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EFFICIENT ESTIMATION OF INTEGRAL FUNCTIONALS
OF A DENSITY

BY BEATRICE LAURENT

Université Paris Sud

We consider the problem of estimating a functional of a density of the
type [¢(f,-). Starting from efficient estimators of linear and quadratic
functionals of f and using a Taylor expansion of ¢, we build estimators
that achieve the n~!/2 rate whenever f is smooth enough. Moreover, we
show that these estimators are efficient. Concerning the estimation of
quadratic functionals (more precisely, of integrated squared density)
Bickel and Ritov have already built efficient estimators. We propose here
an alternative construction based on projections, which seems more
natural.

1. Introduction. Let X,,..., X, be iid. with common density f with
respect to some measure u. When u is the Lebesgue measure on the real line,
Bickel and Ritov (1988) have studied the problem of estimating [(f*))2,
where f is supposed to belong to a nonparametric set of densities ®, included
in some compact set of smooth functions of order s. They built an efficient
estimator if s > 2k + 1. If s < 2k + I, they showed that the best order of
convergence is n(~4¢~#)/1+49 Tt ig quite a remarkable result in the sense
that the critical regularity 2k + + is completely unusual. In fact, one could
think at first glance that this critical regularity should be 2% + % [see Hall
and Marron (1987), where some statistical motivations for studying these
functionals are also provided].

This problem has also been treated by Donoho and Nussbaum (1990) for
the white noise model. It is also worth mentioning the paper by Ibragimov,
Nemirovskii and Khas'minskii (1986), which deals with differentiable func-
tionals in the same framework.

Bickel and Ritov’s estimator is a quite intricate expression based on kernel
estimators of the density. In this paper, we propose an alternative and
somehow simpler method of estimation based on orthogonal projections. This
method will allow us to treat the more general problem of estimating /%) du
when f belongs to some ellipsoid & = {¥;. pa,p;;Z;c pla?/c?| < 1}, where
(p;); < p is an orthonormal basis of 1*(du). This generalization is crucial to
achieve the aim of this paper, which is to construct efficient estimators of
functionals of the type T(f) = [¢p(f(x), x) du(x), f € &, when it is possible.
This problem was first studied by Levit (1978), who built efficient estimators
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of this kind of functionals, under regularity properties for the density that are
more restrictive than our conditions.

A typical motivating example of such functionals is the Shannon entropy
[flog(f). Dudewicz and Van der Meulen (1981) showed how estimators of the
entropy may be used to test uniformity of a n-sample with density f concen-
trated on the interval [0,1]. Moreover, Vasicek (1976) proposed a test of
normality that is also based on estimators of the entropy.

Before stating our results, let us explain how the two above-mentioned
problems are connected. ¢ is assumed to be a smooth function. So expanding
¢ up to the second order with Taylor’s formula provides an expansion of
T(f) — T( f’) where f is a nonparametric preliminary estimator of the den-
sity f, constructed with a small part of the n-sample. With the remainder of
the sample, we build estimators of the terms, up to the second order, which
appear in the Taylor expansion. Some of these terms are linear functionals of
f and its derivatives, while others are quadratic functionals of the type
JF2K( £), which have been studied in the first section. Our main result is
proved in Section 3 and may be summarized as follows. When f belongs to
some Holder’s space with index s over R?, we can build an estimator T of
T(f) such that if s> d/4, Vn (T, — T(f)) - M0, C(f, $)), where 0, o?)
denotes the normal distribution and nE(T, — T(f))*> — C(f, ¢), where

C(.) = [(@i(£.9)'F = [ [oicr.01]

and ¢ (u,v) = d¢p/du(u,v). Moreover, C(f, ¢) is the semiparametric infor-
mation bound for the problem of estimating T'(f) as will be shown in the
Appendix; hence our estimator is asymptotically efficient.

When s < d/4 we do not know what the optimal rate is, except that it is
smaller than n~3%/(@+29)_ Actually, in this very case the remainder term in
the Taylor expansion is precisely of order n 2%/(?*29) Birgé and Massart
(1995) have proved that the rate cannot be smaller than n~*5/(@+49) g0 it
would be necessary to do the Taylor expansion up to the third order and to
estimate [f?. This was made in the case where d = 1 by Kerkyacharian and
Picard (1993). They propose an estimator of [f® based on wavelet methods
which achieve the optimal rate of convergence when s < 7.

2. Estimation of [f2{s. Suppose X,,..., X, are ii.d. random variables
with common density f € 12(du). In the following, all integrals will be taken
with respect to u. Let (p,), c , be an orthonormal basis of 1>(d ), where D is
a countable set. Let a; = [fp;, and consider the ellipsoid & ={X,;. pa,; p;;
ZiEDla?/ciQ| < 1}

Our purpose is to estimate 0= ff % when fe &. Let us first look at
the case ¢ = 1. Since [f*=1X%,_pa}, a natural idea would be to estimate
th1s integral by 6 = X,_,4?, where @, is the empirical estimator of a;:

= (1/n)X}_ p(X;) and M is a subset of D. Therefore 6 =
(1 /n?L; o MZ 1-1D; (X )p;(X,). The computation of the bias of this estimator
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shows that it can be reduced by removing the diagonal terms, that is, the
terms of the type (1/n?)p2(X,). In this way, we get an estimator of [f? with
bias — [(S,,f — f)?, where S,,f denotes ¥; . ,; @, p;.

