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EFFICIENT ESTIMATION IN THE BIVARIATE
CENSORING MODEL AND

REPAIRING NPMLE

BY MARK J. VAN DER LAAN

University of California, Berkeley

The NPMLE in the bivariate censoring model is not consistent for
continuous data. The problem is caused by the singly censored observa-
tions. In this paper we prove that if we observe the censoring times or if
the censoring times are discrete, then a NPMLE based on a slightly
reduced data set, in particular, we interval censor the singly censored
observations, is asymptotically efficient for this reduced data and more-
over if we let the width of the interval converge to zero slowly enough,
then the NPMLE is also asymptotically efficient for the original data. We
are able to determine a lower bound for the rate at which the bandwidth
should converge to zero. Simulation results show that the estimator for
small bandwidths has a very good performance. The efficiency proof uses a
general identity which holds for NPMLE of a linear parameter in convex
models. If we neither observe the censoring times nor the censoring times
are discrete, then we conjecture that our estimator based on simulated
censoring times is also asymptotically efficient.

1. Introduction. In this paper we are concerned with estimation of the
bivariate survival function of two dependent survival times. For example, one
might be interested in estimation of the bivariate survival function of twins
with a certain disease. Suppose that for each twin one observes two calendar

Ž .times U , U at which the disease started for twin 1 and twin 2 and that one1 2
Ž .keeps track of the bivariate survival time T , T of the twin measured from1 2

Ž .U , U until a given calendar point t . At t one wants to use the available1 2 0 0
Ž .data to estimate the bivariate survival function of T , T . In this setting, T1 2 1

Ž .will be potentially i.e., if T ) C right randomly censored at the observed1 1
censoring time C s t y U and similarly T will be potentially right ran-1 0 1 2
domly censored at the observed censoring time C s t y U .2 0 2

In this paper we propose an estimator for the bivariate survival function of
Ž .T s T , T based on bivariate right randomly censored data, assuming that1 2

Ž .the censoring times C s C , C are always observed, as in the example1 2
above, or assuming that the censoring times are discrete. We prove asymp-
totic efficiency of this estimator. In the case that the censoring times are not
observed for the failures and the censoring times are not discrete, then we
propose a simulation of the unobserved censoring variables and conjecture
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BIVARIATE CENSORING MODEL 597

Ž .no proof, but heuristic argument that our estimator based on these simu-
lated censoring variables will also be asymptotically efficient.

We found it useful not to use a special notation for vectors in R2 ; if we do
not mean a vector, this will be clear from the context. So if we write T we

Ž . 2usually mean T s T , T g R and if we write F , G , - and - , then1 2 G 0
this should hold componentwise: for example, if x, y g R2, then x F y m x1
F y , x F y . We will write T , i s 1, . . . , n, as notation for n i.i.d. bivariate1 2 2 i
survival times with the same distribution as T, while we write T and T for1 2
the components of T.

Bivariate right randomly censored data can be modelled as follows: T is a
positive bivariate lifetime vector with bivariate distribution F and survival0

Ž . Ž . Ž . Ž .function S ; F t ' Pr T F t and S t ' Pr T ) t . Let C be a positive0 0 0
bivariate censoring vector with bivariate distribution G and survivor func-0

Ž . Ž . Ž . Ž .tion H ; G t ' Pr C F t and H t ' Pr C ) t . Assume that T and C are0 0 0
Ž . 4 Ž .independent; T, C g R has distribution F = G . Let T , C , i s 1, . . . , n,0 0 i i

Ž .be n independent copies of T, C . We observe the following many-to-one
Ž .mapping F of T , C :i i

˜Y ' F T , C ' T n C , I T F C ' T , D ,Ž . Ž .Ž . Ž .i i i i i i i i i

with components given by

T̃ s min T , C , D s I T F C , j s 1, 2.� 4 Ž .i j i j i j i j i j i j

In other words, the minimum and indicator are taken componentwise, so that
˜ 2 2w . � 4T g 0, ` and D g 0, 1 are bivariate vectors. The observations Y arei i i

w .2 � 42 Ž . y1elements of 0, ` = 0, 1 and Y ; P s F = G F . We are con-i F , G 0 00 0

cerned with estimation of S .0
Ž . Ž . y1Ž . 2 2Each observation Y tells us that T , C g B Y ' F Y ; R = R ,i i i i i

