglin, Mosteller and Tukey (1991), Chapter 11]. Tukey considered this
concept as fundamental, and expressed it as “The F > 2 principle”: Collapse lines
in ANOVA once they are below this threshold. In view of his later writing, we
believe that “F > 2” should be treated more as a method, and the “Leaving out
or pooling noisy estimates” as the fundamental principle. This is very much in
keeping with recent developments in decision theory, that attest to the advantages
of thresholding—the setting to zero of noisily estimated coefficients. Interestingly,
Donoho and Johnstone’s (1994) global threshold has a simultaneous inference
interpretation as a Bonferroni-adjusted testing procedure.

3.6. Fairwise comparisons using FDR. Tukey was the first to note that the
FDR approach and the linear step-up procedure in Benjamini and Hochberg (1995)
(denoted by him as the B-H procedure or the BSD) could be very useful in the
pairwise comparisons situation, where the multiplicity problem becomes large
even when a moderate number of groups is compared. Since the original proof
of control of FDR assumed independence, Williams, Jones and Tukey (1994,
1999) conducted an extensive simulation study to verify that the B-H procedure
controls the FDR in the pairwise setting. Tukey was clearly satisfied that the
results provided sufficient assurance that the FDR is conservatively controlled by
the B-H procedure and the authors sum up their discussion in the following way:
“Each of the three authors believes that the B-H procedure is the best available
choice.”

Other studies [Benjamini, Hochberg and Kling (1993) and Keselman, Cribbie
and Holland (1999)] give additional support for the conjecture. Theoretical
progress in proving the probability inequality assuring FDR control in the normal
pairwise balanced setting has been limited [Yekutieli (2001)]. It is possible that
this problem will remain open for many years (as was the case with Tukey’s
conjecture), yielding only after a number of small gains are achieved. A theoretical
answer to the current problem is especially desirable, as it may improve the
procedure. Once this conjecture is settled, the next natural question concerns FDR
control in the unbalanced case when using the Tukey—Kramer modification.

3.7. Graphical displays of simultaneous confidence intervals. It is no exag-
geration to say that throughout his career Tukey was preoccupied with the issue of
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finding the appropriate graphical tools to compare the means in a one-way analy-
sis. He returned repeatedly to the issue, each visit resulting in a new variation—and
sometimes an entirely different approach. In PMC, pages 96-97, he introduced the
graphical display of simultaneous confidence intervals for determinations, as well
as “allowances” for the comparisons. For comparisons the basic idea is that if there
exists a distance beyond which the two means are considered separated, then an
effective graphical display involves drawing an allowance equal to plus or minus
half that distance around the mean, and noting whether the allowances of the pair
of means being compared overlap. (Note that the efficacy of this approach de-
pends on equal distances for all pairs, otherwise the simple approach leads to very
interesting theoretical problems.) A number of variations are described in Almond,
Lewis, Tukey and Yan (2000).

But Tukey never viewed his latest suggestion as entirely satisfactory. The
evolving terminology testifies to his perennial quest: Allowances were followed
by “notches” [McGill, Tukey and Larsen (1978)] which were in turn called
interferences, followed by the use of “gauges” and “overlaps” [Basford and Tukey
(1997)]. Even after he devoted a long manuscript to the display of simultaneous
determinations and comparisons, studying in detail dozens of variations [Tukey
(1993a)], upon his next visit to the subject we find yet another display [Williams,
Jones and Tukey (1994, 1999)]. This display is based on the 45° tilting with which
he experimented semigraphically in Tukey (1991). [It is interesting to note here
that Hsu (1996) has created some powerful graphical displays by adding graphical
confidence intervals for comparisons and introducing a high level of graphical
interaction.] Finally, in Basford and Tukey (1998) the new “staircase display”
makes it to the cover of the book. The groups’ means and “overlaps” are displayed
in such a way, that for a specific strain of interest, we are confident that any other
strain displayed in the lower staircase and to the left has lower yield, and any strain
displayed above and to the right has higher yield.

How can this never-ending struggle be explained and what lessons does it hold?
Most simply, it may be that trying to present information about the means of
k groups, as well as about their k(k — 1)/2 comparisons in the same display, is too
ambitious a goal. This may well be the case, as in later work Tukey separates the
two types of displays. A deeper explanation may be derived from his introductory
comments in Tukey (1993a): “Graphs should report the results of careful data
analysis—rather than be an attempt to replace it.” In fact, his thinking about what
could or should be represented as a result of the analysis kept evolving over
the years: Confidence intervals versus confidence directions; error-rates at 95%
or also at 50% and 5%; simultaneous alone or simultaneous and individual or
the FDR. Tukey once said regarding multiple comparisons that “there may be a
man for all seasons, but there isn’t a procedure for all purposes” [Tukey (1991)].
His work on graphical procedures for multiple comparisons is testimony to that
dictum.
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3.8. The scope of the field of multiple comparisons. Tukey opened his last
review [Jones, Lewis and Tukey (2001)] by stating that:

Questions arising from problems of multiplicity raise a diversity of issues, issues that
tend to be important, difficult, and often unresolved.

