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We address the empirical bandwidth choice problem in cases where
the range of dependence may be virtually arbitrarily long. Assuming that
the observed data derive from an unknown function of a Gaussian process,
it is argued that, unlike more traditional contexts of statistical inference,
in density estimation there is no clear role for the classical distinction
between short- and long-range dependence. Indeed, the ‘‘boundaries’’ that
separate different modes of behaviour for optimal bandwidths and mean
squared errors are determined more by kernel order than by traditional
notions of strength of dependence, for example, by whether or not the sum
of the covariances converges. We provide surprising evidence that, even
for some strongly dependent data sequences, the asymptotically optimal
bandwidth for independent data is a good choice. A plug-in empirical
bandwidth selector based on this observation is suggested. We determine
the properties of this choice for a wide range of different strengths of
dependence. Properties of cross-validation are also addressed.

1. Introduction. There is a growing body of work on density estimation
under conditions that allow quite general strengths of dependence. In partic-

Ž . Ž .ular, Castellana and Leadbetter 1986 and Castellana 1989 considered
kernel estimators under conditions that encompass very-long-range depen-
dence in a Gaussian process, and addressed first-order properties of mean
integrated squared error. Achieving optimal performance in this setting, even
approximately, requires an empirical rule for selecting bandwidth. Hart
Ž .1984 treated this problem for the Fourier integral estimator of a density.
However, while that may be viewed as a kernel estimator, its kernel does not

Žsatisfy the conditions that are typically imposed in particular, it is not
.Riemann integrable and the simulation study described by Hart indicates

that the Fourier integral estimator may not perform particularly well. More
Ž .recently, Hart and Vieu 1990 have developed a leave-many-out approach to

cross-validation in more traditional kernel density estimation and have shown
that it can produce first-order optimality provided that the strength of
dependence is not too great.

Received April 1994; revised December 1994.
AMS 1991 subject classifications. Primary 62G07; secondary 62M10.
Key words and phrases. Bandwidth choice, cross-validation, density estimation, Gaussian

process, integrated squared error, kernel methods, long-range dependence, mean integrated
squared error, plug-in rule, short-range dependence, window width.

2241



P. HALL, S. N. LAHIRI AND Y. K. TRUONG2242

Ž .The results of Hart and Vieu 1990 are of considerable importance, not
least because they represent the first detailed account of empirical bandwidth
choice in kernel density estimation for dependent data. However, it is impor-
tant to appreciate their limitations, in order to see just how much of the
bandwidth choice problem remains unsolved. The regularity conditions im-
posed by Hart and Vieu demand exceptionally short-range dependence of the
underlying process; for example, in the special case of a Gaussian process

Ž .their assumptions appear to require that the covariance g i between obser-
vations lagged i apart decrease like iya for some a that is at least several
hundred in size. While this indicates that geometrically weak dependence is
not essential in order for empirical bandwidth choice to be viable, it does
raise the question of what happens when dependence is stronger, in particu-
lar if it is so long-range that the sum of the covariances diverges.

The present paper takes up this issue directly. Our aim is to provide detail
about both theoretically optimal bandwidth choice and its empirical approxi-
mation, under conditions of virtually arbitrarily long-range dependence. There
seems little hope of addressing such a complex problem without making
rather specific assumptions about the nature of dependence of the underlying
stochastic process. We would argue that, while the generality of the work of

Ž .Hart and Vieu 1990 in the context of short-range dependence is strongly
enhanced by their emphasis on mixing processes, that approach does restrict
the range of different levels of dependence that can be considered in detail. In
our analysis we assume that the underlying stationary stochastic process is
an unknown function of a Gaussian process. While structurally more restric-

Ž .tive than the mixing assumption of Hart and Vieu 1990 , our condition
allows the strength of dependence to be determined entirely by a single

Ž .sequence of numbers, the covariances g i . The ‘‘function of a Gaussian
Žprocess’’ model has been used before in other problems e.g., the analysis of

.fractal properties of a stochastic process in continuous time .
wAssuming the model just described, our main conclusions are as follows. It

Ž . yais convenient here for us to describe our results in the case where g i ; ci
for constants c / 0 and a ) 0, although the analysis that we shall present

4xlater in the paper does not require such stringent assumptions. When a ) 5

the deterministic bandwidth h that minimizes MISE agrees even at second0
2order with its counterpart h* in the case of independent data. When - a - `,5

the bandwidth that produces the overall minimum still agrees to first order
2with h*. This result fails when a F , but even there h* produces first-order5

4minimization of MISE, since, whenever a - , adjusting the bandwidth in5

the vicinity of the optimum has an effect only on second- and higher-order
terms. More generally, if the kernel is of order r G 2, then the ‘‘boundaries’’

2 4 Ž . Ž . Žat and change to rr 2r q 1 and 2rr 2r q 1 , respectively. For the sake5 5
.of simplicity and brevity we shall not provide details of those cases.

In Section 3 we develop dependent-data versions of the root-n consistent
Ž .plug-in rule considered by Hall, Sheather, Jones and Marron 1991 . It is

shown in Section 4 that in the context of data that are functions of a
Gaussian process, least-squares cross-validation can produce asymptotic



BANDWIDTH CHOICE 2243

first-order optimality under conditions of very-long-range dependence. How-
ever, it can be much more variable than the plug-in rule, as our simulation
study in Section 5 indicates.

Work on density estimation under dependence dates from the seminal
Ž . Ž .contributions of Roussas 1969 and Rosenblatt 1970 , who considered esti-

mation based on Markov chain data. Two of the major issues treated have
wbeen consistency and rates of convergence, in various metrics see, e.g.,

Ž . Ž . Ž . Ž .Nguyen 1979 , Yakowitz 1985 , Hart 1987 , Roussas and Ioannides 1987 ,
Ž . Ž . Ž . Ž .Roussas 1988 , Tran 1989, 1990a , Hall and Hart 1990 , Meloche 1990 ,
Ž . Ž .xRoussas 1991 and Yu 1993 . Asymptotic distribution theory has been

w Ž .developed by several authors see, e.g., Castellana and Leadbetter 1986 ,
Ž . Ž . Ž .xYakowitz 1989 , Roussas 1990a and Tran 1990b . Recursive or sequential

density estimation with dependent data has been treated extensively, and we
Ž .cite here only two representative contributions, by Gyorfi and Masry 1990¨

Ž .and Roussas 1990b . The prevalence of data that exhibit long-range depen-
dence, and the variety of statistical methods that are available for their

Ž .analysis, have been well documented by Beran 1992 . The considerable
practical importance of long-range dependence has been appreciated since at

Ž .least Hurst’s 1951 seminal observation of long-range dependence in hydro-
logical data.

� 4By way of notation, we write X for a stationary sequence of randomi
variables, whose marginal density f we desire to estimate. Our main kernel
function K is taken to be a symmetric probability density, and so satisfies the
usual second-order conditions:

1, if i s 0,¡
i ~0, if i s 1,x K x dx sŽ .H ¢m / 0, if i s 2.2

Our estimator of f is defined by
n

y1f̂ x s nh K x y X rh .� 4Ž . Ž . Ž .Ý i
is1

In our analysis of its properties we shall economize our use of space by
allowing relatively generous smoothness assumptions.