Ž . Ž . Ž . Ž . 2 Ž .where B Y s B Y = B Y for the projections B Y ; R and B Y ;i i 1 i 2 i 1 i 2
2 Ž . Ž .R of B Y on the T and C space, respectively. The kind of region B Y fori 1
Ž .T point, vertical half-line, horizontal half-line, quadrant generates a classi-i

˜Ž .fication of the observations Y s T , D in four groups:i i i

Ž .Uncensored. If D s 1, 1 , then the observation Y is called uncensored and iti i
˜ ˜Ž . � 4tells us that T g B Y s T . So T s T .i i 1 i i i

Ž . Ž .Singly censored. If D s 0, 1 or D s 1, 0 , then the observation Y is calledi i i
˜Ž . Ž . �Ž .singly censored. If D s 0, 1 , then it tells us that T g B Y s T , ` =i i i 1 i1

˜ ˜� 44 Ž . Ž . Ž . �� 4T horizontal half-line , and if D s 1, 0 , that T g B Y s T =i2 i i i 1 i1
˜Ž .4 Ž .T , ` vertical half-line .i2

Ž .Doubly censored. If D s 0, 0 , then the observation Y is called doublyi i
˜ ˜Ž . � . Ž .4 Žcensored and it tells us that T g B Y s T , ` = T , ` upper quad-i i 1 i1 i2

.rant .

The uncensored observations are the complete observations and the singly
censored and doubly censored are incomplete observations. An NPMLE solves

w Ž . Ž .xthe self-consistency equation Efron, 1967 ; Gill, 1989 and a solution of the
wself-consistency can be found with the EM algorithm Dempster, Laird and



M. J. VAN DER LAAN598

Ž . Ž .xRubin, 1977 ; Turnbull, 1976 , which does in fact nothing else than iterate
the self-consistency equation. In the EM algorithm each observation Y getsi

Ž .mass 1rn, which it needs to redistribute over B Y in a self-consistent way.i 1
The incomplete observations Y need to get information from the observed Ti i

Ž .about how to redistribute their mass 1rn over B Y , and for this purposei 1
Ž .they need complete observations in B Y . The EM algorithm listens only toi 1

Ž . Ž .the observations with a region B Y which has an intersection with B Y .j 1 i 1
Ž . Ž Ž . .It is only possible to have uncensored observations in B Y if F B Y ) 0,i 1 0 i 1

which is typically not true for the singly censored observations. If F is0
continuous, then the probability that T falls on a line is zero. Indeed it is well

wknown that the NPMLE for continuous data is not consistent Tsai, Leurgans
Ž .xand Crowley 1986 .

Many proposals for estimation of the bivariate survival function in the
presence of bivariate censored data have been made. Because the usual
NPML and self-consistency principle do not lead to a consistent estimator for
continuous data, most proposals are explicit estimators based on representa-
tions of the bivariate survival function in terms of distribution functions of

Ž .the data: among these proposals are Tsai, Leurgans and Crowley 1986 ,
Ž . Ž .Dabrowska 1988, 1989 , Burke 1988 , the so-called Volterra estimator of P.

w Ž .x Ž .J. Bickel see Dabrowska 1988 and Prentice and Cai 1992a, b .
Ž .Prentice and Cai 1992a proposed a nice estimator which is closely related

to Dabrowska’s estimator except that it also uses the Volterra structure
suggested by Bickel. Dabrowska’s multivariate product-limit estimator, based
on a very clever representation of a multivariate survival function in terms of
its conditional multivariate hazard measure, and the Prentice]Cai estimator
have a better practical performance in comparison w.r.t. the Volterra, path-
wise estimator and the estimator proposed in Tsai, Leurgans and Crowley
Ž . w Ž . Ž . Ž .1986 see Bakker 1990 , Prentice and Cai 1992b , Pruitt 1993 and

Ž .xChapter 8 of van der Laan 1996 . It is expected that the Dabrowska and
Prentice]Cai estimators are certainly better than the other proposed explicit
estimators. Besides, these two estimators are smooth functionals of the
empirical distributions of the data so that such results as consistency,
asymptotic normality, correctness of the bootstrap, consistent estimation of
the variance of the influence curve and LIL all hold by application of the