Later, the scope of the field is described as follows:
Issues of multiplicity appear in a wide variety of kinds of situations, including:

Comparisons of all kinds of situations (“multiple comparisons”).

Comparisons between each situation and the standard (“multiple determinations”).
Selection of one or more candidates from several or many.

Selection of how variables are to be expressed for analysis.

Selection of which of the available variables are to participate in our analysis (subset
selection).

e Reduction of a collection of candidates in an attempt to reduce their number without
losing the best.

Even though he chose in that review to address only one case, the familiar
issue of pairwise comparisons, he saw not only a broader agenda for the field,
but also tried to emphasize its practical importance and conceptual difficulties.
In non-Tukey terminology we find here the problems of multiple parameter
testing and confidence estimation, the pairwise comparison problem, many-to-
one comparisons, ranking and selection, model selection, variable selection, high
throughput screening, etc. He thus leaves us with more than enough topics to
grapple with for the decades ahead—especially in view of his usual advice that
there need not be a single best answer.

4. Conclusions. As in so many other areas of statistics, it is not difficult
to argue that Tukey played a seminal role in the development of simultaneous
inference. PMC invested the field with both academic respectability and a focus
on practical issues. Through vigorous discussion with his statistical colleagues,
he helped to clarify the terms of the debate and identified key issues. Over time,
many of Tukey’s views on both philosophy and methodology have carried the
day among researchers on multiplicity. Even though the debate is not over in
the wider community, the importance of the simultaneous control of error and
the role of error-rate budgeting is a recognized practice. His analysis of multi-
layer procedures led directly to theoretical investigations of step-wise approaches,
arguably the most productive area of research over the 35 years following the
publication of PMC. See Hochberg and Tamhane (1987). Many researchers built
directly on the insights and approaches pioneered in PMC. Certainly, Tukey’s
concerns with robustness and the use of graphical methods (which transcend
multiplicity) have become major areas of investigation.

It is difficult to predict how Tukey’s work over the last decade will influence
the field in years to come. Unquestionably, he was prescient in beginning to
address real problems involving large data sets where multiplicity issues cannot
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be ignored. While he attended to the analysis of education data, statisticians
and others are now engaged in a wide variety of problems, ranging from data
mining in market research to the analysis of genomics studies. Perhaps more
important than the particular techniques that he proposed is the standard he set
for all scientists: An ongoing willingness to reexamine assumptions, to experiment
with new approaches (one’s own or that of others) and to seek practical methods
informed by theoretical insights.

Indeed, the quest for practical solutions to real problems has long been the
lodestar of Tukey’s work right through his last efforts. A number of subject area
reviews of multiplicity procedures have appeared in recent years [e.g., Ottenbacher
(1998), Keselman, Cribbie and Holland (1999), Wilkinson (1999) and Curran-
Everett (2001)]. Despite the fact that a good deal of Tukey’s reputation among
experimentalists rests on his contributions to multiplicity, these reviews indicate
that there is great heterogeneity in the degree of penetration of ideas about
multiplicity into general practice. Even in areas where such procedures are used
as a matter of course, a few relatively simple methods account for most of the
applications. Thus, while considerable progress has been made, there is still a long
road to follow.

Tukey was not unaware of this situation and he adopted two complementary
approaches in response. First, he engaged in continuing efforts to reach working
scientists and engineers with instructive discussions of the problems of multiplicity
and ways of dealing with them. Second, he focused on how to develop a
comprehensive approach to the analysis of large, complex data sets in which
multiplicity plays an important but not necessarily central role. In this vein, the
extended treatment by Basford and Tukey (1998) of a plant breeding trial should
prove to be a milestone in the thoughtful integration of a variety of statistical
techniques in the analysis of data.

Given Tukey’s track record over nearly 60 years of statistical work, we would
argue that everyone can benefit from the rich body of work he left behind.
Mathematical statisticians, in particular, should consider both the philosophical
issues and practical matters that preoccupied Tukey. They encompass enough open
problems, conjectures, hints and ambiguities to keep many of us occupied for years
to come. We venture to say that Tukey would be most pleased if his legacy were to
inspire the next generation of investigators and lead to more powerful and useful
techniques that can be applied in the quest for scientific understanding.
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