2. First- and second-order properties of the ‘‘optimal’’ bandwidth
for dependent data. We begin by discussing known results in the case of
independent data. There, for a twice-differentiable density, mean integrated

Ž .squared error MISE may be Taylor-expanded as

12 y1 4 2 y1 4ˆŽ . Ž . Ž . Ž . Ž . �Ž . 42.1 M h s E f y f s nh R K q h m I q o nh q h ,H 2 24

Ž . 2 j Ž . Ž Ž j..2 wwith R K s HK , m s Hz K z dz and I s H f . See, e.g., Silvermanj j
Ž . x1986 , Section 3.3. This formula indicates that the bandwidth h* that is

Ž .optimal in the sense of minimizing M h satisfies
1r52.2 h* ; J rn ,Ž . Ž .1



P. HALL, S. N. LAHIRI AND Y. K. TRUONG2244

Ž . Ž 2 . Ž .where J s R K r m I . We say that 2.2 describes first-order properties of1 2 2
the optimal bandwidth.

To obtain detail about higher-order properties of h* we require a refined
Ž .version of 2.1 . Under the assumption that f has at least six derivatives this

is given by

2.3 M h s N h q O ny1 h2 q h8 ,Ž . Ž . Ž . Ž .
where

y1 1 1y1 4 2 62.4 N h s nh R K y n I q h m I y h m m I .Ž . Ž . Ž . Ž . 0 2 2 2 4 34 24

Ž .Result 2.3 implies that the optimal bandwidth for independent data satisfies

1r5 3r5 y4r52.5 h* s J rn q J J rn q O n ,Ž . Ž . Ž . Ž .1 2 1

Ž . Ž .3r5 Ž .where J s m I r 20m I . The extra term J J rn appearing in 2.5 ,2 4 3 2 2 2 1
Ž .compared with 2.2 , represents second-order terms in an asymptotic approxi-

mation to the optimal bandwidth. Third- and higher-order terms are repre-
Ž y4r5.sented by the remainder, O n .

Ž .We claim that 2.5 describes properties of h* to a slightly greater order of
accuracy than may be achieved by empirical approximation, and so further
refinements are not really of practical interest. To appreciate this point,
observe that even if f is known up to a single, estimable parameter, the

Ž .quantity I and hence J cannot be approximated to a greater degree of2 1
accuracy than order ny1r2. Such an order is achievable in a nonparametric

1context if f has four derivatives and satisfies a Lipschitz condition of order 4
w Ž .xor more on the fourth derivative see, e.g., Bickel and Ritov 1988 . Therefore

the smallest order of error that could be associated with an estimate of h* is
y1r2 y1r5 y7r10 Ž .n n s n . The latter is larger than the remainder term in 2.5 ,

and so that formula provides as much accuracy as is needed for an empirical
study of bandwidth choice.

The discussion above addressed only the case of independent data. How-
ever, a striking conclusion to be drawn from the theoretical analysis that we

Ž .shall give shortly is that 2.5 is also valid under quite general conditions of
dependence. Only for processes with particularly long-range dependence, for
example, Gaussian processes where the sum of the squared covariances does
not converge, is this not true. Thus, the presence of dependence does not
necessarily make a great deal of difference to the bandwidth choice problem.
This contrasts strikingly with the situation in the closely related problem of
nonparametric regression, where even first-order properties of bandwidth
choice are altered by a very small amount of dependence. For example, the

Ž .analogues of 2.2 for independent and m-dependent data are quite different,
w Ž .xwith J having different forms in the two cases. See, e.g., Hart 1987, 1991 .1

In stating our first result for this section we impose conditions directly on
� 4the joint probability densities of bivariate distributions in the sequence X .i

Ž . Ž . Ž .Let f denote the density of X , X , and put g x , x s f x , x yi j iqj i 1 2 i 1 2
Ž . Ž .f x f x . We ask that K be bounded and compactly supported, that each g1 2 i
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have two derivatives of all types, that f have six bounded, integrable
derivatives and that, for some « ) 0,

`
Ž6.< < < <g x , x dx - `, sup f x q z dx - `,Ž . Ž .Ý H Hi

< <z F«is1

< Ž j1 , j2 . Ž j1 , j2 . <sup g x q z , x q z y g x , x dx - `.Ž . Ž .H i 1 2 i
j qj s21 2

< < < <z , z F«1 2

2.6Ž .

Ž . w Ž .Collectively we call these conditions C . The implications of 2.6 are1
xdiscussed two paragraphs below the proof of Theorem 2.1. Generalize the

Ž .definition of N, at 2.4 , to the case of a dependent sequence:
y1N h s nh R KŽ . Ž . Ž .

ny1
y1 y1qn 2 1 y n i g x , x dx y IŽ . Ž .Ý H i 0½ 5

is1

2.7Ž .

1 14 2 6qh m I y h m m I .2 2 2 4 34 24

The assumption that f have six or more derivatives is common in settings
such as this, where high-order approximations to bandwidths are treated.

1Indeed, estimating I at a root-n consistent rate demands 6 derivatives of f3 4
w Ž .xsee Bickel and Ritov 1988 .

Ž .THEOREM 2.1. For dependent data satisfying conditions C , and employ-1
Ž . Ž .ing the general definition of N at 2.7 , the expansion at 2.3 remains valid.

Ž . y1 Ž .PROOF. Set K x s h K xrh , and observe thath

ˆn var f x s var K x y XŽ . Ž .h 1

ny1
y1q 2 1 y n i cov K x y X , K x y X ,� 4Ž . Ž . Ž .Ý h 1 h 1qi

is1

2.8 cov K x y X , K x y X� 4Ž . Ž . Ž .h 1 h 1qi

s K y K y g x y hy , x y hy dy dyŽ . Ž . Ž .HH 1 2 i 1 2 1 2

s g x , x q h2 r x ,Ž . Ž .i

Ž .where, if K is compactly supported on yc, c ,
< < 2 2 < Ž j1 , j2 . Ž j1 , j2 . <r x F4c sup K sup g xqz , xqz yg x , x .Ž . Ž . Ž .Ž . Ý i 1 2 i

< < < <z , z Fch 0Fj , j F21 2 1 2
j qj s21 2

Therefore,
ny1

y1s ' 1 y n i cov K x y X , K x y X dx� 4Ž . Ž . Ž .ÝH h 1 h 1qi
is1

ny1
y1 2s 1 y n i g x , x dx q O h .Ž . Ž . Ž .Ý H i

is1

2.9Ž .
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Similarly,
2

y1var K x y X dx s h y K y f x y hy dy dxŽ . Ž . Ž .H H Hh 1 ½ 5
2.10Ž .

s hy1 y f 2 q O h2 ,Ž .H
and so

ny1
y1 y1 y1 y1 2ˆvar f s nh q n 2 1 y n i g x , x dx y I q O n h .Ž . Ž . Ž . Ž .ÝH H i 0½ 5

is1

A similar but simpler argument may be used to show that

2 1 14 2 6 6ˆ2.11 Ef y f s h m I y h m m I q O h .Ž . Ž .Ž .H 2 2 2 4 34 24

The theorem follows from these two formulae. I

Ž . Ž .Note particularly that the definition of N at 2.7 differs from that at 2.4
only through the addition of terms that do not depend on h. Therefore,

Ž .minimizing N h over h is not affected by the revised definition. This fact
Ž .and Theorem 2.1 together ensure that formula 2.5 holds true even in the

Ž .dependent case; no changes are needed. Therefore, provided 2.6 holds, the
optimal bandwidth is identical to its counterpart in the case of independent
data, up to but not including terms of third order.