We intend to build an estimator with a similar bias for the estimation of
/f%p. More precisely, we wish the bias to be equal to

— [(Suf = w=2[(Suf) i~ [(Suf)v— [

Hence, the problem is to find an estimator with expectation 2 /(S,,f)fy —
[(S,; F)4p. For the part [(S,,f)fis, we propose the following estimator:

N 1 "
(2.1) 0, = m X X pi(Xj)(Pi‘ff)(Xk)-

ieM jk=1
To get the term [(S,, )%/, we propose the estimator
N 1 "
(22)  b=—— Y X p(X;)p:(X})|pipr(x)dx.
2 n(n —1) i,i'eM j+k=1 ( J) * f

This explains the expression of the estimator  proposed in the following
theorem.

THEOREM 1. Let X,,...,X, be i.i.d. random variables with common
density f belonging to some Hilbert space 1*>(dw). Let (p;); < , be an orthonor-
mal basis of 12(duw). We assume that f is uniformly bounded and belongs to
the ellipsoid & ={Y,.pa,p;;¥;cpla?/c?| < 1}. Suppose that the following
condition holds: We can find a subset M, of D such that
)2 |M,,|

-~ ’
n2

2
( sup |Ci|
ieM,

where |M,| denotes the cardinality of M, and
Vg el®(dp), f(SMng—g)QdMHO asn — o,
0 = [f% is to be estimated, where ¢ is a bounded function, and let
A 2 ”
0=—— L L p(X)(p¥)(Xy)
n(n —1) ieM, j+k=1 ( J) *
1
- n(n —1)
9 has the following asymptotic properties to estimate [f?}:
@ If IM,|/n = 0 as n — «, then
(2.3) V(6= 0) >0, A(f, ¥)),

InE(0 — 6)" — ACF, ¥)
(2.4) |
1Sy £ Flls + ISy () — Fblla |,

Z i pi(Xj)pi’(Xk)fpipi’lp(x) dx.

i, i'eM, j+k=1

al

<7 n
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where
ACF ) = 4[/f3¢2 - (ff%ﬂ)z}.

(i1) Otherwise
M,

~ 2 n
E(6—-0) <v,—,
( ) Y2 n2
where vy, and vy, depend only on ||fll. and ||¢ll.. Moreover, they are both
increasing functions of || fll. and ||{|l..

The notation A, = B, used in Theorem 1 means that A\, <A,/B, < A,,
where A; and A, are positive constants.

COMMENTS. Of course, it follows from (2.4) that lim, nE( — 0)? =
4 [f3%* — (Jf%)?]. In the next section, ¢ will be a random function depend-
ing on n, which is why we need some bound which depends explicitly on .

We shall prove in the Appendix that the asymptotic variance is optimal
and our estimator is therefore efficient.

ExampLE 1. Let X,..., X, iid. d-dimensional random variables with
density f belonging to [2(d ), where u is the Lebesgue measure over R?. f is
supposed to belong to the ellipsoid & ={X,_;«a;p; X, id)ezd(|i1|zsl
+ - +|id|28‘i)|0ti1 ''''' id|2 <1}, where V j€({1,...,d}, s;>0. Let s€R be
defined by d/s =X9 ,1/s;. Let M, ={(i},...,i,) € Z% li;| < m*/?%}. The
cardinality of M, equals 2m. Moreover, supieEMnlcl-l2 =~(m2%/9). Let m =
n2/A+4s/d) Then (supieEMnlciIz)z/anl ~ 1/n?%. Hence, as soon as s > d /4,
the estimator # defined in Theorem 1 has the properties defined by (2.3) and
(2.4) to estimate 0 = [f%).

When s < d/4, we get E(6 — )% < An~8/(4%49) for some A € R. In the
framework of this example, when f belongs to 1%([0, 1]¢) and when (p,), . ;¢
is the Fourier orthonormal basis of 12([0,1]%), we shall prove (see proof of
Corollary 1) that the condition f € & generalizes a condition of the type: f
belongs to some Hoélder space of any index greater than s. In this particular
framework and when ¢ is either always positive or always negative, Birgé
and Massart (1995) have proved lower bounds for the rates of convergence
which agree with the rates of Theorem 1. Our result is therefore optimal.

ExamMPLE 2. Suppose that f < 12([0,1]?). We shall give some example to
show how wavelets fit in our framework. Denote

£~ (L T ain T T 2l 1),

Jjz0 A€A; J=0 AEA;
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where Jf is a wavelet and

kq &, k, &y ,
AJ-={(§+F,...,§+F ,OSkiﬁzj—l;

(£1,...,85) € {o,1}d\(0,...,0)}.

If f belongs to some Holder space of any index greater than s and if ¥ has
regularity r > s, then f € &, where the equality f= X, (X, a(M¢; holds
in 12 [see Meyer (1990), page 108]. ’

In order to apply Theorem 1, we set

M, ={re A, j<jy, 20 =¥/ @i}

and for A € A}, ¢, = 27/°. We have

|M | ~ nZd/(d+4s), sup |C)%| ~ 272]‘03 — n74s/(d+4s)
n
AEM,

and the results of Theorem 1 hold.
3. Estimation of [$(f).

3.1. Main results. The purpose of this section is to estimate T(f) =
fp(f(x), x) dx efficiently when it is possible. As in the previous section, we
assume that f belongs to the ellipsoid & = {X,_ pa; p;; X, c pla?/c?| < 1}.