Ž .functional delta method: see Gill 1992 , Gill, van der Laan and Wellner
Ž . Ž . Ž .1993 and van der Laan 1990 . In Gill, van der Laan and Wellner 1993 ,
Dabrowska’s results about her estimator are reproved and new ones are
added by application of the functional delta method, and similar results are
proved for the Prentice]Cai estimator. Moreover, it is proved that the
Dabrowska and Prentice]Cai estimators are efficient in the case that
T , T , C , C are all independent.1 2 1 2

All the estimators proposed above are ad hoc estimators which are not
w Ž .xasymptotically efficient except at some special points F, G . This is also

reflected by the fact that most of these estimators put a nonnegligible
w Ž .proportion of negative mass to points in the plane Pruitt, 1991a ; Bakker

Ž .x1990 .
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Ž .Pruitt 1991b proposed an interesting implicitly defined estimator which
is the solution of an ad hoc modification of the self-consistency equation.
Pruitt points out why the original self-consistency equation has a wide class
of solutions and his estimator tackles this nonuniqueness problem in a very
direct way by estimating conditional densities over the half-lines implied by

'the singly censored observations. Uniform consistency, n -weak convergence
and the bootstrap for his normalized estimator are proved in van der Laan
Ž . Ž .1993c and Chapter 7 of van der Laan 1996 under some smoothness
assumptions which are due to the fact that his estimator uses kernel density

Žestimators. However, this estimator is not asymptotically efficient except at
. Ž .some special points and its practical performance is somewhat surprisingly

wworse, except at the tail where one hardly finds uncensored observations as
Ž .xshown in Chapter 8 of van der Laan 1996 than the Dabrowska and

Prentice and Cai estimators. In the case that the sampling distribution is
Ž .smooth, Pruitt’s estimator appeared as expected to improve by using large

bandwidths.
Ž .As noticed by Pruitt 1991b , the inconsistency of the NPMLE is due to the

fact that the singly censored observations imply half-lines for T which do not
contain any uncensored observations. Based on this understanding we pro-

Ž .pose in Section 2 to slightly interval censor the singly censored observations
Ž .in the sense that we replace the uncensored component say T of the singly1 i

censored observations by the observation that T lies in a small predeter-1 i
mined interval around T . These intervals are determined by a grid partition1 i
p with a width h s h . Now, for these interval censored singly censoredh n

h Ž h.observations Y the regions B Y are strips with contain with positivei i 1
probability uncensored observations.

The interval censoring of the singly censored observations causes one
problem. The joint likelihood for F and G does not factorize anymore in an

Ž .F-term and a G-term, which is due to the fact that the region for T, C
implied by the interval censored singly censored observations is not rectangu-
lar anymore. This tells us that for computing the NPMLE of F we also need
to estimate G by maximizing over G. Because of similar reasons as for the
NPMLE of F, the NPMLE of G will only be good if we do a symmetric

Ž .reduction lines should be strips for C as well as for T . In other words, an
extra reduction of the data will be necessary. Because the involvement of G
in computing the NPMLE F h certainly complicates the analysis and makesn
the estimator more computer intensive, we decided to choose a reduction of

Ž .the data which recovers the orthogonality i.e., factorization of the likelihood ,
while at the same time, as will appear, not losing asymptotic efficiency. The
further reduction is based on the insight that if G is purely discrete on p h,0

h Ž .then p ?, d factorizes, as shown in Section 2. Hence if the actual G isF , G0 0
Ždiscrete, then by choosing p which can be done with probability tending toh

.1 if the number of observations converges to infinity so that censoring
variables lie on the grid p h, we still have factorization of the likelihood. If the

Ž .actual G is not discrete, but we observe C , . . . , C , then we can 1 discretize1 n
Ž . h Ž . Ž h.to the left these C ’s to C on p , 2 replace the original Y ’s by F T , Ci i h i i i
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Ž . Ž h.and 3 replace the singly censored observations of F T , C by intervali i
singly censored observations Y h. In this way, we construct new observationsi
Y h for which the density factorizes in an F and G part.i

This further reduction leads also to a good practical estimator as appears
Ž .in the simulations in Chapter 8 of van der Laan 1996 . Its performance for a

small value of h is better than the Dabrowska, Prentice and Cai and Pruitt
estimators, except at the tail and under complete independence of
T , T , C , C . We show that if h ª 0 at a rate slower than ny1r18, then the1 2 1 2 n
estimator is asymptotically efficient, and if h is fixed, then one still has an
asymptotically normal estimator with an asymptotic variance arbitrarily