Ž .To discuss the implications of this result, and also conditions 2.6 , let us
� 4assume for the sake of simplicity that X is a stationary Gaussian sequencei

Ž . Ž .with zero mean, unit variance and covariance function g i s E X X , foriq j j
all integers j G 0. This is the type of sequence employed in most simulation

wstudies of the problem of density estimation under dependence see, e.g., Hart
Ž .xand Vieu 1990 . Asking that the dependence of this process decay with

Ž .increasing lag along the sequence is equivalent to demanding that g i ª 0
as i ª `, and so we make this assumption. If in addition g is ultimately

Ž .monotone, then condition 2.6 holds if and only if
`

< <2.12 g i - `.Ž . Ž .Ý
is1

Ž . Ž .Indeed, if 2.12 is violated and g is ultimately monotone, then 2.6 fails and
Ž .the infinite series in the definition of N at 2.7 diverges, so that N is not well

Ž .defined. Of course, 2.12 is the usual definition of ‘‘short-range dependence’’;
Ž .for a process with ultimately monotone covariance, 2.12 is necessary and

sufficient for the sample mean to have variance of order ny1.
� 4Nevertheless, it is possible for the process X to exhibit long-rangei

dependence yet the optimal bandwidth agree to first order, and even to
Ž .second order, with that given by 2.5 in the case of independent data. To

Ž .investigate this in greater detail, we assume that X s a Y , i G 1, wherei i
� 4Y is a stationary Gaussian process with zero mean and unit variance, andi
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y1 Ž .the function a s b meaning that b is the inverse of a is monotone and
� Ž .4seven times differentiable. Additionally we ask that b satisfy E a Y s 0,

� Ž .24E a Y s 1,
7

2 2y1Ž1. Ž j.< < < <b x F B exp « b x and b x F B exp « b x ,Ž . Ž . Ž . Ž .� 4 � 4Ý1 1 2 2
js1

1 y1Ž . � < Ž . <4for some B , B « ) 0, some 0 - « F 1 q sup g i and all « ) 0.1 2 2 1 22
ŽThis is sufficient to ensure that the joint density f has six integrablei

. Ž .derivatives of all types. Collectively we call these conditions C .2
Set

y1 2 2 2 2Ž1.B s 2p b x b x y 3 b x exp yb x dx .Ž . Ž . Ž . Ž . Ž .� 4 � 4H0

w Ž . Ž 1r2 . xIn the case of Gaussian data, where b x ' x, we have B s y3r 8p .0
Redefine

ny1
y1 y1 y1N h s nh R K q n 2 1 y n i g x , x dx y IŽ . Ž . Ž . Ž . Ž .Ý H i 0½ 5

is1

ny1
y1 2 y1q B n h m 1 y n i g iŽ . Ž .Ý0 2

is1

2.13Ž .

1 14 2 6q h m I y h m m I .2 2 2 4 34 24

Ž .This definition of N differs from that at 2.7 only by inclusion of the term
Ž .involving B . In the context of 2.3 , this term belongs to the remainder, but0

Ž . y1 2should condition 2.12 fail then it will be of larger size than n h and so
should be included in N. Then terms of the next smallest order go into the
remainder, as the following result shows.

Ž .THEOREM 2.2. Under conditions C , and employing the definition of N at2
Ž . Ž .2.13 , the expansion at 2.3 remains valid with a slightly altered form of
remainder:

ny1 ny1
2y1 2 y1 3 < <2.14 M h s N h q O n h g i q n h g i .Ž . Ž . Ž . Ž . Ž .Ý Ý½ 5

is1 is1

Ž . Ž . Ž .y1r2 Ž 2 .PROOF. Set r s g i , f x s 2p exp yx r2 andi

y1r2 y1y1 12 2 2 2f x , x s 2p 1 y r exp y 1 y r x q x y 2 r x x .Ž . Ž . Ž . Ž . Ž .½ 5i 1 2 i i 1 2 i 1 22

In this notation,
2

g x , x s f b x , b x b9 x b9 x y f b x b9 x .� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .Łi 1 2 i 1 2 1 2 i i
is1

Note particularly that
y1r2 y1y1 12 2 2< <f x , x F 2p 1 y r exp y 1 q r x q x .Ž . Ž . Ž .Ž . Ž .½ 5i 1 2 i i 1 22



P. HALL, S. N. LAHIRI AND Y. K. TRUONG2248

< Ž . <y1 Ž .This inequality motivates the condition on b9 x , part of conditions C .2
Ž .Noting the conditions on b, we may show from 2.8 by Taylor expansion that,

Ž .in place of 2.9 and without making any assumptions about g other than
Ž .g i ª 0 as i ª `, we have

ny1 n
y1 2 Ž2 , 0. 3 < <s s 1 y n i g x , x q h m g x , x dx q O h g i .Ž . Ž . Ž . Ž .� 4Ý ÝH i 2 i ½ 5

is1 is1

Observe too that as i ª ` we have, for all « ) 0,
y1 2 2 2 2Ž2 , 0.g x , x s g i 2p b x b x y 3 b9 x exp yb xŽ . Ž . Ž . Ž . Ž . Ž . Ž .� 4 � 4i

2 2q O g i exp y 1 y « x ,� 4Ž . Ž .
whence

ny1
y1 2 Ž2 , 0.s s 1 y n i g x , x q h m g x , x dxŽ . Ž . Ž .� 4Ý H i 2 i

is1

ny1
2 y1q B h m 1 y n i g iŽ . Ž .Ý1 2

is1

2.15Ž .

n n
23 2< <q O h g i q h g i .Ž . Ž .Ý Ý½ 5

is1 is1

Ž . Ž . Ž . Ž .Result 2.14 follows from 2.10 , 2.11 and 2.15 . I

Some of the implications of Theorem 2.2 are quite unexpected. For ex-
Ž . Ž ya .ample, consider the case where g i r ci ª 1 as i ª `, with c / 0 and

2y1r5a ) 0. Then, strikingly, h is always of order n when - a - `. When0 5
4 - a - `, only third- and higher-order terms in an expansion of h are05

Žaffected by dependence we remind the reader that a F 1 corresponds to
2 4.long-range dependence ; when - a F , only second- and higher-order terms5 5

2are affected by dependence; and when 0 - a F , first-order terms are af-5
Ž . yafected. In fact, without assuming g i ; ci , it may be shown that if

Ž . Ž y2r5. Ž .g i s o i , then 2.2 holds, so that the optimal bandwidth appropriate
for independent data is still first-order optimal under strong long-range
dependence.