We would like to start with some preliminary estimator f of the density f
built on a small part of the initial sample and do a Taylor expansion of ¢ in a
neighborhood of (f(x), x). In order to give a sense to this expansion we shall
assume the following:

Al. The function u - ¢(u, x) belongs to C3(Q)), where C?({2) denotes the
class of p times continuously differentiable functions over Q. V x, a < f(x) <
b, where a,b € R, with [a, b] € Q.

A2. We can find a preliminary estimator f of f constructed with n,=
n/log(n) data, such that V x,a — e < f(x) <b + & with[a — &, + ] C Q.
Moreover,V2 <q < +o,V [ € N*, Efllf— flll < C(q,Dny'« for some a > é
and for some constant C(q, ) independent of f belonging to the ellipsoid &.

Denote K, = [a — &, b + ¢]. We shall give an example of such an estima-
tor in the case where f is a density defined over a compact set S of R?
satisfiying some regularity assumptions.
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Assuming that Al and A2 are verified, it is now legitimate to make a
Taylor expansion of ¢ in a neighborhood of (f(x), x). We shall use the
following notation for partial derivatives:

(93

2
“ —u3(u,x) .

2
ro_ _ 3 —
¢1_ &u(u’v)’ 1~ ﬁuz(u’v)’ ||¢(1)||oo— sup

x,u€K,

Then
T(f) =/¢(f<x),x)dx+/¢a(f<x),x)(f—f)(x>dx
/¢ f(x), x)(F = F) () dx + T,

where I', is a remainder term which will be proved to be negligible compared
to the linear and quadratic terms. It is convenient to write T'(f) as

T(f) = [G(F.-) + [H(f.)f + [K(f.)f2 + T,

where

(3.1) G(f.-)=o(f.)— ¢ a(f )f sy ()2,
(3:2) H(f,) = o:i(f,-) =15 (1."),

(3:3) K(f,") =3(F.").

We have to estimate two types of functionals:

1. [H( f -)f, which is a linear functional of f;
2. [K( f )f?2, which is a quadratic functional of f of the type studied in
Section 2.

If f is based on the n, last observations, then [H(f,-)f and [K(f, )f? are
estimated with the n, first data, where n, = n — n;. The following theorem
gives the expression of the estimator T of T'(f) and its properties.

THEOREM 2. Let X,,X,,..., X, be i.i.d. random variables with common
density f belonging to some Hilbert space 1*(dw). Let (p,); , be an orthonor-
mal basis of 1>(dp), a, = [fp, and suppose that f belongs to the ellipsoid

1}

T(f) = [d(f,-) is to be estimated. We assume that the hypotheses A1 and A2

2

Zaipi; Z

ieD ieD

i
2
i
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hold and that ||¢}ll.., l|¢]]l.. and |6l are finite. Suppose that we can find a
subset M, of D such that (sup,, lc2D)? = |M,|/n* and such that V g €
12(d p), IISM g—glls > 0asn — « Let

7~ [G(f) + — ¥ H(F,)(X)

n2_]1
2

> Z p(X)( ( )pl)(Xk)

ny(ny — 1) ieM, j+k=1

- D> pi(X,)pi(X,) [pipi K (f,"),

nz(nz - 1) i,i'eM, j*k=1

where G, H and K are defined by (3.1), (3.2), and (3.3). The following
properties hold:

M .
(34) if | n”' -0, then Vn (T, —T(f))—»7(0,C(f,d)),

(3.5) lim nB(T, - (1)) = C(f, ),
where C(f, ¢) is defined by C(f, ¢) = [(¢\(f, - N*f — (fo'(f, - )2

COMMENTS.

1. The asymptotic constant C(f, ¢) appearing in Theorem 2 is optimal. This
follows from the general theory of efficient estimation as explained in the
Appendix.

2. We shall give a corollary of Theorem 2 with an explicit construction of the

preliminary estimator / in the particular case where f is a density defined
over a compact set of R?, for example, S = [0, 1]¢, and satisfying regularity
conditions. More precisely, let r = (r1,...,r,) € N and a = (ay,..., a,)
€10, 1]¢. Let D; be the derivation operator Wlth respect to the jth var1able
We shall denote by F, , ¢ the set of densities f defined over [0, 1]¢ such
that

Diif exists V j € {0,...,d} and D!f is periodic for I = 0,...,r

J?
IDj°f(x) = Djf()l
sup oy <C.
x,y€S |x _y]|
X;#FY;

We define s; =r; + «; and s by d/s = Zlel/sj. We will show in Section 4

J

that if f belongs to F, , ., then f belongs to some ellipsoid

&= { Z a;p;; Z (|i1|28,1 + o +|id|23,d)|ai1 id|2 < ’)’}

.....
iezd T ipez?

for all (s}, ..., s;) such that V j, 0 <5} <s; =r; + a; for some y > 0. In this
case, the preliminary estimator f is deﬁned as follows Let f be a kernel
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estlmator of f based on the n, last observations where n, = n/log n. Let
fo €F, ,c be such that f,(S)€[a —¢,b+¢], let A, = ={f(S)cla — &,
b+ e]} and

(3.6) fA(x) =f(x)]-An+f0(x)]]-Acn'

Theorem 2, together with rates of convergence results by Ibragimov and
Khas’'minskii ensuring A2 when s > d/4 [see Ibragimov and Khas'minskii
(1980) and (1981)], implies the following corollary:

CoroLLARY 1. Let X, X,,..., X, be i.i.d. d-dimensional random vari-
ables with density f belonging to the set F, ,c, TE N « €]0,1]% Let
s;=r;+a; and d/s =L ,1/s;. Suppose that & > d/4. Let (sl,.. s!) be
any element of R such that V j, 0 <s;<s; and such that s deﬁned by
d/s = Zd,ll/s satisfies s' > d /4. Let (pl)lezd be the orthonormal Fourier
baszs of 120, 1]d) and let f be the estimator of f defined by (3.6). Let

={Gy,..., 1) €Z%V j,lil <m* /%) and m = n®¥/ @4 T is defined
as in Theorem 2 with M,’L instead of M,,. Then

Vn (T, = T(f)) >#(0,C(f, $))

and

lim nE(T, - T(f))’ = C(f, d).

n— o

CoMMENT. We do not need the periodicity condition for the partial deriva-
tives of f when d = 1 as will be shown in the next section.

3.2. Entropy estimation. As an example, let us give the precise shape of
our estimator of [f log(f). Condition Al means in this case that V x,0 < ¢ <
f(x) < b, that is, that f is bounded from below by some positive constant.
Since f is a density, this condition implies that f is defined over a compact
set. Hence, this estimator will not be suitable to test the normality, but we
may use it to test the uniformity of a density defined over [0, 1] [see Dudewicz
and Van der Meulen (1981)].

Using the Taylor expansion as before, we get

[r1o8(r) =~ [+ [los(F)F+ 2/— +T,.

The general estimator proposed in Theorem 2 has the expression

f= - [F+ - Tlog A(X) + XL a0 o)

Ng =1 ny(ny — 1) li#l,=1ieM,

- E > pi(Xll)pi’(Xlz)f(%)( x) dx.

2ny(ny = 1) ;o1 icm,
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If feF, ,cand s> d/4, then Tn has the properties
2
Vi (T, = T(f)) wr(  [log?(£)f - (fflog(f)) )

tim 07, - /flog(f)) = [log*(f)f - (fflog(f))2-

n— o

4. Proofs.

4.1. Proof of Theorem 1. We start from the usual decomposition:
A 2 A A
E(G—ffzzp) = Bias?(0) + Var(9),

where Bias() = E(§) — 6. We shall write M instead of M, for short. We
recall that for any function g € 1*(dp), Sy g =L, y( fgpl)pl 6 has been
constructed in such a way that Bias() = — [(Sy f = )*. Hence

Bias(6)! < Il /(SMf £ =yl ¥ la,|® < llgll.suple,/* since f e &.

1EM iEM

Let us now evaluate the variance of 6. We will denote by m the cardinality
of M. Let A and B be the m X 1 vectors with ith components «; = [fpi and
b, = [fyp, for each i in the set M. Let @ and R be the m X 1 vectors of
centered functions with ith components q,(x) = p,(x) —a; and r(x) =
pi(x)y(x) — b,. Let C the m X m matrix of constants ¢,;, = [p; p, . We shall
denote by U, the process defined by U, 2 = (1/n(n — D)L}, ,_,A(X, X,) and
we denote by P, the empirical measure P, f = (1/n)2 _1A(X). Then the
U-statistic 6 has Hoeffding’s decomposition [see Hoeffdmg (1948) or Serfling
(1980)]

j=UK+P,L+2AB—ACA,
where
K(x,y) =2@(x)R(y) - @(x)CQ(y),
L(x) = 2AR(x) + 2B'Q(x) — 2A'CQ(x).

(In fact, K and L depend on M, hence on n.) Var() = Var(U,K) + Var(P, L) +
2Cov(U,K, P,L). We will first bound Var(U, K). Note that U, K is centered.
Moreover,

1
E{(UK)?| =E| ——— K(X;, X,)K(X;, Xy
(@8] = E| 5 ﬁkzlj#kZ_l (X;, XK (X;, X)

1
= Cntn = 1) ZE (X1, Xo) + K(X3, ) K (X, X))
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since all the other terms are equal to zero because @ and R are centered. By
the Cauchy—Schwarz inequality, we get

Var(U,K) < E(K*(X,, X,)).

n(n — 1)
Moreover, using the fact that 2| E(XY)| < E(X?) + E(Y ?), we obtain
E(K%(X,, X,)) < 2[E((2Q’(X1)R(X2))2) + E((Q’(XI)CQ(XZ))Z)].
We will majorize these two terms:
E((2Q (X)) R(X,))’)
4 X | [ppef () du(x) = asa | [p.p 7 F(3) d(2) - B

i, i'eM

=4[ £ p()p9)] AP du(x) du(y)

ieM

4 [ (Suf)uPf = 4f Su(in)F+ 4| T aibi)z

ieEM

< 4||f||§||w||3;/j( )y pi(x)pi(y))z du(x) du(y) + 4( Yool X b?)

ieM ieM ieM

<AIFEIIE [ X (pipe)(2)(p:pi)(3) dp(2) dia(y)

ii'eM

va( frf o).