Ž .close small h to the asymptotic optimal variance. Our derived lower bound
is purely of theoretical value since it shows the existence of rates h s h forn
which the estimator is efficient, but quicker rates will also provide efficient
estimators. Obtaining theoretical insight about the precise rate at which hn
should converge to zero if n ª ` is very hard and not very useful because
constants are not available. Simulations show that if n s 200 and the range

w x w xof the observations is transformed back to 0, 1 = 0, 1 , then choosing the
width of the strips equal to h s 0.02 gives a very good estimator, so a few
observations in each strip is already effective. The estimator gets essentially

Ž .worse if we increase h independent of the smoothness of F, G . This band-
width behavior is explained as follows. A large h means a large reduction of
the data and hence an increase in asymptotic variance. On the other hand,
we needed a h ) 0 so that the EM algorithm is able to use the uncensored
observations in the strips around the singly censored half-lines for obtaining
a redistribution of mass 1rn over the half-lines. However, our primary
interest is not the distribution over the half-line, but the survival function

Ž .itself which integrates over the distributions over the half-lines , which
explains that a smaller bandwidth than the one advised by density estima-
tion literature will suffice. In practice, a sensible method for programming a
sensible grid p h would be to set the width for the horizontal axis equal to a
fixed proportion of the cross-validated bandwidth hU using the observed T ’s1 1 i
and similarly compute the vertical width.

If we do not observe C , then we can draw a CX from a conditionali i
Ž . Xdistribution of C, given C g B Y , and consider these simulated C as thei 2 i

Ž .observed C ’s above. For example, if we observe that C g T , ` , we seti 1 i 1 i
X Ž xC s T q U , where U is a realization from a known distribution on 0, t .1 i 1 i i i

X Ž X. X XThen Y s F T , C s Y , but we now observe C . C , i s 1, . . . , n, are stilli i i i i i
i.i.d., but CX depends on T only through Y . However, if the density of C,i i i

Ž .given T s t, depends only on T through Y s F C, T , then the censoring
w Ž .xmechanism satisfies coarsened at random see Heitjan and Rubin 1991 ,

which implies that the density of Y still factorizes, where the F part of the
density of Y X is still the same as the F part of the density of Y, that is where
C and T are independent. Consequently, we have that the efficient influence
function for estimating F based on Y X equals the efficient influence functioni
for estimating F based on Y . Hence, if we construct an estimator of F basedi

Ž X X .on C , Y which is efficient, then it is also efficient for the original data Y . Ini i i
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other words, without any loss we arranged that we have available a set of
observed CX ’s. However, because of the dependence between CX and T, thei

Ž X .likelihood does not factorize anymore for the data F T, C based on theh
discretized CX , so that our proposed estimator is not a NPMLE for theh

Ž X .interval censored F T, C and hence has a bias. On the other hand, we let hh
converge to zero when the number of observations converges to infinity so

Ž .that this bias converges to zero. Therefore, we conjecture no proof that our
estimator based on these simulated CX is asymptotically efficient if h s hn

Ž .converges to zero at an appropriate rate not too slow and not too quick . In
the sequel it will be assumed that the C ’s are observed or that G is discrete.i 0

ŽWe will call the MLE based on a reduction or call it a slight transforma-
.tion of the data a ‘‘sequence of reductions’’ MLE and will abbreviate it with

SOR-MLE. It is a general way to repair the real NPMLE in problems where
the real NPMLE does not work. If one understands why the usual NPMLE
does not work, then one can hope to find a natural choice for the transforma-
tion of the data. Moreover, if we do not lose the identifiability, we have for a
fixed transformation, consistency, asymptotic normality and efficiency of the
NPMLE among estimators based on the transformed data, while we obtain
efficiency by letting the amount of reduction of the data converge to zero
slowly enough if n converges to infinity.

In the next section we will define, in detail, the SOR-MLE for the bivariate
censoring model. In Section 3 we will give an outline of the efficiency proof,
which is based on an identity for the SOR-MLE which holds in general for

w Ž .xconvex models which are linear in the parameter van der Laan 1993 . This
identity gives a direct link between efficiency of the SOR-MLE and properties
of the efficient influence function corresponding with the data Y . In Section 4h
we prove the ingredients of this general proof; the crucial lemmas of this
section are proved in Section 6. We summarize the results in Section 5.