Ž . Ž . yaIn more detail, it may be shown from 2.14 that, when g i ; ci ,

1r5 3r5 y3r5¡ J rn q J J rn q o n ,Ž . Ž . Ž .1 2 1
4if - a - `,5

1r5 Ž1r5.ya Ž1r5.yaJ rn q c n q o n ,Ž . Ž .1 1~2.16Ž . h s0 2 4if - a F ,5 5

2Žay1.r3 Žay1.r3c n q o n , if 0 - a F and C ) 0,Ž .2 05

2ya r2 ya r2¢c n q o n , if 0 - a F and C - 0.Ž .2 05

In these formulae, c and c denote nonzero constants, with c ) 0.1 2 2
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Ž . Ž .Observe too that, by 2.13 and 2.16 , minimum mean integrated squared
error is given by

4y4r5c n , if - a - `,3 52.17 M h ;Ž . Ž .0 4ya½ c n , if 0 - a F ,4 5

5 4 2 1r5� Ž . 4where c s R K m I has exactly the same formula that it would3 2 24

under independence, and c ) 0. Note particularly that the optimal conver-4
Ž . y4r5gence rate for independent data, M h* ; const. n , is maintained for

4 4a ) , which includes many cases of long-range dependence. When 0 - a F ,5 5

the slower mean square convergence rate of nya is obtainable for a wide
range of bandwidths, indeed for h’s of any size strictly between nyŽ1 ya . and

4ya r4 Ž .n . When a - the particular optimal choice recommended by 2.165

serves only to optimize second-order terms in an expansion of mean inte-
grated squared error. This is quite unlike the case for short-range depen-

Ž .dence, and serves to explain the surprising results at 2.16 .
Ž .We conclude by briefly discussing the regularity conditions C . They ask2

that the distribution F have at least seven derivatives and possess a finite
moment of sufficiently high polynomial order. The smoothness part is clear
from the assumption that bŽ7. exists. To appreciate the moment part, suppose

Ž . ybfor the sake of simplicity that 1 y F x ; cx as x ª `, where C, b ) 0;
< Ž1.Ž . <y1 Ž .� Ž .4 Ž .and set f s F9. It may be shown that b x ; b x 1 y F x rf x and

Ž . w � Ž .4x1r2 Ž .that b x ; y2 log 1 y F x , whence it follows that conditions C hold2
< Ž . <in respect of the upper tail if and only if b ) 1 q sup g i . Likewise, the

< Ž . <exponent in the lower tail should also exceed 1 q sup g i .

3. Properties of a plug-in empirical bandwidth selector.

3.1. Summary and main results. In the present section we study the
effect that different ranges of dependence have on the ability of a plug-in
empirical bandwidth selector to approximate high-order terms in a formula
for the optimal bandwidth, for example, as evidenced by the first two cases of
Ž .2.16 . Our starting point is the classical bandwidth formula for independent

Ž .data, 2.5 . This is of course not strictly valid for many types of dependent
Ž .data, although we know from 2.16 that it is at least approximately correct

for data that exhibit only moderately long-range dependence.
ˆOur plug-in rule is as follows. Let I be an estimator of I for j s 1 and 2;j j

Ž . Ž 2 .details will be given in Section 3.2. In the formulae J s R K r m I and1 2 2
Ž .J s m I r 20m I , replace the unknowns I by these quantities, thereby2 4 3 2 2 j

ˆ w Ž .obtaining estimators J . Of course, R K and m are known constants,j j
xdepending only on the kernel K. Then our empirical bandwidth selector is

1r5 3r5ˆ ˆ ˆ ˆ3.1 h s J rn q J J rn ;Ž . Ž . Ž .1 2 1

Ž .compare with 2.5 .
ˆWe argued in Section 2 that for independent data, since I may be chosenj

Ž .to be root-n consistent for I , the rule at 3.1 can produce a bandwidth rulej
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that approximates h* up to an error of order ny1r2, in relative terms. The
absolute error is of order ny1r5ny1r2 s ny7r10. In Section 3.2 we shall show
that for dependent data that may be modelled as a symmetric function of a

ˆGaussian process, as was assumed in Theorem 2.2, the estimator I can bej
chosen so that

1r2n
2y1ˆ< <3.2 I y I s O n g i .Ž . Ž .Ýj j p ½ 5

is1

Ž .See 3.8 below. It follows that the absolute difference between our empir-
Ž .1r5ical bandwidth selector and the deterministic choice, h9 s J rn q1

Ž .3r5J J rn , is given by2 1

1r2n
2y7r10ˆ< <3.3 h y h9 s O n g i .Ž . Ž .Ýp ½ 5

is1

Of course, in the context of short-range dependence, and also for long-range
2 ˆ y7r10Ž . < < Ž .dependence with Ýg i - `, we have h y h9 s O n .p

Ž .To appreciate the implications of 3.3 we temporarily assume, for the sake
Ž . ya Ž .of simplicity, that g i ; ci for some a ) 0 and c / 0. Then by 3.3 and

4y3r5 Ž1r5.ya Ž1r5.yaˆ ˆŽ . < < Ž . < < Ž .2.16 , h y h s o n if - a - `, h y h q c n s o n0 p 0 1 p5
2 4 2y1r5ˆif - a F , and h is of size n if 0 - a F . Thus, the empirical band-5 5 5

ˆ Ž .width selector h defined at 3.1 is second-order accurate for the optimal
4bandwidth when a is in the range - a - `; agrees with the optimal5

2 4bandwidth up to but not including second-order terms if - a - ; and is in5 5

the range strictly between nyŽ1 ya . and nya r4, which minimizes mean inte-
2grated squared error to first order, if 0 - a F . The first case is of particular5

4interest, since - a F 1 includes long-range dependence. Thus, the admit-5
Ž .tedly crudely defined bandwidth selector introduced at 3.1 can produce

second-order accuracy even under conditions of long-range dependence.
Nevertheless, it is not immediately clear that a good approximation to the

bandwidth that minimizes M automatically produces approximate minimiza-
ˆ 2Ž . Ž .tion of integrated squared error, D s D h s H f y f , even to first order. To

clarify these issues we shall derive a bound to the expected value of inte-
Ž .grated squared error when the bandwidth is given by 3.1 . Of course, if h is

Ž . Ž .nonrandom, then ED h s M h . However, we are interested in properties of
Ž .ED h when h is stochastic. In this context it is advisable to restrict the

ˆrange of values that h can assume, to prevent it from being excessively small
˜ ˆ y1r5 ˆ y1 y1r5or large. So we define h to equal h if hn F h F h n , and to equal

y1r5 wj n otherwise, where h is a very small positive constant smaller than
Ž 1r5 y1r5.x w y1 xmin J , J and j ) 0 is an arbitrary element of h, h . We shall1 1

� 4prove in Section 3.2 that if the process X is a symmetric transformation ofi
Ž � 4 .a Gaussian process in particular, if X is itself Gaussian , then, for ai

positive constant B,
n n

2y1 y7r5˜< < < <3.4 ED h y M h F B n g i q n g i .Ž . Ž . Ž . Ž .Ž . Ý Ý0 ½ 5
is1 is1
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To clearly appreciate the significance of this result, consider as before the
Ž . ya Ž .special case where g i ; ci , with a ) 0 and c / 0. Then, by 3.4 ,

˜< <3.5 ED h y M h s O d ,Ž . Ž . Ž .Ž . 0 n

where
3y1¡n , if F a - `,5

2 3yŽ2 r5.ya~n , if F a - ,d s 5 5n
2y2 a¢n , if 0 - a - .5

3This bound is best possible in at least the case F a - `.5
4 4y4r5 yaŽ . Ž .Recall from 2.17 that M h is of size n if a ) , and n if a F .0 5 5

˜ y1Ž . < Ž . Ž . <Result 3.5 implies that the relative error r s ED h M h y 1 is of order0
4 3 4 2 3 2y1r5 ay1 y2r5 yan if a ) ; n if F a - ; n if F a - ; and n if 0 - a - .5 5 5 5 5 5

Therefore the relative error can actually be smaller for very-long-range
dependent data than it is for independent data, despite the fact that the
bandwidth selection rule is founded on the assumption of independence.