By orthogonality of the p,’s the first term is equal to 4|/ IIO%II(pIIo%m. Moreover,
since [f = 1, the second term is bounded by 4/ £l12[ly|12. It follows that

E((2Q (X)) R(X,))) < 4llfI2IwlZ(m + 1).
We will now control the second term appearing in E(K?2(X,, X,)):
E((Q(X,)CQ(Xy))’)
)IDY (fpipilf— aiail)(fpirpirlf— aifaia)fpipirlﬂfpilpiiw

i,i'eM iy, iheM

ff( )y pi(x)pf(y)/piw) F(x) F(y) du(x) du(y)

ii'eM

2 [ (Sul(Suf) W) f + (j(SMf>2w)2
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sllflliff( X pi(X)pif(y)fpipw//) du(x) du(y)

iieM
e fesurr)
SUFE T | [0 () pa(3) dis(x) ()

i,i'eM iy, iheM

Xfpipi"p/pilpiiw} + ||¢||02o(ff2)2

since S, is a projection. Using the orthogonality of the p,’s, the only terms
that are not equal to zero in the first term correspond to i = i; and i’ = i}. So
the above term is bounded by

1712 % (fpipif¢)2+||w||z||f||3,

i,i'eM
which is equal to
2
IFES[( T p0)p)] w(2)u(y) du(x) duly) + I0EIFIE,
ieM
so we get
E((Q(X,)CQ(X,))) < Iw2IFIE(m + 1).
It follows that

Var(U,K) < ANl (m + 1).

n(n —1)
Let us now compute the variance of the term P,L:
1
Var(P,L) = —Var(L(X,)),
n
where L(X;) can also be written in the form

L(Xy) = 2(Su )¢ (Xy) + 28y (1) (Xy) — 28, [(Sy ) ¥](Xy)

—4 Y ab +2[(Syf)’ .

ieM
Hence,
Var(L( X))
=4Var[(Sy v (Xy) + Sy (f)(Xy) — Sy [(Suf)v](X))]

<4E[((Sy (X)) + Sy (f1)(X1) = Sul(Suv](X)]
< 12E[((Su AHw(X)) + (S (A (X)) + (Su[(Su N1 (X)),
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We will now control these quantities, using repeatedly the fact that 1S, fll2
<|Iflly since S, is a projection, and that || £I3 < || fll. since [f = 1:

E[(Su¥(X)Y] = [(SuH)*w2f < IwlZNFILIFIE < Np 20 FI2,
E[(Su(F)(X)Y] = [SH(Fu) f <IFILIFl} < Iw 21 FI2,

E[(Sy(Su f)(X))] = [Si(Suf)w] £ < IFII(Sy )l < IFIENwI2.
Collecting the preceding evaluations, we obtain Var(L(X,)) < 36| fl12[l4]12. At
last,

Cov(U,K,P,L) = E(U,KP,L) = E ¥ K(X,, X;) f L(X))

n(n — 1) j#k=1

= %E(K(Xl, X,)(L(X,) + L(X,))) (since L is centered)

=0 (since @ and R are centered).

Finally, for n large enough and for some y € R,

g 1
Var(§) < A AEIE Ty + )

We recall that Bias2(9) < |lyl12 (sup; ¢ yle; I”)2 and that, by assumption,
(suplGEMIcI )2/m ~ 1/n% Hence we get the following. If m/n — 0, then
E(6 - 6)? = 0(1/n), else E(0 — 6)* < y,(m/n?), where y, depends only on
Il £1l.. and [|¢]l...

Let us now more precisely look at the semiparametric case, that is, the
case where E(f — 0)2 = O(1/n) and show that Vn (6 — 6) —>J/(O A(f, w)) in
distribution. We will prove (2.4) at the same time. We recall that 6= U,K +
P, L +2AB — A'CA. Hence,

Vn (6 - 6) = Vn (U,K) + Vn (P,L) + Vn (2AB — ACA - 6).

Since Var(Vn U, K) < (20/(n — DIIfIZNI2(m + 1), if m/n — 0, then
Vn U,K converges to 0 in probability as n — o.

The empirical process term P,L will make the main contribution to the
central limit theorem. We saw above that

Var(L(X;)) = 4Var[(Sy ) w(Xy) + Sy (f)(X1) = Su[(Suf)¥](X1)].

Denote Y, = (SMf)tj/(X ), Y, =S, (fuXX)) and Y; = —S,,[(S,, HvI(X).
Then Var(L(X ) =x3 Cov(Y Y). In fact, V i, j € {1, 2, 3}%, we claim that

i,j=1 i»*j

Cov(Y;,Y;) — Sif[/fs‘pz - (/lepﬂ

< y[lISyf = Flla + 1Sy (fr) — fllo],

(4.1)
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where &, = —1if (i, j) = (1,3), (2,3), (3,1 or (3,2) and &;; = 1 otherwise,
and where y depends only on || f|l.. and ||¢]l. and is an increasing function of
these two quantities. We give a complete proof for i = j = 3 since the compu-
tations are similar in the other cases:

2

Var(Y;) = /Slﬁ[(SMf)l!/]f_ (/SM[(SMf)¢]f .

The computation will be done in two steps. We first bound the quantity
[[SZ1(Sy ) 1f — [f3)2|. This expression is bounded by

[1SE[(Su Y01 F = SE(FAFI+ [ISE(fu)f = ol
< NI Sa [(Suc £)w] + Sar(F) o]l Sar (S )] = Su(F)
+ I FILISy (f) + FwllalSy (f) — flla
by the Cauchy—Schwarz inequality.

Using repeatedly the fact that since S, is a projection, ||S;,gll2 < llglls, the
sum is bounded by

WFINCSy £ + Fpll(Sy £ = Fblle + 201N FpllllSy (fi) — Fiblle
< 20 £y IZN FllolIS £ = Fllz + 20 FILNW LN £l 1S ( Fir) = il
< 20 A 12209 l(1 1Sy £ = Fllz + 1Sy (fib) — Fibllz).

