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LOCALLY ADAPTIVE REGRESSION SPLINES!

By ENNO MAMMEN AND SARA VAN DE GEER

Ruprecht-Karls-Universitit Heidelberg and Rijksuniversiteit te Leiden

Least squares penalized regression estimates with total variation
penalties are considered. It is shown that these estimators are least
squares splines with locally data adaptive placed knot points. The defini-
tion of these variable knot splines as minimizers of global functionals can
be used to study their asymptotic properties. In particular, these results
imply that the estimates adapt well to spatially inhomogeneous smooth-
ness. We show rates of convergence in bounded variation function classes
and discuss pointwise limiting distributions. An iterative algorithm based
on stepwise addition and deletion of knot points is proposed and its
consistency proved.

1. Introduction. In this paper we introduce a new class of nonparamet-
ric curve estimates. In the regression set-up, these estimates are penalized
least squares estimates. As penalty we choose the total variation of the kth
derivative of the regression function. These estimates will turn out as regres-
sion splines of order £ with locally data adaptive chosen knot points. The
estimates can be calculated in an iterative algorithm based on stepwise
addition and deletion of knot points; that is, the estimates are variable knot
splines. Variable knot splines have been proposed for a wide range of applica-
tions [see, for instance, Breiman, Friedmen, Olshen and Stone (1984),
Breiman (1991), Friedman and Silverman (1989), Friedman (1991), Stone
(1994)]. Typically, they are defined as limits of an iterative procedure. Be-
cause of this implicit definition, they appear to be hardly theoretically
tractable. The explicit definition of our estimates will allow an asymptotic
treatment. We will show that the estimates achieve optimal rates of conver-
gence in bounded variation function classes. For particular cases we describe
pointwise limiting distributions. Our research imply that these variable knot
splines adapt well to spatial inhomogeneous smoothness.

We consider the model of n independent observations Y;,...,Y, with
expectation m,(x;):

(1.1) Y, =my(x;) + g, i=1,...,n.

The design variables x; are nonrandom. They are real-valued and ordered
x; < -+ < x,, and for simplicity, they are assumed to lie in [0, 1]. For positive
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388 E. MAMMEN AND S. VAN DE GEER

A and an integer k£ > 1, we study the estimate /i = 7, , which minimizes
the following penalized sum of squared residuals:

(12) Fu(m) = % (¥ = m(x)] + ATV(m* )

For a function f defined on [0, 1] the quantity TV(f) is the total variation
of f. In particular for differentiable f, one has TV(f) = [}|f'(x)| dx. Later on,
we will see that 772 can be chosen such that 7%~ is piecewise constant and
right continuous (i.e., 7 is a spline function), with jump points ¢, < -+ <¢,.
Then the penalty can be written as TVGR* D) = TP, |m* V() —
mE= D, L.

In particular, these estimates are motivated when the model assumption is
appropriate that m* 1 is of bounded variation. Indeed, Lagrange calculus
shows that m is the least squares projection onto the smoothness class
{m | TV(m®*~Y) < 7} [with respect to the “scalar product” (f, g), =
1/nX?_ f(x,)g(x,)]. However, the bound 7 depends on A and on the sample
(Y,,...,Y,). Nevertheless, we will see that for appropriate choices of A = A,
(depending on n) the random quantity 7= 7, is of the same order as
TV(m{~ D). Total variation penalties have been considered by Kiinsch (1994)
in image analysis and by Portnoy (1997) and Koenker, Ng and Portnoy (1994)
in quantile regression.

Careful choice of the parameters 2 and A is crucial. We propose to
calculate 7 in a data analysis for all A and to inspect how 7,(x) develops as
a process in A and x. The process starts for A = 0 with the raw data and ends
for A large enough with the least squares polynomial fit of degree 2 — 1.

This is computationally feasible: in the next section we present an algo-
rithm. For 2 = 1 the algorithm calculates 7, for a given A in O(n(log n))
steps and for all A in O(n?) steps. For other values of £ we conjecture that
also only O(n?) steps are needed. The algorithm is based on computing the
changes of m, for small increases of A.

Optimal values of A for minimizing the mean integrated squared error are
discussed in Section 3. There an asymptotic analysis is presented which
shows how A has to be chosen to achieve optimal rates. Our asymptotic
results show also that m, achieves optimal rates of convergence in the
smoothness class ., o = {m |TV(m*~V) < C}. It is known that for these
classes, linear estimates do not achieve optimal rates. To achieve optimal
rates, the smoothing must be locally adaptive [see Nemirovskii, Polyak and
Tsybakov (1985), Donoho and Johnstone (1994) and Donoho, Johnstone,
Kerkyacharian and Picard (1995)]. For instance, a kernel estimate will do it
only if the bandwidth is locally adaptive [see Lepskii, Mammen and Spokoiny
(1994), Gijbels and Mammen (1994)]. How this local smoothing is intrinsically
done by our procedure will be explained in Section 4 by local asymptotic
considerations for £ = 1. It will turn out that, for A large enough, at mono-
tone pieces of m the estimate m behaves like an isotonic least squares
estimate (and its relative the “Grenander estimate” from density estimation).



LOCALLY ADAPTIVE SPLINES 389

For the Grenander estimate and the isotonic least squares estimate, the local
adaptivity is well known [Groeneboom (1985), Birgé (1987)].

Extensions of our procedures to higher dimensions for £ = 1 are touched
on below. Nonparametric density estimation using penalized maximum likeli-
hood estimation [with penalty TV(f*~ )] will be studied elsewhere.

2. Form of estimators and algorithms. In this section we discuss
finite sample properties and problems related to the algorithmic calculation
of our estimate 772, ,. The main purpose of this section is to show that 7, , is
a variable knot spline. Remember that 7, , is defined as a minimizer of the
penalized sum F, , of squared residuals [see (1.2)]. In general, the minimum
of F), , may not be unique. The following proposition implies that 72 can
always be chosen as a spline of order % [i.e., a piecewise polynomial of degree
(k — 1), and for £ > 1, a (k — 2) times continously differentiable function].
For the white noise model, this has already been shown by Tsirel’son (1982,
1985, 1986) for least squares estimation with bounded TV(m* D),

PROPOSITION 1. For every function m there exists a spline m of order k with
TV(R* D) < TV(m*~ DY) and m(x,) = m(x;) (i = 1,...,n).

The proof of Proposition 1 can be found in Section 5. In the sequel, we will
always choose 7, , as a spline of order k. The next proposition gives a

characterization of 7. In the statement of the following proposition we use
the following notation:

Hm ) = 2 X ) (5 - 0,
H(Y,t) = 2.2,1: Yi(x;, —t)"" forte[0,1],

i=1

where a, denotes the positive part of a.