When the data are obtained by an asymmetric transformation of a Gauss-
Ž . Ž . n Ž .2ian process, formulae 3.3 and 3.4 remain valid provided that Ý g i isis1

n ya ˆ X< Ž . < Ž . < <replaced by Ý g i . In particular, when g i ; ci we have h y h sis1 0
Ž y1r2 . � y1r2Ž .1r24 Ž y1r5ya r2 .O n if a ) 1; O n log n if a s 1; and O n if 0 - ap p p

4ˆ- 1. It follows as before that h is second-order accurate for h when a ) ,0 5
2 4first-order accurate when - a - , and in the range that provides first-order5 5

2minimization of mean integrated squared error if 0 - a F . This means that5
4the relative error, r, converges to zero when - a - `, but not necessarily5

otherwise. The results that we shall derive in Section 3.2 will show that if
4 ˜Ž .0 - a F , then expected integrated squared error ED h is of the same5

ya Ž .order, n , as the minimum mean integrated squared error M h .0
In the context of our use of the MISE-optimal bandwidth as the basis for

our analysis, and our use of expected integrated squared error as a measure
of performance, we should mention the controversy over whether integrated
squared error or mean integrated squared error is the most appropriate
benchmark for assessing the accuracy of a density estimator. It is not
appropriate to join that debate in the context of density estimation with
dependent data, since the issues affecting performance there are not yet
widely appreciated. In particular, under very-long-range dependence the ratio
Ž . Ž .D h rM h does not converge to 1 in probability; see the discussion in0 0

Section 4. However, readers interested in acquainting themselves with the
Ž .discussion for independent data will find work of Scott 1988 , Mammen

Ž . Ž .1990 and Jones 1991 to be illuminating.
We should also address a simpler plug-in bandwidth formula, obtained

Ž .from 3.1 by deleting the second term:
1r5˘ ˆ3.6 h s J rn .Ž . Ž .1

˘ ˆ ˘Properties of h are readily obtained from those of h. Indeed, if we define h to
˘ y1r5 ˘ y1 y1r5 y1r5 Žequal h if hn F h F h n and to equal j n otherwise by analogy
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˜. Ž . Ž .with our earlier definition of h , then instead of 3.3 and 3.4 we have, for
data that are a symmetric transform of a Gaussian process,

1r2n
2y7r10 y3r5˘< <3.7 h y h9 s O n g i q n ,Ž . Ž .Ýp ½ 5

is1

and

˘< <ED h y M hŽ .Ž . 0

1r2n n n
2 2y1 y9r10 y7r5 < <F B n g i q n g i q n g i .Ž . Ž . Ž .Ý Ý Ý½ 5

is1 is1 is1

Because we have omitted the second-order term from our empirical band-
˘width formula, we cannot expect h to be second-order correct even for

independent data. Nevertheless, supposing for the sake of simplicity that
ya ˘ ˘Ž . � Ž .4 Ž .g i ; ci , h is first-order correct in the sense that E D h ; M h for0

each a ) 0.

Ž .3.2. Technical details. As in Theorem 2.1, we suppose that X s a Y ,i i
� 4i G 1, where Y is a stationary Gaussian process with zero mean and uniti

y1 � Ž .4variance, and the function a s b is monotone and satisfies E a Y s 0,
� Ž .24E a Y s 1,

20
2 2y1Ž1. Ž j.< < < <b x F B exp « b x and b F B exp « b x ,Ž . Ž . Ž .� 4 � 4Ý1 1 2 2

js1

1 y1Ž . � < Ž . <4for some B , B « ) 0, some 0 - « - 1 q sup g i and all « ) 0. Of1 2 1 22
� 4 Ž .course, if the process X is itself Gaussian, then we may take a x ' x. Wei

further assume that K is compactly supported and twice differentiable and
that K 0 is Holder continuous; and we let K and h denote a new, six times¨ 1 1
boundedly differentiable, compactly supported kernel function and a new

wbandwidth, respectively, such that K is of order at least 4 i.e., HK s 1 and1 1
i Ž . x Ž .Hx K x dx s 0 for 1 F i F 3 . Collectively we call these conditions C .1 3

ˆ y1 nŽ . Ž . �Ž . 4Write f x s nh Ý K x y X rh for the corresponding density1 1 is1 1 i 1
ˆ Ž j. Ž̂ j. 2Ž . Ž .estimator, and set u s H Ef f dx and u s H Ef for j s 2 or 3. Our1 j 1 2 j 1

respective estimators of u , u and I are given by1 j 2 j j

X y Xy1 i i1 22 jq1 Ž2 j.û s 2 n n y 1 h K ,Ž .� 4 ÝÝ1 j 1 1 ž /h11Fi -i Fn1 2

x y X x y Xy1 i i1 22Ž jq1. Ž j. Ž j.û s 2 n n y 1 h K K dx ,Ž .� 4 ÝÝ H2 j 1 1 1ž / ž /h h1 11Fi -i Fn1 2

ˆ ˆ ˆI s 2u y u .j 1 j 2 j

ˆFor independent data the estimator u is unbiased for u whenever j gk j k j
� 4 � 42, 3 and k g 1, 2 . This is one of the motivations for our approach to
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estimating I . In the case of dependent data there is a degree of bias, but it isj
of smaller order than the error about the mean, as Theorem 3.1 will show.

Let B , B , . . . denote generic positive constants. Define the following:1 2

n n¡ 2y1 y1 8 < <n g i q n h g i , if a is symmetric,Ž . Ž .Ý Ý
is1 is1~v h sŽ . n

y1 < <n g i , otherwise;Ž .Ý¢
is1

n¡ 2y1n g i , if a is symmetric,Ž .Ý
is1~v s nn

y1 < <n g i , otherwise.Ž .Ý¢
is1

y1r16 Ž .Note that if h F B n , then v h F B v .1 2 n
Our first theorem implies that, under the function-of-a-Gaussian-process

model introduced in Section 2, and provided bandwidth is chosen in the range
B ny1rŽ4 jq1. F h F B ny1r16, for some B , B ) 0, we have, for m s 1 and1 1 2 1 2
2,

2 mˆ3.8 E I y I F B v .Ž . ž /½ 5j j 3 n

THEOREM 3.1. Under the above conditions, and assuming that ny1rŽ4 jq1.

F h F 1, there exist positive constants B , B and B such that, for each1 4 5 6
� 4 � 4 � 4j g 2, 3 , k g 1, 2 and m g 1, 2 ,

n
y1ˆ< < < <3.9 E u y u F B n g i ,Ž . Ž .Ýž /k j k j 4

is1

2 m mˆ ˆ3.10 E u y E u F B v h ,Ž . Ž .ž /½ 5k j k j 5 1

< < 2Ž7yj.3.11 2u y u y I F B h .Ž . 1 j 2 j j 6 1

Ž .Finally, we derive 3.4 , for which purpose we use the following result. Let
w y1r5 y1 y1r5 x Ž .II denote the interval hn , h n , where h g 0, 1 .