For validity of the nonparametric and semiparametric bootstrap we refer
Ž .to Section 4.7 in van der Laan 1996 ; these results follow easily from the

identity approach which we follow.

2. SOR-MLE for the bivariate censoring model. Our original obser-
vations are given by

T̃ , D s F T , C ; P ?, ? , i s 1, . . . , n.Ž . Ž .Ž .i i i i F , G0 0

Ž . Ž Ž .. Ž .Let P ? s P T F ?, D s 1, 1 be the subdistribution of the doubly11 F , G0 0

uncensored observations and similarly let P , P and P be the subdistri-01 10 00
Ž . Ž . Ž .butions corresponding to D s 0, 1 , D s 1, 0 and D s 0, 0 , respectively.

Then

P ?, D s d s P ? I d s 1, 1 q P ? I d s 0, 1Ž . Ž . Ž . Ž . Ž .Ž . Ž .F , G 11 010 0

q P ? I d s 1, 0 q P ? I d s 0, 0 .Ž . Ž . Ž . Ž .Ž . Ž .10 00

1Ž .

Let f ' dF rdm, for some finite measure m which dominates F . Similarly,0 0 0
Ž .let G g n with density g . S x , ? generates a measure on R . This0 0 0 1 G 0



M. J. VAN DER LAAN602

ŽŽ . .measure is absolutely continuous w.r.t. m x , ` , ? , the marginal of the1
Ž . Ž .measure m restricted to x , ` = R . Now, we define S x , x '1 G 0 02 1 2

Ž . ŽŽ . .yS x , dx rm x , ` , dx as the Radon]Nikodym derivative and similarly0 1 2 1 2
Ž . Ž . Ž Ž .. Ž .we define S x , x ' yS dx , x rm dx , x , ` , H x , x '01 1 2 0 1 2 1 2 01 1 2

Ž . Ž Ž .. Ž . Ž . Ž . .yH dx , x rn dx , x , ` and H x , x ' yH x , dx rn x , ` , dx .0 1 2 1 2 02 1 2 0 1 2 1 2
Ž . y1Then the density p of P w.r.t. m = n F is given byF , G F , G0 0 0 0

p x , x , d s f x H x I d s 1, 1Ž . Ž . Ž . Ž .Ž .F , G 1 2 0 00 0

q S x , x H x , x I d s 1, 0Ž . Ž . Ž .Ž .01 1 2 02 1 2

q S x , x H x , x I d s 0, 1Ž . Ž . Ž .Ž .02 1 2 01 1 2

q S x g x I d s 0, 0Ž . Ž . Ž .Ž .0 02Ž .
' p x I d s 1, 1 q p x I d s 1, 0Ž . Ž . Ž . Ž .Ž . Ž .11 10

q p x I d s 0, 1 q p x I d s 0, 0Ž . Ž . Ž . Ž .Ž . Ž .01 00

s p x I d s d .Ž . Ž .Ý d
2� 4dg 1, 0

˜Ž .Suppose that we observe C and T , D , i s 1, . . . , n. We will transformi i i
˜Ž .T , D and base our NPMLE on the transformed data. The transformationi i

h Ž .hdepends on a grid. For this purpose, let p s u , v be a nested grid ink l
w xh s h of 0, t which depends on a scalar h s h in the following way:n n

« h - u y u - Mh , where « and M are independent of n, k, and simi-n kq1 k n
larly for v y v . With nested we mean that the grid points of p are alq1 l hn

Žsubset of the grid points of p we use this in order to make martingalehnq m

.arguments work for conditional expectations, given increasing sigma fields .
In other words, the grid must have a width between « h and Mh . This tellsn n

h Ž . 2 Ž .us that the grid p has in order of magnitude 1rh points u , v . Letn k l
Ž x Ž xR ' u , u = v , v .k , l k kq1 l lq1

Ž . hMove each C to the left lower corner u , v of the rectangle R of pi k l k , l
which contains C . Denote these discretized C with C h. Then C h ; G wherei i i i h
G is the step function with jumps on p h corresponding to G :h 0