The second step consists in bounding the quantity [([S,/[(S,¢1f)? —
([f%)?]. This term is equal to ([(S[(Sy ]+ fW(Sy,I(Sy ] —
fu) )], which by the Cauchy—Schwarz inequality is bounded by

£l Sar [(Sae £ o] + Fll,ll FlloISa [(Sac 0] = Fibll
<IFIBUCSy ) wllz + 1 flla)
X(18x [ (Suf)¥] = Su(F¥)lly + 1Sy (F) — fll2)
< 20 FIEIG 1A £l (I Sac )0 = £l + 1Sy (F) — Fibl)
< 20 FIE 2 UGN 1Sy £ = Flls + 1S3, (£ = flls)-

Collecting the preceding inequalities we finally get (4.1) for i =j = 3.
Since, by assumption, V g € [2(duw), IIS;;g — glls = 0 as n — =, a conse-
quence of (4.1) is that

lim Var(L(X,)) = 4[ff3¢2 - (ff%p) } = A(f, ¥).

We shall prove now that VnP,L —.#(0, A(f,)) in distribution. Since
Vn (P2 fy) — 2[f2p) >0, A(f, ¢)) in distribution, it is enough to show
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that the expectation of the square of
R = E[PnL - (Pn(zm) - 2/f2¢)]

converges to 0:

E(R?) = Var(R)
=nVar(P,L) + nVar(P,(2fy)) — 2n Cov(P,L, P,(2f¢)).

By the preceding computations, nVar(P,L) — A(f, ). Moreover, the same
result holds for n Var(P,2fy)). Hence, it remains to prove that
lim, . nCov(P,L, P,(2fy)) = A(f, ):

nCov(P,L,P,(2f}))
=E(L(X,)2fy(X;)) (since L is centered).

= 4[(SuF) A + 4 Sy (f0) 0 — 4 [Su (S F) ) 2
8y ab [+ 4[(Syf) v[f.
i=0

This converges as n — % to A(f, ) = 4[f%? — 4([f4))?. It follows that
VnP,L > (0,A(f,)) in distribution.
At last, let us prove that Vn (2A'B — A'CA — 0) — 0. This quantity equals

\/5(2 Yoab,—2 ) aiai'fpipi'lP_ /f%ﬁ)-

ieM ii'eM

This can also be written in the form
ﬁ[2f(st)fw— J(Suf) v - [f%p]

= | JSun = Surwl + [rotsur 71|

< Vn [ISy fllall s = (Spc ) blls + 1 FbllallSy £ = Fll2]
< 2Vnll fllallgllllSy £ = £l

1/2
< 20l Il supc?

€M

m
= 2||f||2||¢||m\/ —,
n

which tends to zero as n — o since m/n — 0.
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Collecting the foregoing evaluations, we get (2.3). It remains to achieve the
proof of (2.4). Note that

nE(6 — 6)° = n Bias?(9) + nVar(6)

n Bias?(0) + nVar(U,K) + nVar(P,L).

Moreover, we proved that

R m
n Bias?(0) < Al¢ll.— for some A € R,
n

m
nVar(U,K) < ,ullfllo%llwllo%; for some u € R.

At last, it follows from (4.1) that
InVar(P,L) — A(f, )| < y[IISy f = Fllz + ISy (fr) — furll2],

where A is an increasing function on || f|l. and ||¢|l... We finally get (2.4) and
this completes the proof of Theorem 1. O

4.2. Proof of Theorem 2. We will first control the remainder term I,:
Tl < 4@l [1f = F1°.

I¢@|l.. is finite, so E(T?) = OCEI(f|f — f1*)?D = OCELIIf — fI5D. Since [ is
assumed to satisfy condition A2, this quantity has order O(n;%*), where
n, = n/log(n) and a > %, so

E(I?) =o(1).

n

This proves that the remainder term is negligible.
We are now going to prove the asymptotic efficiency. Let

. 1z
R - m[Tn =T(f) = o LA - f¢>'1(f,-)f}-
27=1

Of course, to ensure that both (3.4) and (3.5) hold, it is enough to show that
E(R?) - 0. We notice that R = R, + R,, where

R, = W[Tn -T(f) - ni Y (£, ) (X)) - fqba(ﬁ-)f},
2 [=1
1 2 R n
= ﬁ[n—zg(«m(ﬂ-)(&) - fd»a(f,-)f”

ng

—vﬁ[ni ) (¢a(f,-)<Xl) - f¢a(f,-)f)}.

21=1
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We shall prove that both E(R?) and E(R2) — 0. Plugging the expressions of
T and T(f) into R, we get

Ro=vi|l-L+@ @ T,
where

PTPIA A 1 2 0
L= [foi(hofs D= = L) @ =3 fei(h)r

and @ is the corresponding estimator. Since E(I‘ ) = o(1/n), we just have to
control the expectation of the square of Vnll - L + @ — Q).
Computation of lim, _, nE(L — L)% Note that

nB[(2 - 1)"1f] - [f(fqﬁ £ - (f}%’{(f,-)f)z},

and n/n, — 1 as n — ». Moreover, we will show that the expectation of the
preceding expression converges toward the same expression with f instead of

f. We shall only give the proof for the term /( f 1( £, )2f. Observe that
E([(Fan(F)) s - ff“"(tb)(f,-))‘
<IfI.E (flf YF) + NS = PO )

We recall that @ < f(x) < b and a — & < f(x) < b + & for some & > 0, so the
foregoing difference is bounded by

I £ll-[2(sup(lal, 1B]) + &)l¢ill.| E (|f¢> ( ) d1(fs )|)
At last,

E(1F4(F.7) = 1 £.))) = E(F85(f.) — F#3(F.))