PROPOSITION 2. A spline m of order k with knot points ty,...,t, minimizes
Fy, , G.e.m =m, ) if and only if [with 0!= 1],
(2.1) |H(m,t) —H(Y,t)|< (k- 1)!A forallt €[0,1],
H(m,t;)=H(Y,t;)) — (k—1)!A
2.2
(2.2) for knot points t; with m™*~V(¢; —) < m* V(¢ +),
H(m,t;)=H(Y,t;) + (k—1)!A
(2.3)

for knot points ¢; with m*~V(¢; =) > m*~V(¢; +),

(2.4) i(Y}—ﬂz(xi))xle:O forq=0,...,k — 1.
i=1



390 E. MAMMEN AND S. VAN DE GEER

Proor. We show only that (2.1), (2.3) and (2.4) imply m =, ,. Because
F, , is a convex functional, it is necessary only to show that /m is a local
minimizer. For this purpose we consider for real 6§ and 0 < ¢ < 1 functions:

s (%) =m(x) + 8(x — )"
It suffices to show for all ¢ that F, ,(m; ,) > F}, ,(7a) for |8| small enough.
This follows easily from
TV(m§ ;)
+[81(k—1)!, if ¢ is no knot point of m,
= TV(mtD){ —=8(k — 1)1, ift=t;and m* " V(t; =) >m*~D(¢;+),
+8(k—1)!, ift=t;and m* V(¢ —) <m* V(¢ +),

for || small enough. O

Figure 1 shows plots of H(Y,t) + (k — D!A, H(m,, ,,t) and H(Y,t) —
(B — D!A for & =1 (and a fixed A). In this case H(r, ,,t) and H(Y,t) are
broken lines. The function H(Y,¢) has breakpoints at design points ¢ = x;.
The function H(m, ,,t) lies between H(Y,¢) + (k — D!A and H(Y,t) —
(B — D!A [see (2.1)]. At every breakpoint, it touches H(Y,#) + (k — 1)!A or
H(Y,t) — (k — D!A! [see (2.2) and (2.3)]. In particular, at convex pieces it
coincides with H(Y, x) + (k — 1)!A at its breakpoints. This implies that at
convex pieces it is the greatest convex minorant of H(Y, x) + (k — 1)!A. At
concave pieces it is the smallest concave majorant of H(Y, x) — (k — 1)!A.
These properties will be used below when for the case £ = 1 algorithms and
pointwise limiting distributions will be discussed (see Proposition 8 and
Theorem 12).

NSNS

Fic. 1. Plot of H(Y, x) + (k — DIA, H(#, ,, x) and H(Y, x) — (k — DIA fork = 1.
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For k =1 and %k = 2, the knot points of 7%, , can be chosen in the set of
design points {x4,..., x,} [see also Prop0s1t10n 7] This is in general not true
for £ > 3. For approx1mate calculation of m k1, We propose to choose a fixed
finite grid 7' c [0,1] and to approximate 7, , by splines A" = m} , with
knot points in 7'. The following proposition may be helpful for the calculation
of the approximating spline.

PROPOSITION 3. A spline m” of order k with knot points t,,..., t,eT
minimizes F,, , among all splines of order k with knot points in T if and only

if (2.1) holds for x € T and if (2.2), (2.3) and (2.4) are fulfilled.

Proposition 3 follows similarly to Proposition 2. We consider now the case
k > 2. (The case k =1 will be treated later.) Let us assume that the set
T=1{ty,..., tp} (with 0 <t; < - < t, < 1) fulfills the following statement:

There exist indices 1 <j(1) < - <j(p + k) <n with
(2.5) tl k<xj(l)<t for1<z<p+k Here we write ¢_,,; =
=ty=0and ¢, o=ty =L

We write .7,  for the set of splines of order £ which are defined on [0, 1]
and which have knot points in 7. The dimension of .%}, 7 is p + k. Under the
assumption (2.5) we have that lgll, = [(1/nX}_,g(x;)*]"/? is a norm on .%,
[see Lemma XIV.2 in de Boor (1978)]. A basis of .#, ; is given by the
functions 1,..., x* "1, (¢, — )%, .., (¢, —x)t N

PROPOSITION 4. Assume (2.5) and k > 2. Then the following hold.

() For every A, the estimator v, , is uniquely defined.

(i) The function A — nﬁ, A s continuous (with respect to the norm |- ||,).

Let us consider the following subsets of T':

mg)\ dy_
Li=(teT: k—lt(t_)< (9k 1t ()
T = teT:l—k)‘(t—)>ﬁ (),
A gk~ 1¢ &kl

Sy={teT:H(A} ,,t) —H(Y,t) = —(k - 1)I\
and

Si={teT:H(m} ,,t)—H(Y,t) = (k- 1)IA}.
We write T, = T, U T". This is the set of knot points of i}, ,. Proposition 3
[see (2.2) and (2.3)] implies the inclusions T, € S; and T} C S;. The following

result will help us to find an algorithm for the calculation of the estimator
AT
g s



392 E. MAMMEN AND S. VAN DE GEER

PROPOSITION 5.  Assume (2.5) and k > 2. Then the following hold.

(1) There exist finitely many 0 = M0) < A1) < -+ < ML) < ML + 1) =
such that the sets T, and T are constant for A in (X(j), A(j + 1) [ for
Jj=0,...,L]. At every A(j) the set Ty or the set T," changes[j=1,...,L].

(ii) For two disjoint subsets T~ and T* of T we define the function
A=Ap 7+ €S p-ur+ by:

-1, forteT",
(2:6) H(A,t) = +1, forteT",
(2.7) Y A(x)x?=0 forq=0,....,k—1.
i-1

Then, with j = 0,..., L for X* and X** in a closed interval [ A(j), A(j + 1)], it
holds that mj .« = M e + (A* — )\**) (k — 1)’ATM+ Here we put
LG+v-=Tj+= T(A(J)H(Jﬂ))/z forj=0,..., L.

(iii) For every j=0,..., L we have for T =T, T"=Tg;, and A=
AT_,T+ that

TA(i)+'

(2.8) LT <8y and T TSy,
(2.9) T+ T, or T +Ty,_ ifj >0,
gy 1A J,
W(t_)< P 1t(t+) fOI"tET \ )\(J) and
2.10
(2.10) 9, (A J,_ -
W( —)> (9k 11,‘ (t +) fOI"tET \T)\(J).

The function A is uniquely defined in %), p- ,p+ by (2.6) to (2.10).

In particular, Proposition 5 implies that for A in (A(j), A(j + 1)), the
function A(¢) = [/ ,(¢) — @} ,;(®]/[A = A(j)] is uniquely defined by the
property that there exist subsets T~ and 7" of T with A €.%, ;- ,+ and
(2.6) to (2.10). This suggests the following iterative calculation of 7} , for
all A.

ALGORITHM 1.