P C h s u , v s dG c .Ž . Ž .Ž . Hk l 0
Rk , l

Consider now the n i.i.d. observations

Y T , C h s F T , C h ; P .Ž . Ž .i i i i i F , G0 h

Ž h.Notice that we are able to observe these Y T , C because we only need toi i i
Ž . Ž h.know Y T , C . If h s h converges to zero, then the distribution of F T, Ci i i n

Ž .converges to the distribution of F T, C .
h ˜Ž . Ž .For convenience we will denote F T , C with Y s T , D , again, andi i i i i

still use the notation p , p , p and p , suppressing the dependence on011 10 01 0
˜˜h, but we have to realize that all censored T equal u , for some k, and T1 i k 2 i
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˜ hŽ .equal v , for some l. Now we can define the reduced data T , D , which wel i i
will use for our estimator:

hh h h h h h˜ ˜Y s T , D s F T , C ' Id T , D s Id F T , C ,Ž . Ž .Ž .Ž . Ž .ž /i i i i i i i i i

h ˜Ž .where Id is a many-to-one mapping on the data T , D , which is defined asi i
follows:

h ˜ ˜Id T , D s T , D if D s 1, 1 ,Ž .Ž . Ž .
h ˜ ˜ ˜Id T , D s u , T , D for u s.t. T g u , u if D s 1, 0 ,Ž Ž .Ž . Ž .ž /i 2 i 1 i iq1

h ˜ ˜ ˜Id T , D s T , v , D for v s.t. T g v , v if D s 0, 1 ,Ž Ž .Ž . ž /ž /1 j j 2 j jq1

h ˜ ˜Id T , D s T , D if D s 0, 0 .Ž .Ž . Ž .
Notice that Idh equals the identity for the uncensored and doubly censored

Ž Žobservations and it groups all singly censored observations T , C , I T F1 2 1
. Ž . . Ž xC s 1, I T F C s 0 with T g u , u to one observation and simi-1 2 2 1 k kq1

Ž .larly with the singly censored observations with D s 0, 1 . We used the
h Ž . Žnotation Id Id from identity because, for h ª 0 in other words, if the

.partition gets finer , this transformation converges to the identity mapping.
h Ž . Ž .We will still call the Y with D s 1, 0 and D s 0, 1 singly censored

observations, in spite of the fact that they are really censored singly censored
observations. Y h are i.i.d. observations with a distribution which is indexedi

Ž .by the same as for Y parameters F and G .i 0 h
To be more precise, we have

Y h ; P h ?, ? ,Ž .F , G0 h

where

P h x , D s d s P ? I d s 1, 1 q P h ? I d s 0, 1Ž . Ž . Ž . Ž . Ž .Ž . Ž .F , G 11 010 h

q P h ? I d s 1, 0 q P ? I d s 0, 0 ,Ž . Ž . Ž . Ž .Ž . Ž .10 00

3Ž .

h h Ž . y1where the density p of P w.r.t. m = n F , n being the countingF F , G h h h0 0 h

measure on p , is given byh

p y , y s f y , y H y , yŽ . Ž . Ž .11 1 2 0 1 2 h 1 2

p v , v s S v , v g v , vŽ . Ž . Ž .00 k l 0 k l h k l

and

ph v , v s p v , y m v , ` , dyŽ . Ž . Ž .Ž .H01 k l 01 k 2 k 2
Ž xv , vl lq1

s S v , y H h v , v m v , ` , dyŽ . Ž . Ž .Ž .H 02 k 2 01 k l k 2
Ž xv , vl lq1

x hs F v , ` , v , v H v , v .Ž . Ž .Ž .Ž0 k l lq1 01 k l

h Ž . ŽŽ x . h Ž . hŽ .Similarly, p u , y s S v , v , v H v , v . Notice that p ?, d , d10 k 2 01 k kq1 l 02 k l 0
Ž ./ 1, 1 , is discrete on p . The independence between C and T and the facth h
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h Ž .that C is discrete on p implied that the density p ?, d also factorized forh h F0
Ž . Ž .d s 1, 0 and d s 0, 1 .

h hŽ h.Let P be the empirical distribution function based on n i.i.d. Y T , Cn i i i
; P h , which is the distribution of the data corresponding to T ; F ,F , G 00 h

C ; G , where G is discrete on the grid p h and the singly censoredh h
h Žobservations are interval censored by Id i.e., half-lines are grouped to