Since E(|f - fll) = 0 and since lpP]l.. and |¢]ll.. are finite, each of these
terms converges to zero and we get

lim B(E - 2" = (81009 = ([o00.977)

Computation of lim, ., nE(Q — @)2. It follows from (2.4) that if M,/
n — 0, then

nE[(Q’ _ Q’)2|f] B [[( ,1,(};’,))2]03 — (f¢>’1/(f:~)f2)2}

M| A \
< NIl Ill) | — + 1Sy f = £z +|Su (o1 (F.7)) = Foi( £, )], |-
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Hence,

£[(@ - Q)] - E[f( W(F)) 1 - (f¢'1’(fi -)fﬂ

<7 (I F 1L, gl )[—' #1180 f = Fllz + E( || Sy (£ ( $1(F)|, )}

We have to prove that E(||S;,(f¢] (F,) — o] (£, )ll2) = 0 as n — . Since,
by similar arguments as before, the expectation of the term [(¢/( £ )2fF3 —
(i f, F2)? converges as n — = to JCICE, - N2 F3 = (Jd(f, - )f?)?, this
will imply that nE(Q — Q)2 converges to the same limit. Note that

E(| S (roi(F.) 7))
< (][ ( f¢q(f~)) —SM(f¢q(f,~))||z)
8w (F85(F,)) = F( )y + E(F$1(F, ) = F5(F,)l2)
< 2B(If1(f ) = f&i(f,)2) + ISy (F81(f,-)) = Fbi( £, )2
since S;, is a projection.

The second term converges to zero since f¢}(f,-) € 1%2(du) and since V
g € 2(dw), IIS;;g — gll; > 0. Moreover, by similar arguments as in the

computation of nE(L — L)?, the first term converges also to zero.
At last, we will see that the sum of the two terms we have just calculated
is compensated by the covariance term. .
Computation of lim, _,,2nE(L — L)@ — @'). Since conditionally to f, L
is an unbiased estimator of L, we get

E[(L -L)(Q - Q)If] =E(LQIf) - LE(Q I ).
We recall that Q’ = 2Q1 — Qz, where

5. L pi#i(f,)

Ql - nZ(n’Z - 1) Lgll‘]#kZ 1pl( ) 2 (Xk)’

) = (rb,:{(f\’)

@ = m zZEM];ekZ 1p (X )pz(Xk)[P pr—y (x) dx.

We shall only develop the calculations for Ql:

E(LQ,If) = ‘n%.ZMffd’ Vo [5(f fpi
A 2fpl 2 , A A
__MZM a; [F(¢5(F:") (1—n—2)LE(Q1|f).
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a A A A A 1 A A
E(LQ,f) - LE(Q,If) - —Z—%fSM[f&{(f,-)]f(l)’{(f,-)f

1 o L2 2 A A
—2—%f(SMf)f(¢q(f,~)) - n—zL’E(Qllf)-
Let us show that
E(Sy | fe1(£. )] F61(F.)F) = [F($1(F.))"

Of course, analogous results are valid for the other terms. We shall first show
that the expectation of

[Sul (£ ) [ F61(F. ) F = £ F, )] = 0
This integral is bounded by

|Sa (£ (£ ) N5 Fr ) = £ (£ )l fen

Moreover,

|83 (£85.(F2)) [, < NFCSD(Fs )z < Pl gl < NI 5

and as was already shown, the expectation of the term || f(b’l’( £ - fo1Cf, 2
converges to zero. It remains to show that the expectation of

[(Sul fo1(F, )] = F610F,)) PP £,
converges toward zero. This expression is bounded by
15 FILIFUNS [ £85 (£, )] = £ (£, )l
So, we just have to prove that
E(ISy [ f&5(£.-)] = f#5(£,)ll2) = 0
This quantity is bounded by
E(ISy [ 67 (£, )] = Sul fo5(£.)]l2) + ISy [ F1( £, )] = f(f2 )]z
< E(1f85(f,7) = F61(F,)l2) + 1Sa (F81( ) = Fi(F,)la-

Since each of these terms converges to zero, we get

lim nE(L - L) = — [($1(£,))f + (fdf{(f,')fz) .

n— o

The same result holds with @ instead of Ql, so lim, ,, E(R?) = 0.
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It remains to prove that E(R2) — 0:
2
B(RY) = 8| [(847) — 6i70) 1| = | [l £ )= [oucrr ]

Using as before the fact that E(|f — f]l1) = 0 and that |}l is bounded, it is
easy to see that E(R2) — 0. This achieves the proof of Theorem 2. O

4.3. Proof of Corollary 1. Let us first show that condition A2 is satisfied
by the preliminary estimator f defined by (3.6) as soon as s > d/4. This
estimator is based on the kernel estimator f studied by Ibragimov and
Khas’'minskii, who showed the following properties for f:

sup E;(If=fllg) <Ai(q,D)ng /@20 V2 <q< +»,VIeN,

fEF, oc

sup E,(IIf — fIL) < Ay(2) Ve N*.

feF, . ¢ (log(nl)
We recall that fA=f]lA" + fo]lA;, where A, = {fc l[a —e,b+ el}:
E(IIf = fllg) <E(If = £llg) + Ify — FIP(AS).