Step 1. Put M0) =0, j =0, and define a spline m with knot points T
which interpolates the data, that is, m(x;,)=Y,, i =1,...,n. Put rhi’o = m.

Step 2. Choose subsets T~ and T" of T and a spline A = Ay 1+ [defined
by (2.6) and (2.7)] with properties as in (2.8) to (2.10). For X > A(j), put
my = my ,; + (X = MOk — DIA.
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Step 3. Put

Ay = min{X > A(j): |H(my,t) — H(Y,t)l = (k- 1)IX
forat e Twith |H(A,t)| # 1}.

Step 4. Put

Ag = min{)\’ > MJ): there exists a t € T, ;) with m{~V(t —) = m{~ V(¢ +)}

STEP 5. For X with Nj) <X < X4 A Ag, put Mk, =m,. Choose now
Aj+ 1 =ty A Ag. In the case of T, ., = I, put n%?;)\, = M4y for X >
Aj + 1) and stop. Otherwise, put j =j + 1 and go back to Step 2.

Typically, in every cycle of the algorithm, one knot point is added to or
removed from 7, U T,". More precisely, this is the case if A, # Ay and if there
exist exactly one ¢, € T with |H(A,t,)| # 1 and |H(m, ,t,) — H(Y, ¢, =
(k- D!A, (see Step 3) and exactly one ¢z € T);, with m{ Dt —) =
m{:~ (¢ + ). Then, in the case of Az < A4, the element ¢ is replaced from T}
or T}, respectively. In the case of Az > A,, the element ¢, is added to T} [if
H(m, ty) — HY,t,) = —(k — D!A,] or it is added to 7," [if H(m, ,t,) —
H(Y,t,) = —(k — DA,

In Step 2 the spline A is defined by its scalar products with elements of the
truncated power basis. In an implementation of the algorithm these defining
equations for A should be reformulated using the B-spline basis [see de Boor
(1978) for a definition of B-splines]. Then O(n) steps are needed in every
cycle because of the local support of B-splines. We conjecture that there will
be O(n) cycles. This would give O(n?) steps in the algorithm.

The algorithm terminates when T, = &. Then 7%} , is equal to the least
squares polynomial of degree (2 — 1). In every cycle of the algorithm points
are added or removed. This corresponds to forwards and backwards fitting
strategies for the calculations of variable knot splines. In very cycle A is
increased. A dual algorithm starts with the least squares polynomial of
degree (k — 1), with A = o, and with T, = . In this algorithm, A is de-
creased in every cycle and the algorithm terminates when 7, = T. Both
algorithms work. This fact is the content of the next theorem. Before stating
this result, let us give a more explicit description of the second algorithm.

ALGORITHM 2.

Step 1. Calculate the least squares polynomial m of degree (k — 1). Put
XN(0) = max{X: |H(m,t) — H(Y,t)|=(k — DX for a t € T}. For X > X(0)
put ﬁzg \» equal to the least squares polynomial m.
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Step 2. Choose subsets T~ and T" of T and a spline A = Ay 1+ [defined
by (2.6) and (2.7)] with the following properties:

(2.11) Ty T CSy,, and Ty,cT"CSi,,
(2.12) T+ Ty, or T +Tj,, ifj>0.
213 &k lt(t ) < (;k lt(t +) fort € T \Ty,; and
' 9y
&k 1t(t ) > e lt(t+) fort € T*\Ty,

For X < X(j) put my = m, = mj v, + X = X()ONk — DIA.

Note that conditions (2.11), (2.12) and (2.13) correspond to the old assump-
tions (2.8), (2.9) and (2.10). Again, it can be shown that there exists exactly
one spline function A with these properties.

Step 3. Put
Ao =max{0 < X < X(Jj):|H(my,t) —H(Y,t)|=(k—1)IX
forat e Twith |H(A,¢t)| # 1}.

Step 4. Put
Ag = max{O <X < XN(Jj): thereexistsat € Ty,

with m{E~D(t —) = mED(t +)}.

Step 5. For X with X(j)> X > X4 V A, put M} y = m,. Choose now
NG+ 1D =A, VAg If X(j+ 1) =0, stop. Otherwise put j =j + 1 and go
back to Step 2.

Consistency of the two algorithms is stated in the following theorem. This
result follows from Proposition 5.

THEOREM 6. Suppose (2.5). Then Algorithms 1 and 2 work: every A > 0 is
reached by the algorithms and for every A the estimate rﬁ; \ Is calculated
correctly.

We consider now 77t} , with the following choice of T":
T={x;, ., 2, )\{ %15+, X4 9, Xpi1-4 25> X,} fOr £ even,
(2.14) T={xy,.. ., X, ]\{ %1, 0» Xns1)/2> Xno(r-3)/2,--+5 X,} for k odd,

[T = {xq,..., x,}\{x;} for the case k = 1].

For the remainder of the paper, we will always use this choice of 7. Note that
this choice fulfills (2.5). The next proposition will be used in the next section
to show that under mild conditions on the design, rhg , reaches the same rate

of convergence as 7, ,.



LOCALLY ADAPTIVE SPLINES 395

ProPOSITION 7. For every k > 1 and for every function m there exists a
spline m of order k which has the following properties for a constant d,
(depending only on k).

(i) All knot points of m are contained in T [defined in (2.14)].
(i) sup, ... Im(x) — m(x)| < d,TV(m*~V)s*" ' where & =
Sup, < ;< (X — ;).
(i) TV(m* D) < d,TV(m®* D).

For cases k =1 and k = 2, the spline m can be chosen such that (1) holds,
m(x,) =m(x,),i=1,...,n and TVGR* D) < TV(m* D),

For & =1, no backwards fitting in the algorithm is necessary; that is,
T, | <. This and other features of the case £ = 1 are summarized in the next
proposition. We use the following notation: #I = #{i: x, € I} and AVE(]) =
[#I17'%,. . < ;Y; for subsets I of [0, 1].

PROPOSITION 8. For k = 1 there exist versions of m, , with the following
properties.