Ž . y1rŽ4 jq1.THEOREM 3.2. Assuming conditions C and that n F h F 1,3 1

2 y23.12 E D9 h s O h v h ,� 4Ž . Ž . Ž .� 4
and, for any « ) 0,

2 « y43.13 E sup D0 h s O n h v h .� 4Ž . Ž . Ž .½ 5
hgII

The proof of Theorem 3.1 is given in Section 6, while that of Theorem 3.2
Ž .which is relatively straightforward may be found in a longer version of the
paper obtainable from any one of the authors.
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Observe that by Taylor expansion about h9, valid if K has at least two
bounded derivatives,

21 †˜ ˜ ˜ED h s M h9 q E h y h9 D9 h9 q E h y h9 D0 h ,Ž . Ž . Ž .Ž . Ž . Ž .� 4 ½ 52

† ˜ y1r5 y1 y1r5where h lies between h and h9, and hence between hn and h n .
Therefore,

1r2 1r22 4 22 †˜ ˜ ˜< <ED h y M h9 F E h y h9 ED9 h9 q E h y h9 ED0 h .Ž . Ž . Ž .Ž . Ž . Ž .½ 5 ½ 5
˜Ž .In view of 3.8 and the definition of h,

2 m my2r5˜E h y h9 s O n v .Ž . Ž .½ 5n

Ž . Ž .By 3.12 and 3.13 ,
42 2r5 † «qŽ4r5.ED9 h9 s O n v , ED0 h s O n v .Ž . Ž .Ž . Ž .n n

Furthermore, by Theorems 2.1 and 2.2,
2n n

y7r5 y2< < < < < <M h y M h9 s O n g i q n g iŽ . Ž . Ž . Ž .Ý Ý0 ½ 5
is1 is1

n
y7r5 < <s O n g i q v .Ž .Ý n½ 5

is1

Therefore, for each « ) 0,

1r2 1r2 1r2y2r5 2r5 y2r5 « 4r5˜< <ED h y M h s O n v n v q n v n n vŽ .Ž . Ž . Ž . Ž . Ž .0 n n n n½
n

y7r5 < <qn g i q vŽ .Ý n 5
is1

n
« 3r2 y7r5 < <s O v q n v q n g i .Ž .Ýn n½ 5

is1

< Ž . < ydProvided that g i F Ci for some C, d ) 0 and all sufficiently large i, the
« 3r2 Ž .formula just above implies that n v s o v if « is sufficiently small. Thisn n

Ž .proves 3.4 .

4. Properties of least-squares cross-validation. The least-squares
Ž .cross-validation algorithm was introduced by Rudemo 1982 and Bowman

Ž . Ž .1984 . Its theoretical properties were described by Hall 1983 and Stone
Ž .1984 , and its more general features have been discussed by Silverman
wŽ . x Ž .1986 , page 48ff . Hart and Vieu 1990 proposed a variant that would seem
to be more appropriate for dependent data. To define it, first set

y1f̂ x s n h K x y X rh ,Ž . Ž . � 4Ž .Ýyi l j
< <j : iyj )l
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for 1 F i F n, where l s l is a sequence of positive integers, called then
leave-out sequence, and n is such thatl

< <nn s a i , j : i y j ) l and 1 F i , j F n .� 4Ž .l

Ž .Then, following Hart and Vieu 1990 , define the ‘‘leave-out l cross-validation
function’’ by

n
2 y1ˆ ˆCV h s f x dx y 2n f X .Ž . Ž . Ž .ÝHl yi i

is1

Ž .Minimizing CV h over a suitable interval gives the cross-validation band-l
ˆ ˆwidth h for estimating f using f.

Note that l s 0 corresponds to the usual cross-validation criterion for
independent data. The motivation behind the definition of CV is that delet-l
ing l neighbouring data points reduces the dependence between the two sets

� < < 4of random variables X : i y j ) l and X that define the ith summandj i
ˆ Ž .f X in CV .yi i l

Generally, in the context of both independent and dependent data, the
cross-validation criterion CV represents an approximation to D y Hf 2, wherel

ˆ 2Ž .D s H f y f denotes integrated squared error. Under independence, and
assuming l s 0, this approximation is exact in the mean, in the sense that
Ž . 2 Ž .E CV q Hf ' E D . However, the equivalence is lost for dependent data,0

and indeed under very strong dependence it is not even valid in an approxi-
mate, relative sense, at the minimum, since the ratio

E CV h q Hf 2 y M h� 4Ž . Ž .l 0 0
4.1Ž .

M hŽ .0

w Ž .does not converge to zero as n ª `. Recall from Section 2 that M s E D
xdenotes mean integrated squared error.

Ž .To appreciate why the ratio at 4.1 fails to converge to zero under
very-long-range dependence, recall from Section 2 that in such circumstances
M depends on bandwidth only to second order. First-order terms in formulae
for MISE are determined entirely by the covariance structure of the process,
and cross-validation fails to take adequate account of them. However, since
those terms do not depend on bandwidth then this is not a fatal shortcoming,
and in fact cross-validation can minimize MISE, to first order, over a wide
range, as our next theorem shows.

Assume the following: the conditions of the function-of-a-Gaussian-process
Ž . yamodel in Section 2; that the transformation a is symmetric; that g i ; ci

Ž . Ž .as i ª `, for some a ) 0 and c / 0; and that l s l n satisfies 0 F l s o n .
1 1yc yc2 1w xLet HH denote the interval n , n , where - c - - c - 1, and writen 1 23 5

h̃ for the bandwidth that minimizes CV over HH . The result below is a versionl n
˜Ž .of formula 3.4 for the cross-validation bandwidth h.

THEOREM 4.1. Under the conditions above,

˜< <ED h y M h s o M h .� 4Ž . Ž .Ž . 0 0
4Ž .However, the ratio at 4.1 converges to zero if and only if a ) .5
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We do not address the second-order accuracy of cross-validation, since even
in the case of independent data this method does not have any second-order
virtues from the viewpoint of MISE. Furthermore, cross-validation can be
particularly difficult to implement with heavily dependent data and can
produce bandwidths of very high variability, owing to the relative flatness of

Ž .the function CV h ; see Section 5. For these reasons we tend not to favourl
cross-validation as a bandwidth choice method for dependent data.

A number of variants of the theorem are possible. In particular, in the first
Ž . yapart of the theorem the condition that g i ; ci may be replaced by a

milder one. Note that in the present form of the theorem, it is possible to
choose c sufficiently small and c sufficiently large, within the constraints of1 2
the theorem, so that the interval HH contains the bandwidth that asymptoti-n
cally minimizes M. A proof of the theorem is very similar to that of the
results in Section 3 and so is not given here.

It should be noted that, no matter what the value of l, the intuition which
motivates cross-validation fails rather spectacularly in circumstances of
very-long-range dependence. The main reason that cross-validation still works
to first order, as evidenced by Theorem 4.1, is that under very-long-range
dependence the choice of bandwidth is not particularly critical. However,

4when a F neither CV nor D s ISE provides a good approximation tol5
2 y1 n � Ž . Ž .4MISE. Indeed, if we define R s yHf q 2n Ý f X y Ef X , then forn is1 i i

4a F each of the ratios5

2E D y MISEŽ .
,2MISEŽ .