Hence, to prove condition A2, it is enough to show that P(AS) is small
enough. We notice that A¢ c {||f — fll. < ¢}. Since

)—ls/(d+23)

—U's/(d+2s)
Elf—-fIL <A,V ( ) V1 e N¥,
! 2(4) log(n4)
we get
- 1 - v
P(Afz) SP(Hf_f”oo > 8) < ?Ef(“f_f”w)a
S0
n, —U's/(d+2s)
P(A A (U V' e N*,
(40 54| 5 | -

For n, large enough,
P(AY) <A (l)nyls/dr2e),
It follows that
Eq(Ilf = fllg) < C(q, Lyny /@2,

This proves condition A2 since when s > d /4, s/(d + 2s) > .
Let us now prove the following lemma.
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LEMMA 1. Letf€F, , . withr € N? and « €]0,1]% Then f belongs to the
ellipsoid

. 128 . 125! 2
g=1% ap; b (|l1| T il sd)|ai1 ..... P ’)’}
iez? Gigyenns ipez?

forall (sy,...,s;) such that ¥V j, 0 < s; <s; =r; + a; for some y independent
of fEF, , . and where (p;);c ;4 denotes the Fourier orthonormal basis of
L2(0, 11%).

Proor. We have to show that V j e {1,...,d} the quantity
Y. id)EZd(|ij|28j) la; id|2 is bounded by some constant y; independent of
fEF, , c Since D}f is periodic for [ = 0,...,r;, it is easy to see by integra-
tion by parts that

ffpi

‘ J(Dpf)p;

Using this remark, it is enough to show that if f satisfies the condition

F(xqyeesxy + hyeo ) = F(%g,. 0, 2g) < CIAIPY,

= (277.)’1'|ij|rj

= (277)rj|ij|r]|al|.

then
Vje(1,....d}, Y (1), <y, YO<B <a.

The Fourier expansion of f(x,...,%; + h,...,x,) — flxy,...,x; = h,..., %)
is
Y a; ., xXp(2im(iyx, + 0 +igx,))2isin(2mih).

f(f(xl,...,xj+h,...,xd) —f(xl,...,xj—h,...,xd))2

=4 Y la;, id|2 sin®(27i,h)

< C?|h|*.
We shall denote by (i, ...,i;,...,1,) the element (iy,...,i;_1,i;,4,...,i4) of
7% ' Let ¢ € N* and h = 1/8q. Then, V i, € {q,...,2q — 1}, sin®(i;h) > ;
and

2,-1 2

¢ C 1

¥ Y ey s

U= (igyennsigy...,igpezdt?

By analogous arguments,
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Let 0 < B; < «;,

T > ie  pe SO

l] / ail """ id S - 2u. *
=9 Gyyoigy s igezd™ 2 (8¢)""
Now, let ¢ = 2,

(iy,...,i0)€Z?

This proves the lemma.

For (s,..., s}) well chosen as prescribed in Corollary 1, we can apply the
results of Theorem 2. O

COMMENT. Of course, if d =1, we do not need to assume that [ is
periodic. In fact, we can use the same proof as before (except that we do not
integrate by parts) to show that, for some « > I, f belongs to the ellipsoid

& = {Zaipiy Y 1il*la,l® < y} for some constant .

ie”Z
APPENDIX

Semiparametric information bound. In order to determine the semi-
parametric Cramér-Rao bound for the problem of estimating [¢(f,-) (for
f € &), we are going to apply the results of Ibragimov and Khas’minskii
(1991). Similar results can be found in Koshevnik and Levit (1976).

We first have to determine the Fréchet derivative of the functional T'(f) =
[¢(f,-)dpn at a point f,, belonging to our nonparametric set of densities.
Since

T(f) = T(F) = [$iFor)(F = F0) + O [(r =),
the Fréchet derivative of T' at the point f, is

T'(fo) - h = <¢’1(f0"),h>,

where (-,-) denotes the scalar product in 1*(du). Denote H(f,) ={h €
L2(dw), [hy/fo die =0}, and A,(g) = (1/Vn)(/f,)s. P{" denotes the joint
distribution of (X3,..., X,) under f,. Since X,..., X, are ii.d., the family
{P,S”), f € &} is locally asymptotically normal at all points f, € & in the
direction H(f,) with normalizing factor A,(f,). Under this condition, Ibragi-
mov and Khas’'minskii have shown that if we set K, = B,T'(f)A, Py,
[where B,(h) = Vnh], then, if K, - K weakly and if K(h) = (g, k), then
V T, (estimator of T(f)), V {7 (f,)} family of vicinities of f,

N 2
inf liminf sup nE(T, — T(f,)) = lglla..
(7 (fo)y n—oe e 7 (fy)
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In our setting, this gives
K,(h) = K(h) = T'(F) - (VFo [ = VFo [V ),

K(h) = [&4(fo, Wb = [ fos) fo [mFy,
so K(h) = (g, h), where

g = 6o WFy — | [$iF0s o |VFo.

Hence, the semiparametric Cramér-Rao bound in our problem equals
llglIP2(a ), which is also equal to

(&4 o)) fo - (f¢'1(fo,')fo)2.

For the problem of estimating [f%), we get for the analogue of the Cramér—

4[[1‘3412 - (ff%p)z}.
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