(i) The set T, of knot points (here: jump points) of m, , is contained in
T={xy,..., x,\{x}.
(i1) T, decreases toJ.
(iii) Every piecewise constant, right-continuous function m with jump
points ty,...,t, (0 <t, < -+ <t, <1)is aversion of m, , if and only if
m(x) = AVE((¢;,¢,,,) for x €t;,t;,), 1<j<p-—-1,
(2.15)  when m(t; —) <m(t) <m(t; ) or m(t;, —) > m(t;) >
m(t;, ) (monotone pieces),

m(x) = AVE(¢t,, t;, 1) — A/#[t;, t;.) for x €[t ¢,1),
(2.16a) 1<j<p— lwhenm(t; —) <m(t) > mt,,,) (local maxi-

mum),
F(x) = AVEL,, t,,0) + A/#lt, 65,0) for x € [t 8,1,

(2.16b) 1<j<p-—-1 when m(t; —) > m(t;) < m(t;, ) (local mini-
mum),
m(x) = AVE(I) + A/[2#1I] for x €I and I=1[0,t;) or
(2.17a) [t,, 11 if m(t, —) < m(t,) or m(¢, — ) > m(t,), respectively
(minimum at the boundary),
m(x) = AVE(I) — A/[2#1I] for x<I and I=1[0,t;) or
(2.17b) [t,,1] if m(¢, — ) > m(¢,)) or m(¢, —) < m(t,), respectively
(maximum at the boundary),

(2.18) |m(x) — AVE([0, ¢,))l < A/{2#[0,¢,)} forx €[0,¢,),
0 < AVE[¢;, x]) — m(x) < A/#[t;, x] for x € [t;,t;,,), j
=1,...,pifm(t; =) <mt,) (heret,,, =1,

0 > AVE((¢;, x]D — m(x) = —A/#[t;, x] for x €[t;,¢;,,),
J=1,...,pifm@; —) > m(t).

(2.19)

(2.20)
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Proposition 8 gives a helpful interpretation of 7, ,. The construction of
M, , is based on local averaging. At monotone pieces 7, , is equal to the local
average [see (2.15)]. At local maxima the local average is moved downwards
and at local minima the local average is moved upwards [see (2.16) and
(2.17)]. Additional knot points are not added if the local averages over the
additional intervals do not differ significantly [see (2.18), (2.19) and (2.20)].
This corresponds to the (soft) thresholding approach used by Donoho and
Johnstone (1994) for constructing nonlinear wavelet estimates.

Proposition 8 shows also that the following simple algorithm for 2 =1
works.

ALGORITHM 3.

Step 1. PutZ,=Y,andd;=1(=1,...,n). Let A =0 and q = n.

Step 2. For y> 0 replace all local extremes Z; of Zy,...,Z, by Z; + v/d,;
(local minimum) or Z; — y/d; (local maximum), respectively for 1 <i < g,
and by Z; + y/(2d;) (local minimum) or Z; — y/(2d;) (local maximum),
respectively for i = 1 ori = q.

Step 3. Choose vy so large that two neighbors (Z; and Z; . ,, say) become
equal. Set d; =d; +d; .1, g =q — 1 and rearrange Z; = Z;,, and d; :=

d;, ., fori>i,. Putnow A= A+ vy and go back to Step 2.

In this algorithm, g is the number of constant pieces of 7, ,; d; is the
length of the ith piece. In every cycle, two neighbor pieces (numbers i, and
iy + 1) are put together. This algorithm terminates after n cycles. Calcula-
tion of the estimate at the end of every cycle (i.e., for every A for which two
pieces are put together) needs O(n?) steps. At the beginning for every two
neighbors x; and «x,, ;, the values of A; are calculated where these points are
joined. Then these values A; will be ordered [ O(n log n) steps]. In every cycle
a new piece is created. The A; determining when this new piece is joined with
one of its neighbors is calculated and ordered into the series of the old A;’s
[OQog n) steps]. At the end of every cycle all values have to be updated [ O(n)
steps]. This gives O(n?) steps. If one only wants to calculate the estimate for
one A, it is not necessary to update all values of the estimate in every cycle.
Therefore, then, this algorithm needs only O(n log n) steps.

3. Some global and local asymptotics. Rates of convergence. In
this section we state results on the rate of convergence of rfzg, , and 7, .
Before doing this, let us study penalized least squares estimation in a general
set-up.

Let £ be a class of functions on [0, 1]. For a linear subspace &, of £ we
consider a penalty J: &, — [0, ) satisfying

(81 +82) <3(81) +3(82), 81,82€%,,
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and
S(ag) <lal3(g), g€%,acR.

Furthermore, let &,,..., &, be independent errors, with Eg, =0 for i =
1,..., n, and with subgaussian tails; that is, for some positive g, I,

(3.1) Elexp(Be?)] <T <o fori=1,...,n.
We consider the model
Y, =g..(x;) + &, i=1,...,n,

with g, , € Z. For a random variable A, we consider the estimate g, which
minimizes the penalized sum of squares over Z,:

g, = argmin{ Y 1Y, — g(x,)* + 1,3(g) |-
gEZ, i=1

In particular, we allow the case &, = £. The accuracy of the estimate will be
measured by the empirical norm

gl =1/n Y g(x,)°.
=1

We say that a sequence of random variables A, is of order d, if A, = O,(d,)
and A, ! = 0,(d;!). We write £,(1) = {g € Z,; J(g) < 1}. For a subset ./ of
Z we denote the 6 entropy of & by log N,(8, |- Il,,, %). This is the logarithm of
the minimal number of || -||,, balls of radius § which are needed to cover .

THEOREM 9. Let c, be a positive sequence such that for a function g, ,, in

we have - »=0(n" c and 3 < c,. Suppose
gn h ||g1,n gO,n” O( 1/2+w) rlf/(2+w)) d (gl,n) n S 1)
moreover that the random variable A, is of order n“/G*+we Z-w)/@+w)
Furthermore, we assume that for some C > 0 and 0 < w < 2

(3.2) log Ny(8,11- 1., Z,(1)) < C6* forall > 0.
Then we have

18, = 8o,ulln = Op(n ™/ Cr /o),
and

S(&,) = 0p(cy)-

Note that we have always [|g,|l, < [IYll, = Op(1 = lig, ,ll»). Therefore the
statement of the theorem is only helpful if ¢, = o(n'/“(1 + lIg, ,[.)® " ®).

We apply now this result to our regression model of Sections 1 and 2. For
simplicity of notation we will skip the index n in the following discussions
when dependence of a variable on n is clear from the context. Recall that
M, , is @ minimizer of Fy, , = LI |Y; — m(x,)|* + ATV(m®*~D); see (1.1) and
(1.2). As above we assume that the observations Y; are independent and we
write

Y, =my(x;) + g, i=1,...,n,
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where the random variables ¢; are independent and have mean zero. Let
II,m = argmin{llp — mll,: p €2,},
where £, is the class of all polynomials of degree £ — 1. Also, define
Mym=m—-1,m.
We apply now Theorem 9 with J(m) = TV(m*~D),

THEOREM 10. Suppose (3.1) and TV(m{~V) < ¢,. Then
11,2y, — 11l = Op(n /%),

Moreover, for sequences of random variables A = A, which are of order
nl/ @R+ De=@E-D/@hD e hape

”H;_ ﬁlk,/\ — T mll, = Op(n—k(zkﬂ)c’ll/(zkﬂ))’

and TV(RS ;D) = O,(c,). These statements remain valid for vy, , [with T

defined in (2.14)] instead of m, , as long as k=1 or k=2 or &=
SUPy %, g — ;] = O(n~h/FFDER+ D=2k /(h=1X2h+ 1))

When TV(m{~?) is bounded we get the usual n */@**1 rate for our
estimate /7 = 7, , (after appropriate choice of A). This is the minimax rate
for smoothness classes {m: [{(m{)? < C} [see, for instance, Ibragimov and
Hasminskii (1980), Stone (1982), and Nemirovskii, Polyak and Tsybakov
(1985)]. Hence this rate cannot be improved for the larger smoothness classes
{m: TV(m*~Y) < C}. This rate cannot be achieved by estimates which are
linear in the observations. Optimal estimates have to adapt for the local
smoothness of m,; see Donoho and Johnson (1993). According to Theorem 10,
this is done by our estimate m = 7, .