2E CV y MISE y RŽ .l n
,2MISEŽ .

2E CV y D y RŽ .l n
2MISEŽ .

converges to a finite, positive number as n ª `. The limit is zero, for each
4 4ratio, when a ) . In the boundary case where a s , CV approximates withl5 5

sufficient accuracy that part of MISE that depends on h, and so Theorem 4.1
holds there.

5. Simulation. The poor performance of cross-validation, relative to
plug-in rules that have been specifically constructed to enjoy high orders of
accuracy, has been extensively documented in the context of independent

w Ž .data. See, e.g., Park and Marron 1990 and Hall, Sheather, Jones and
Ž . xMarron 1991 . It is straightforward to reproduce those numerical results for

short-range and moderately long-range dependent data, particularly in view
of the theoretical conclusions described in Section 3. For very-long-range
dependent data it is to be expected that the effect of bandwidth choice will be
less apparent than in the context of independence, since the bandwidth



BANDWIDTH CHOICE 2257

adjusts only high-order terms in an expansion of MISE; see Section 2. To
make the numerical study more interesting in spite of these features, we
chose to treat a relatively crude plug-in rule whose convergence rate to h is0
similar to that of the cross-validated bandwidth selector, and to compare
those two approaches. It turns out that the plug-in rule is still superior in the
sense that it enjoys significantly less variability, but in other respects both
approaches perform creditably.

˜ Ž .Our plug-in bandwidth selector was identical to h, defined at 3.6 , except
that we took K to be the standard Gaussian kernel. This was also our choice1
for K, in both plug-in and cross-validation algorithms. Numerical perfor-
mance is very similar for compactly supported kernels, and indeed we set
Ž .K x equal to zero for large values of x.

Ž . yaA Gaussian process with a covariance structure g i ; i for 0 - a - 1
� 4 Ž .dwas produced by simulating from the process X defined by 1 y B X s Z ,i i i

1where B is the backward-shift operator with 0 - d - , and Z are indepen-i2
Ž . Ž .dent N 0, 1 random variables. This is an ARIMA 0, d, 0 process with

fractional difference d, and it has been used to model long-memory time
w Ž . Ž .xseries see Granger and Joyeux 1980 and Hosking 1981 . One may show

� 4that the process X is stationary with covariance function given byi

G k q dŽ . yag k s E X X s 2 sin dp G 1 y 2 d ; ck ,Ž . Ž . Ž . Ž .i iyk G k q 1 y dŽ .
where a s 1 y 2 d. Thus, X has a Gaussian distribution with mean zero andi

Ž . Ž . Ž . Ž .variance 2 sin dp G d G 1 y 2 d rG 1 y d .
� 4 Ž .We simulated the process X by following Haslett and Raftery 1989 .i

One hundred independent replications were performed for each of the 24
Ž .combinations of methods plug-in and least-squares cross-validation , sample

Ž . Ž .sizes n s 100, 200, 400 and a s 0.2, 0.4, 0.6, 0.8 . In the case of cross-
validation estimates, we used l s 0, 5, 10, 15, 20, 25 for each replication.n

The results of the simulation study are summarized in Tables 1 and 2, for
n s 100 and 400. Each figure in the tables is obtained by averaging over 100
independent simulations; more complete data are available in a longer ver-
sion of the paper obtainable from any one of the authors. The following
features emerge from the data. First, even compared with our relatively
error-prone plug-in rule the cross-validation approach produced an empirical
bandwidth selector with substantially higher variance, by a factor of up to 12,

TABLE 1
Summary statistics for plug-in method

I1 I3ˆ ˆMean of h SD of h = 10 MISE = 10

Ž .n s 100, a s 0.2 0.43453 1.09722 9.72028
Ž .n s 100, a s 0.8 0.38006 0.53682 2.80584
Ž .n s 400, a s 0.2 0.35928 0.44113 7.07293
Ž .n s 400, a s 0.8 0.29123 0.16861 1.01234



P. HALL, S. N. LAHIRI AND Y. K. TRUONG2258

TABLE 2
Summary statistics for least-squares cross-validation

I1 I3ˆ ˆl Mean of h SD of h = 10 MISE = 10n

Ž .n s 100, a s 0.2 0 0.39549 1.01835 10.20120
10 0.49195 0.93076 8.91394
20 0.47989 1.02900 9.09588

Ž .n s 100, a s 0.8 0 0.37202 0.80889 2.96664
10 0.48147 0.82437 2.35508
20 0.45975 0.94874 2.47952

Ž .n s 400, a s 0.2 0 0.35480 0.69066 7.06990
10 0.47394 0.90266 6.41401
20 0.47538 0.93607 6.41099

Ž .n s 400, a s 0.8 0 0.30658 0.45706 0.92363
10 0.36457 0.50652 0.83955
20 0.36123 0.52814 0.84517

depending on circumstance. This reflects the flatness of the cross-validation
function, depicted in Figure 1. The position of the minimum of that function
is very prone to sampling fluctuations, and was particularly difficult to find in
our numerical study. Second, varying the value of l in the cross-validation

Ž .algorithm of Hart and Vieu 1990 had relatively little effect on either the
ˆmean value of h or on MISE, although it did influence variability of the

Žalgorithm. From that viewpoint, small values of l indeed, the independent
data prescription l s 0, even when the data exhibit very-long-range depen-

.dence would seem to be advisable. Third, the relative insensitivity of MISE
to bandwidth choice under long-range dependence, predicted by our theory in
Section 2, is borne out by our results. For example, when n s 400 and

ˆa s 0.2 the mean value of the cross-validated bandwidth h alters by 34%,
and its variance by 86%, as l changes from 0 to 25. However, MISE alters by
only 10% over that range.

6. Proof of Theorem 3.1.

Ž . Ž . Ž . Ž . Ž .PART 1. PROOF OF 3.9 . Let g x , x s f x , x y f x f x be as ini 1 2 i 1 2 1 2
Section 2. Observe that

n
y1 y1ˆE u y u s n y 1 1 y n iŽ . Ž .Ýž /1 j 1 j

is1

= K x g Ž2 j , 0. x y h x , x dx dx ,Ž . Ž .HH 1 1 i 2 1 1 2 1 2

n
y1 y1 y1ˆE u y u s n y 1 1 y n i K yx K yh x y xŽ . Ž . Ž . Ž .Ý HHHž /2 j 2 j 1 1 2

is1

= g Ž j , j. h x y x , hx dx dx dx .Ž .i 1 1 2 1 2
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Ž . Ž .FIG. 1. Graphs of leave-out l cross-validation, CV s CV h see Section 4 , as a function of h,1
0.05 F h F 0.55, l s 0, 5, 10, 15, 20, 25, and a . Here the sample size is 400 and values ofn

Ž . Ž . Ž .CV h with a s 0.2, 0.4, 0.6, 0.8 are plotted in a ] d , respectively.1

Since, for all « ) 0,

< Ž2 j , 0. < < Ž j , j. <g x , x q g x , xŽ . Ž .i 1 2 i 1 2

2 21< <F B « g i b9 x b9 x exp y 1 y « b x q b x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 41 1 2 1 22