Now we will discuss a generalization of our approach with £ = 1 to the
two-dimensional case: {x;}" ; C R2?. Extensions to higher dimensions will be
briefly indicated. For simplicity, we also assume that

{xi}in=1 = {(gl,p’ fz,q): b= 1"“7 n;q= 17"'7 n2}7
that is, that the design points are on a lattice. For a function m: {x;}.; - R,
define

Am( &y ,,€a.q) =M €1, 62.q) —m(é1 o1, é2,4)

—m(&1 580 q-1) +Mm(& 15 €24-1)
forp =2,...,n;9=2,...,n,

and
ny ng

TVy(m) = )} X |Am(§1,p7§2,q)|'

p=2q=2

For functions g defined on {fl,p},’,ll:l or {fg,q};i 1, We put
n

™V(g) = Y lg(£,) (&, NorTV(g) = X lg(éry) — g(ény 1)l

b= q=
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respectively. Moreover, let

1 ™ 7
; Z Z m(gl,p’ f2,qr)

p=1g=1

3
I

1
ml-(§1,p)=n_2 Zlm(fl,p,glq)—m,_ forp=1,...,n,,
g
1

ny
m~2(§z,q) = n_1 1m(§1,p, §z,q) —m.. forgqg
p=

II
[y
S

o

and m*=m-—m;—m.,+m..

THEOREM 11. Suppose that
Y, =my(x;) + &, i=1,...,n,
with mean zero, independent ¢; fulfilling (3.1) and with TV(m, ) <c,,
TV(m,.,) <c,, and TV,(m,) <c, , for sequencesc, >0, c, , > 0. Let
n
m = argmin Y. [Y; — m(x;)> + A(TV(my.) + TV(m.,)) + A, TVy(m..).
i=1
Then
7.~ mg, Nln = Op(n=1"?).
For sequences of random \ = \, which are of order n*/3c;'/? we have
||7An1._ mo’l.”n = Op(n_l/acrl/3)’
”7,7\7/2 - my, 2||n = OP(n_l/Scylz/S)’
TV(#,) = O,(c,), and TV(i.,) = O,(c,). Moreover, for sequences of random
Ay = Ay, which are of order n®/ ¢, /", we have
772t —mg lln = Op(n=2/1%}/3)
and TV,(m) = O,(c, 5).

In Ball and Pajor (1990), one can find entropy results for convex hulls of
certain subsets of a Hilbert space, with §-covering number bounded by a
power of (1/68). This makes it easy to calculate the entropy of functions of
bounded variation in higher dimensions, say R% One can define m* and

TV,(m) in a way analogous to the case d = 2. For the class 7= {1(—x, x]:
x € R%}, we have for a constant C > 0,

Ny (8,11 1l,,%) < C8 2%, forall §> 0.
The result in Ball and Pajor (1991), then yields for a constant C’,
log N2(8,|I-|In, {ml :TV,(m) < 1}) <Cs %, forall §>0,
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with w = 2d /(1 + d). This means that for TV,(m,) < ¢, , and for a smooth-

ness parameter A; of order n¢/(*2dc 1/0+2) we have for the penalized
least squares estimator

”nA,LL _mOL ”n — OP(n—(l +d)/(2+4d)c’¢11y/a(31+2d))

and TV, () = Op(c, o).

We come now to the asymptotic distribution of 712, , at a fixed design point
x,. For £ = 1 we will state in the next theorem that in case of oversmoothing,
the estimate 2, ,(x,) coincides at monotone pieces of m with the (locally)
monotone least squares estimate m(x,) (with probability tending to 1). The
asymptotic behavior of m(x,) is well understood [see Wright (1981) and
Leurgans (1982)]. Asymptotics are very similar, as for the Grenander esti-
mate f(x). For an asymptotic treatment of the Grenander estimate f(x) as a
process in x, see Groeneboom (1985, 1989).

THEOREM 12. Assume k = 1 and (3.1). Fix a point x, where my(x,) exists
and where m/y(x,) # 0. Suppose that there exists a distribution function F
which is continuously differentiable in a neighborhood of x, with F'(x,) > 0
and for which

(3.3) sup |F,(x) — F(x)|=o0(n"'?),
O<x<1
where F, is the empirical distribution function of the design points x, ..., x,,.

Suppose that A is chosen such that An~1/3 - +o and An"2/3 - 0. Then
there exists a sequence 5, — + with 8,n '/ - 0 such that

P(my ,(%g) = m(x,)) = 1,

where m is the least squares monotone fit to the observations Y; with |x; — x,
<&, n"1/3:

m = argmin ) (Y, — m(x;))".
iilx;—xgl<8,n"1/3

Here the argmin goes over all monotone functions m: [x, — §,n" /3, x, +
s,n 13 > R.

In a neighborhood of points x with m/,(x) # 0, the distance between two
jump points of the least squares monotone estimate is of (stochastic) order
n~'/3. One can show that the same hold for 7%, , under the conditions of
Theorem 12. This means that most of the design points are not knot points.
This distinguishes our estimate from smoothing splines which have knots at
all design points. We conjecture that analogous results like Theorem 12 hold
for £ > 1. For instance, for £ = 2 one may fix a point x with m/(x) #+ 0. Then
we expect that in case of oversmoothing the estimate 72, ,(x) coincides at x
with the (locally) convex (or concave) least squares estimate m(x) (with
probability tending to 1). In case of m{®(x) # 0, we conjecture that the
distance between two knot points (in a neighborhood of x) is of stochastic
order n~1/@k+D)
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4. Some simulated data. In Figures 2 to 4 the estimate 7, _, is plotted
for three simulated data sets. This has been done for & = 1 (Case A, k=2
(Cases B, C). We have chosen n = 1000, o = 0.2 (Case A), n = 300, 0 = 0.1
(Case B) and n = 300, o = 0.2 (Case C). In all three cases the error variables
are ii.d. and normally distributed. The following regression functions have
been used:

(4.1) my(x) = sin(4/x) + 1.5, (Case A)

(4.2) my(x) =sin(2/(0.2 + x)) + 1.5. (Case B)
2.55 — 4.5x, for0 <x < 0.3,

(4.3) mo(x) = { —0.75 + 4.5x, for0.3 <x < 0.7, (Case C)

555 —4.5x, for0.7 <x < 1.

The plots show that 72, , and 7, , adapt well to locally changing smooth-
ness (see Cases A, B). The break p01nt and jump point in Case C are well
reflected by the estimate.

5. Proofs.

Proof of Proposition 1. Proposition 1 can be proved along the lines of the
proof of Theorem 1 in Mammen (1991). This theorem treats functions with
monotone derivative m*~1 and shows that such functions can be interpo-
lated by splines /m with monotone m*~ 1 and with TV(m*~ V) < TV(m* D),
Note that TV(g) = |[sup g — inf g| for monotone functions g.

A function g of bounded variation can be represented as a difference of two
monotone functions g, and g_ with TV(g) = TV(g,) + TV(g_). Therefore
we find functions m, and m_ with monotone m% Y and m“*~V such that
m=m,—m_ and TV(m*~ D) = TV(m} ) + TV(m*~ D) hold. Application
of Theorem 1 in Mammen (1991) to m, and m_ gives the statement of
Proposition 1. O

Proof of Proposition 4.

PrOOF OF (i). Suppose that (i) does not hold and that there exist two
different minimizers 7, and m, of F, ,. Convexity of F), , implies that the
minimum is also achieved by m, = (1 — a)m, + am, for 0 < a < 1. For
i=0and i =1 we can write n"mi(x) Thoga; 2/ + L, epb, (x — )81 We
choose now 0 < g < y < 1, such that for all £ € T' the quantity gb, ; + (1 -
B)b, , is positive, negative or equal to 0 if and only if yb, ; + (1 — )b, , is
positive, negative or equal to 0, respectively. Then we get for the function
F(a) = F, ,(in,) with a constant ¢ (depending on B and y) that F'(B) =
—2Y =g, my —my), + ¢ and F'(y) = —2(Y — 1, m; — mg), + c. Be-
cause F(a) = F(0) for 0 < o < 1, we have F'(B) = F'(y) = 0. This implies
0= {m,—mg,m; —my), =y — plm; — m,ll2. Because || |, is a norm on
7> we get that m, = m,. This shows that there do not exist different
minimizers of F) ,.
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(b)

Fic. 2. Plot of 1y, for a data set with regression function m, as given in (4.1), with n = 1000
and with o = 0.2 (Figure 2b). The smoothing parameter has been chosen such that i, has 200
Jumps. In Figure 2a, the true regression function m is plotted.
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(a)

(b)

Fic. 3. Plot of m, , for a data set with regression function m, as given in (4.2), with n = 300,
and with o = 0.1 (Figure 3b). In Figure 3a, the true regression function m is plotted.
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(b)

FiG. 4. Plot of iy, for a data set with regression function m, as given in (4.3), with n = 300,
and with o = 0.2 (Figure 4b). In Figure 4a, the true regression function m is plotted.
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ProoF oF (ii). Continuity of A — i} , follows from the contlnulty of
(A, m) > F), A(m) for m €.%, ; and from the uniqueness of My ,. Note that

the functions 7}, ,[0 < A < ] lie in a compact subset of (%, 1,1l II,), because
of IR I} < 2||Y||2 +20Y — AL < 20Y1E + Fy (AT ) < 20YI7 +
2F, (0) = 4]Y . O

Proof of Proposition 5. From Proposition 4(ii) it follows that the sets S,
and S are piecewise constant. We denote the end points of the pieces by
0=X2(0) < A*(D) < -+ < A*(L*) = oo with L* < oo,

Choose now 0 <j < L*. We write S =S, and S*= S, [with A € (A()),
A + D)) For A*, A¥* € (M), A(j + 1)) we cons1der now the function

(5.1) A= [(XF = X*)(k = D)1 (AL e — ).

First, we show that A does not depend on the special choice of A*,
N e (M), A(j + ). The function A is a spline with knot points contained
in Ty U Ty U TE U Tk, The inclusions TS, Ty S™, T ST and
T)t«c S imply that A €%, ¢, g+. Furthermore, by deﬁnltlon of the sets S~
and S*, the function A fulfills equations (2.6) and (2.7) with T-= S~ and
T"= S*. We show now that splines in .}, ¢-, g+ are uniquely determined by
this property. Because A* and A** do not appear in the equations (2.6) and
(2.7) this implies that A does not depend on the special choice of A* and A**.
It remains to show that A is uniquely defined by (2.6) and (2.7). Note first
that (2.5) remains valid with the set T replaced by its subset S"U S*.
Therefore, a basis of 4, 5-, ¢+ is given by the functions x?, ¢ = 0,...,k — 1,
(t — x)t~ 1, t €S US"; see the discussion after (2.5). Equations (2 6) and
(2.7) specify the projections of the function A onto these basis functions (with
respect to the empirical scalar product {,),). Therefore A is uniquely deter-
mined by (2.6) and (2.7).

We argue now that if ¢ is a knot point of A, then it is a knot point for all
my, . with A € (A(j), A(j + 1)). Suppose that this does not hold; then there
exists a A* € (A(j), A(j + 1)) with

- 110, x» Ip—11
gk 1y t=) = gkl lt (t+)
Now the equation A = [(A* — A)(k — DI7'(R) « — iy ,) holds for A in a
neighborhood of A*. Because ¢ is a knot point of A, this implies that

(t-)~ &k lt (t+)

- 1M,z
gkt

has a different sign for A < A* as for A > X*. However, becauseof t € S"U S*,

we have that H(mk i) —H(Y,t) = —(k — D!\ for A in a neighborhood of
X* or that H(®j, ,, £) — H(Y,t) = +(k — DA in a neighborhood of A*. This
would contradict the statement of Proposition 3 [see (2.2) and (2.3)].

We compare now for two A*, /\** € (M), M(j + 1)) the set of knot points of
mg 4. and mk yxx. Suppose that mk 4+« has a knot point ¢ which is not a knot
point of AT 1, v+~ Because of (5.1), then ¢ must be a knot point of A. However,
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this has been excluded in the last paragraph. We conclude that the functions
mj , have the same set of knot points for A € (A(j), A(j + 1)). In particular,
we get that the sets 7, and 7, are constant for A € (A(j), A(j + 1)). With
T =T, and T*=T," we get that A €%, r - and that A fulfills (2.6) and

(2.7). (The function A is uniquely defined by this property.) This shows (ii).

ProoF OF (1). It remains to show that the number of pieces where the sets
T, and 7T} are constant is finite. This follows from the following statement.