ˆ y1< Ž . < < Ž . <then E u y u F B n Ý g i , as had to be shown. Ik j k j 2

Ž .PART 2. PROOF OF 3.10 . We begin by describing the case m s 1. Observe
that

Ž . Ž . Ž .y2 2 3 42 jqkˆ6.1 var u s 2rn n y 1 h q q A i ,Ž . Ž . Ž .� 4 Ý Ý Ýž /k j 1 k jž /
Ž l . Ž .where Ý denotes summation over indices i s i , . . . , i such that 1 F i -1 4 1
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i F n, 1 F i - i F n and just l of i , . . . , i are distinct; and2 3 4 1 4

X y X X y Xi i i i1 2 3 4Ž2 j. Ž2 j.A i s cov K , KŽ .1 j 1 1½ 5ž / ž /h h1 1

x y X x y Xi i1 2Ž j. Ž j.A i s cov K K ,Ž . HH2 j 1 1½ ž / ž /h h1 1

y y X y y Xi i3 4Ž j. Ž j.K K dx dy.1 1 5ž / ž /h h1 1

We claim that, for l s 2, 3 and 4,
Ž .y2 l2 2 jqk < <6.2 n h A i F B v h ,Ž . Ž . Ž .Ž . Ý1 k j 1 1

Ž . Ž .whence follows 3.10 . We shall prove 6.2 only in the case l s 4, since l s 2
and l s 3 may be treated similarly but more simply.

Ž .Let f , f and f denote the respective joint densities of X , . . . , X ,Ž i , i . Ž i , i . i i1 2 3 4 1 4
Ž . Ž . Ž . Ž . Ž .X , X and X , X , and set g x , . . . , x s f x , . . . , x y f x , xi i i i 1 4 1 4 Ž i , i . 1 21 2 3 4 1 2

Ž .=f x , x . In this notation,Ž i , i . 3 43 4

y22 jq1h A i s ??? K x K xŽ . Ž . Ž .Ž . H H1 1 j 1 1 1 3

=g Ž2 j , 0, 2 j , 0. x q h x , x , x q h x , x dx ??? dx .Ž .2 1 1 2 4 1 3 4 1 4
Ž2 j, 0, 2 j, 0.Ž . ŽNow Taylor-expand g x q h x , x , x q h x , x about x , x ,2 1 1 2 4 1 3 4 2 2

. 8x , x up to terms in h , obtaining4 4 1

y22 jq1 2Žk qk .1 2h A i y c hŽ .Ž . ÝÝ1 1 j k k 11 2
0Fk qk F31 2

= Ž2 jq2 k , 0, 2 jq2 k , 0.1 2g x , x , y , y dx dyŽ .HH6.3Ž .

8 < < < < < < < <F B h g i y i q g i y i q g i y i q g i y i ,� 4Ž . Ž . Ž . Ž .2 1 1 3 1 4 2 3 2 4

Ž .where the c ’s are constants. For example, c s 1. If the function a isk k 001 2

symmetric, then so is b, whence it may be shown on Taylor-expanding the
exponents of each of the functions g s g Ž2 jq2 k1, 0, 2 jq2 k 2 , 0. that the terms in
Ž . Ž . Ž . Ž .g i y i , g i y i , g i y i and g i y i alone are all parts of quanti-1 3 1 4 2 3 2 4

ties that integrate to zero. This proves the result that

g x , y dx dyŽ .HH
2 2 2 2F B g i y i q g i y i q g i y i q g i y i .Ž . Ž . Ž . Ž .� 43 1 3 1 4 2 3 2 4

On the other hand, if a is asymmetric, then the best bound we may obtain is

g x , y dx dyŽ .HH
< < < < < < < <F B g i y i q g i y i q g i y i q g i y i .� 4Ž . Ž . Ž . Ž .3 1 3 1 4 2 3 2 4
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Ž .In the former case we have, by 6.3 ,
y22 jq1 < <h A iŽ .Ž .1 1 j

2 2 2 2F B g i y i q g i y i q g i y i q g i y iŽ . Ž . Ž . Ž .4 1 3 1 4 2 3 2 4
6.4Ž .

8 < < < <qh g i y i q g i y i� Ž . Ž .1 1 3 1 4

< < < <q g i y i q g i y i 4Ž . Ž .2 3 2 4

and, in the latter,
y22 jq1 < < < < < <h A i F B g i y i q g i y i�Ž . Ž . Ž .Ž .1 1 j 5 1 3 1 46.5Ž .

< < < <q g i y i q g i y i .4Ž . Ž .2 3 2 4

Ž . Ž . Ž .Results 6.4 and 6.5 readily give 6.2 for k s 1 and l s 4. The case k s 2
and l s 4 is similar, since

y22 jq2h A i s ??? K x K x K x K xŽ . Ž . Ž . Ž . Ž .Ž . H H1 2 j 1 1 1 2 1 3 1 4

=g Ž j , j , j , j. xyh x , xyh x , yyh x , yyh xŽ .1 1 1 2 1 3 1 4

=dx ??? dx dx dy.1 4

Ž .This completes our proof of 3.10 when m s 1. The case m s 2 is similar,
Ž .but more complex notationally. Analogously to 6.1 we may write

4 Ž . Ž .y4 4 82 jqkˆ ˆE u y Eu s 2rn n y 1 h q ??? q A i ,Ž . Ž .� 4 Ý Ýž /k j k j 1 k jž /
Ž . Ž l .where i s i , . . . , i , Ý denotes summation over i such that 1 F i -1 8 2 jy1

Ž .i F n for j s 1, . . . , 4 and just l of i , . . . , i are distinct, and A i is2 j 1 8 k j
defined by formulae similar to those in the proof for m s 1, involving
expectation in the joint distribution of X , . . . , X . We shall sketch thei i1 8

derivation of a bound to ÝŽ l ., which determines the overall bound. Arguing as
Ž .in the earlier proof we may show that, instead of 6.4 ,

y4 2 22 jqk Ž1. Ž2. Ž3. Ž4.< <h A i F B *g i y i g i y iŽ . Ž . Ž .Ž . Ý½1 k j 6

28 Ž1. Ž2. Ž3. Ž4.< <qh *g i y i g i y iŽ . Ž .Ý1

16 < Ž1. Ž2. Ž3. Ž4. <qh * g i y i g i y i ,Ž . Ž .Ý 51

where Ý* denotes summation over quadruples i , . . . , i such that the i Žk . ’s1 4
Ž .come from distinct pairs i , i , 1 F j F 4. Adding over i we deduce that,2 jy1 2 j

for l s 8,
2n n

Ž .y4 l 22 2 jqk y2 8< < < <n h A i s O n g i q h g i .Ž . Ž . Ž .Ž . Ý Ý Ý1 k j 1½ 5
is1 is1

Ž .This bound is also valid for l s 2, . . . , 7, and so 3.10 holds for m s 1. I
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Ž .PART 3. PROOF OF 3.11 . Since K is of order 4 or more, and the1
regularity conditions imposed on b are sufficient to give f six bounded,
integrable derivatives, then

2Ž j. Ž j. 2Ž7yj.ˆ< <2u y u y I s Ef y f F B h . IŽ .H1 j 2 j j 1 6 1
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