There exist no 0 <j <j with the property 7} ;.= T,
and L+ = han+

ProoF OF (5.2). Suppose (5.2) does not hold. Then there exist 0 <j <j'
with T} ;). = T, ;). and Ty, = Ty ;.. By definition of A(j), we have j + 1 <.
We choose now A;, Ay, A; and A, with A(j) < A} < Ay < A(J + 1) <A <
A(j") < Ay < A" + D). Note that by assumption, 7}, , , 7 ,,, and mk », have
the same set 7, of knot points. The set 7}, of knot pomts of M}, A differs
from T, . Put mx =y, + X = 4Nk~ 1)'AT T+ Where T- TA(!)+ and
TH= T)I hee For X = A, and X = Ay, we have m, = mj ,. This implies, that
for both these values of X, the spline m,, fulfills the conditions of Proposition
3. Then, r, fulfills the conditions of Proposition 3 for X €[A,, A In
particular, this implies that m, = n%g y for X = A;. Then we would have
T,, = T,,- However, this was excluded above.

Claim (iii) follows now from Proposition 3. O

Proof of Proposition 7. For simplicity of notation let us assume that
0<x; <+ <x, <1 For k=1 and %k = 2 the proposition follows immedi-
ately.

For £ = 1 one chooses m as a piecewise constant function with m(x) =

m(x,;) for 0 <x <xy, m(x) = m(x,) for x, <x <x,,,,1=2,...,n—1, and
m(x) = m(x,) for x, <x < 1.

For £ = 2 one chooses m as a broken line with break points x,,..., x,_;
and with m(x;,) = m(x,),i=1,...,n.

It can easily be seen that TV(m* V) < TV(m* V) in both cases.

For proof of the case & > 2, we choose first a subsequence z,,..., z, of
Xyy..., %, With 2, =%, 2, =x, and 6/2<z;,,,—2,<36/2,i=1,...,r —
1). We will construct a spline with knot points z,,..., z,_;.

The function m can be uniformly approximated by a (¢ — 1) times continu-
ously differentiable function g with TV(g*~) < TV(m®*~D). (Convolution of
m by a smooth kernel with bandwidth tending to zero will do it.) Therefore
without loss of generality we can assume that m is £ — 1 times continuously
differentiable. We choose m as the quasi interpolant of m with order £ and
with knot sequence ¢,...,%¢,,9,_9, Where ¢, = - =¢, =0, {,,, =
Zoyerisbpin_o=2,_1 and t,.,_ 1= = =t,, 9, o= 1. [For a definition of
quasi interpolants and knot sequences, see de Boor and Fix (1973) and page
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176 in de Boor (1978)]. Because the approximation scheme of quasi inter-
polants is local, Theorem XII.3 in de Boor (1978) can be strengthened to the
following statement.

For every x €[z, z,,,] with 1 <s <r — 1 it holds that
ImY(x) — mY(x)| < d,, ;8% 7718, for 0 <j<k—1 with
constants d, ; dependlng only on £ and j.

Here S, is defined as S, = sup{|m* Y(x) — m* V()| lv — ul < 38/2, ¢, < u,
UV <tiiop 1)

Application of this bound with j = 0 gives statement (ii) of the proposition
because S, < TV(m* ).

PrOOF OF (iii). We remark that

r—1
TV(R*D) = ¥ mt=D(z, +) - m*(z, -)|
s=2

< d,TV(m®* V)
With dk = 1 + 4kdk,k—1' O

PRrOOF OF THEOREM 9. Let us write a, = n~1/@+w)cw/C*w)_ (Clearly,
2 A =

2 n
"‘; _:Zl(go,n(xi) —81,.(%,))(E.(%x;) — &1,,(x;))

:lm

A
2 (3810 - 3(8) +

IA

_i (8, = 81,a(%;))

+2lg0,, — 81, nllnll€n — &1, ulln-

Conditions (3.1) and (3.2) imply that
In=V2EE s8 ()

5.3 sup — = 0p(1
(5.3) gz (D) gl w/? r()

[see Lemma 3.5 in van de Geer (1990)]. Since &, is assumed to be linear,
gnA_ gl ,n c gn )
J(8,) +c,
Moreover, this function is in Z,(1), because of
S(g\‘n) + N(\S(gl,n)
J(8,) +c,

~ gn_gl,n
J(8,) +e,
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This implies that
12, — g1 M2 <R, +2lgy , — &1 ollullZ, — g1 lln,
where
A o~ o~ A
R, = —(3(&1,.) = 3(&.))
+ 18, — g1, 2(3(8,) +¢,)*F10p(n7 ).
This inequality can only hold if (5.4) or (5.5) is fulfilled.
(54) ||§n _gl,n”i S2Rn’
(55) ||§n - gl,n”n = 4||g0,n - gl,n”n and
Rn = 2”gO,n - gl,n“nnén - gl,n”n‘
We consider now four cases.
Case 1. 3(g,) > 2¢, = 23(g, ) and (5.4).
Inequality (5.4) implies
0<I8,—gu.ll

A 3 w/e
< =298 8, - g1, 53(20) 10l

2
This shows
(5.6) 3(8,) <AV, — g ,10p(n1/ )]
Inserting (5.6) into (5.4) gives
(5.7) 18, = &1,nlln = A7/ E7N0p (0~ V/E)] = Op(a,).

Because of ||g, , — &, ,ll» = O(a,), this gives [|g, — g ,ll» = Op(a,).
Insert (5.7) into (5.6) to find J(5,) = Op(c,).

Case 2. J(g,) < 2¢, and (5.4).
From (5.4), either

AN\ 1/2
||§n_g1)n||nﬁ(7) |%(g1,")_S(§n)|1/2=0P(an)
or
1€, _g1,n||n <8, —gl’n||}fw/zcrlf/2|op(n—1/z)|’
which again gives (|8, — g, ,ll» = Op(a,,). This shows |, — g ,ll. = Op(a,).

Case 3. 3(8,) > 2¢, = 23(g, ,) and (5.5).

The inequality 8, — g, ,ll. < 4llgy , — &1 ,/l. implies lIg, — g, ,ll» =
Op(a,). The second inequality of (5.5) gives J(&,) = Op(c,).

Case 4. 3(8,) < 2¢, and (5.5).
We get 18, — g9, ,/l» = Op(e,) as in the last case. O
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ProoF oF THEOREM 10. Since I1,m and II,- m are orthogonal, we may
consider them separately. The result for [|TT,m — IT,m,ll, follows immedi-
ately from the fact that II,7% is the least squares polynomial of degree
(k — 1) for the observations Y|,...,Y,, where Y/ =Y, — I my(x,) =
IT,my(x;) + ¢, i =1,..., n. This holds because

V(R D) = V()" 7).

Put now .# = {I1; m: TV(m"*~Y) < 1}. As in Lemma 1, Section 5 in Mam-
men (1991), one can show that the functions in .# are uniformly bounded.
Therefore, using entropy bounds of Babenko (1979) [see also Birman and
Solomjak (1967)], we conclude as in Mammen (1991) that with a constant C,

log N,(8, 1l ll,,.#) < Cs~1/%.

Therefore, to get the result for ||[TI- 72 — I1,} m,ll,, we may take w = 1/k in
Theorem 9.

For the statement on /", we apply Theorem 9 with &, =.%, ; (i.e., the set
of all splines of order 2 which are defined on [0, 1] and which have knot
points T'). For £ = 1 and 2 = 2 we can assume without loss of generality that
m lies in &, [see Proposition 4]. For & > 2 Proposition 4 shows that there
exist functions m, in &, with [lm, — mll, = O(8* 1c,)O(n*/ @kt Dcl/@k+ 1)
and TV(m*~Y) = O(c,). O

ProOF OF THEOREM 11. Note first that m., m,, m., and m* are orthogo-
nal. The results for /., 7. and m ., follow therefore from Theorem 10.
Since for p =1,...,n;; ¢ =1,..., ny,
1 n; ng

)Y (ml (615> €2,) =M™ (1,05 &2,4)

NNy j—9 j=2

m* (fl,p’ gZ,q) =

—mt (&, &) T mt (614 6 )))

we have,
(5.8) Im* (&, ,, &)l <TVy(m*) =TVy(m).
Note further that we can extend m* to a signed measure on the Borel sets in
R2. According to the Hahn—Jordan decomposition,
mt=m,—m_,
with m, and m_ (nonnegative) measures. If TV,(m) < 1, then by (5.8), we

may take m, and m_ to be probability measures, with distribution functions
{m_(x): x € R*} and {m_(x): x € R?}, respectively. So

m* (fl,p’ §2;q) = m+(§1,p’ §2>q) - m—(gl,p’ f2,q)
forp=1,....,n;9=1,...,n,.
The set of all distribution functions on R? can be identified with the set of all

convex combinations of functions in # = {1(—, x]: x € R?}. Since N,(§,
II-l.,#) < C&6 7, for all 6 < 0, where 7 = 4, we obtain

log N2(8, 11, {mL: TVy(m) < 1}) <Cé¥
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for all 6> 0, with w = 27/(2 + 7) = 4/3 [see Ball and Pajor (1990)]. The
result for i1+ now follows from Theorem 9. O

ProoF oF THEOREM 12. Equation (3.3) implies that
mo(x;) = mo(F~'(i/n)) + o(n™"/?)

for x; in a neighborhood of x,. Without loss of generality we assume that the
design points are equidistant: x;,; — x; = const. Furthermore, for simplicity
of notation, we shift the design points and we assume x, = 0 and x;, =i/n
(=n/2 <i < n/2). We suppose that m/,(x,) > 0. Choose a sequence 5, with
8,(An"13)"2 50, §,(An"3)"! > +wand §,n /% - 0. We write

I, =[-8,n"13+8,n 13|,

For @ > 0, we put al, = {ax: x € I }.

The function & — X, _,m(x;) is the greatest convex minorant of ¥,_,Y;
and it holds that /(x;) = min,., max,_,(v —u + 1)"'L}_Y,, where the
minimum and maximum are taken only over u and v with x,, x, in I, (see
Barlow, Bartholomew, Bremner and Brunk (1972)]. We will prove that (with
probability tending to 1) /m and m coincide on 0.5 I,. This implies
the statement of the theorem. For this purpose we show that for x = 0,
+0.756,n" /3 and +1.58, n"1/3,

(5.9) P(m has an upward jumpin x + 0.251,) —» 1
and that
(5.10) P (7 is monotone increasing in I,) — 1.

Equation (5.10) implies that with probability tending to 1, 2 — X, _,m(x,) is
convex for x, in I,. Because of Proposition 2, then &, _ ,m(x,) < X, _,Y, + A/2
with equality if and only if /7 jumps at x,. Application of (5.9) and simple
geometric reasoning show that (with probability tending to 1) /% and m
coincide on 0.5 I,,. It remains to show (5.9) and (5.10).

ProoF oF (5.9). Choose v, such that vy,/8, > 0 and y,(An"1/3)"t - 4,
Consider the event B that /7 has no jump in x + 0.25 I,. Put I* ' = (x —
0.255,n Y3, x —025 §n 3+ yn 3% and I*?=(x+ 025 §,n 1/3 -
y,n Y3 x4+ 0.25 § n7'/3). On the event B the estimate 72 is constant on
x + 0.25 I,. Because m,, is continuously differentiable in x, with nonvanish-
ing derivative, there exists a constant C > 0 such that on B for n large
enough,

m(t) —my(t) > Cs,n /3 forall ¢tin [*?
or
m(t) —my(t) < —=C§,n"3 forall tin I*2.

Define I* as I=1, if m(t) — my(t) > C§,n" /3 for all ¢ in I*?', and as I*2
otherwise. For p small, we put m*(¢) = m(¢) + pl[¢t € IF]. For the penalized
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sum of squared residuals F, ,(72”), we get for small enough p on B,
Fk,A(ﬁ%”) — B, ()

- Z(Y—m”(x ) — (Y, — A« ) + 2l pl

S

L (e(x) = ()

X[ =26, + (P(x) = (%)) + 20(x,) = mo(x))] + 2 )
p Y. [M(x;) —mo(x;)] + p2#{x, €I} + op( p8,v,n'"?).

x; €17

Because of [T, . ;:i(x;) — my(x;)| > C'§,, n'/?, with probability tending to
1, there exists a p such that on B it holds that F;, ,(/2”) < F}, ,(i7). Because
m is a minimizer of F), ,, this is only possible if P(B) — 0. O

ProoOF OF (5.10). Denote the event that m is not monotone increasing in
I, by A. If A occurs, then with probability tending to 1, there exist jump
points u <v <w in 1.75 I, such that m jumps upwards at u and w and
jumps downwards at v [see (5.9)]. The points u and w can be chosen such
that there is no upwards jump between u and w. Then (see Proposition 8)
with N = #{x;: u <x, <v}and M = #{x;: v < x; <w} on A with probabil-
ity tending to 1,

N' ¥ Y -NW=N'! ¥ Ax)

u<x;<v u<x;<v
>Mt Y A(x)=M?' )Y Y. +M\
v=x;<w v=x;<w

Because m, is monotone increasing in I,, this implies that on the event A
with probability tending to 1,

N' Y &-NW>M?' Y &+M*W

u<x;<v v=x;<w

We show now that with probability tending to 1, the left-hand side of this

inequality is negative and that with probability tending to 1, the right-hand

side is positive. Therefore it must hold that P(A) — 0. This implies (5.10).
It remains to show

P( sup | Y, &< )\) - 1.
x, y€l, lx<x;<y
This follows from sup, ,c;[X, .. ., &l = 0p(8)?n'/?) and the assump-

tion §,(An"13)"2 - 0. O
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