. � 4strips . Let x , . . . , x consist of the uncensored T and one point of each1 mŽn. i
Ž .B Y which does not contain uncensored T . Let m be the counting measurej 1 i n
� 4 Ž .on x , . . . , x . Now, we let FF m be the set of all distributions which are1 mŽn. n

absolutely continuous w.r.t. m .n
We define our SOR-MLE F h of F which we will analyze:n 0

4 F h s arg max log ph dP h ,Ž . H Ž .n F , G nhŽ .FgFF mn

where the maximum can be determined without knowing G by maximizingh
the term which only depends on F. We define Sh as the survival functionn
corresponding to F h.n

2.1. Existence and uniqueness of the SOR-MLE and EM equations. In
Ž .Lemma 4.1 in van der Laan 1995 , for a general class of missing data models,

� 4it is proved that the MLE over all F with support x , . . . , x exists and is1 mŽn.
unique if the following two assumptions hold: H ) d ) 0 F a.e. and0 0

Ž Ž h. . h w Ž . Ž . Ž .xF B Y ) 0, for all censored Y D s 1, 0 , D s 0, 1 , D s 0, 0 . This0 i 1 i
w xholds if all data live on a rectangle 0, t ; R , where t is such thatG 0

Ž . Ž . Ž . Ž w x .H t ) 0, S t y ) 0, F t s 1, F T g u , u , T ) t ) 0 and0 0 0 0 1 i iq1 2 2
Ž w x. Ž .F T ) t , T g v , v ) 0, for all grid points u , v . By making all20 1 1 j jq1 i j

˜ cw xobservations T g 0, t uncensored at the projection point on the edge ofi
w x h t

t0, t , we obtain truncated observations with distribution P , where FF , G 00 hw . Ž . w xequals F on 0, t , but puts all s 1 its mass on 0, t . This means that our0
w xefficiency result proves efficiency for data reduced to 0, t . For obtaining full

efficiency, we can let t s t converge slowly enough to infinity, for n ª `. Inn
Ž .our analysis this will mean an extra singularity of magnitude 1rH t andn

therefore our analysis can be straightforwardly extended to this case.
2Ž h. Ž .Let g g L F have finite supnorm. We will use the notation F g s Hg dF.n

h Ž Ž hŽ ... h Ž .We have that dF s 1 q « g y F g dF , « g yd , d , d ) 0 smalln, « n n
enough, is a one-dimensional submodel through the MLE dF h and hence byn
definition of F h,n

« ª log p h
h dP hH Ž .F , G nn ,« h

is maximized at « s 0. Consequently, the derivative of this real-valued
Ž .function on yd , d at « s 0 equals zero, so that exchanging integration and

differentiation provides us with

h h h 2 h 5 55 P A g y F g s 0 for all g g L F with g - `,Ž . Ž .Ž . Ž . `Ž .n F n nn
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where the so-called score operator Ah for a distribution function F is givenF
by

h 2 2 h < hA : L F ª L P : g ¬ E g T Y .Ž . Ž .Ž .Ž .F F , G Fh

The form of the score operators follows from the general fact that the score
operator in missing data models equals the conditional expectation operator
w Ž . Ž .see Gill 1989 ; Bickel, Klaassen, Ritov and Wellner hereafter BKRW
Ž . x Ž . Ž . Ž .1993 , Section 6.6 . In particular, by setting g T s I T in 5 oneŽ0, t x

w Ž .xobtains the well known self-consistency equation Efron 1967
n1

h h< w xh6 F t s P T F t Y , t g 0, t ,Ž . Ž . Ž .Ýn F inn is1

Ž < h. Ž < Ž h. . Ž h.where P T F t Y s P T F t T g B Y , where B Y is a point, hori-F F 1 1
zontal strip, vertical strip or an upper quadrant, where the strips and
quadrants start at the grid points. The SOR-MLE F h is computed by iterat-n
ing this equation with an initial estimator of F which puts mass on each
point of the support of F h. The self-consistency equation tells us that F h putsn n
at least mass 1rn on each uncensored observation, which provides us with
the following useful bound: for each set A,

7 F h A G P n A .Ž . Ž . Ž .n 11

3. Outline of the efficiency proof. First, we define the models corre-
sponding to the data Y h and Y. Let FF be the set of all bivariate distributions

w .on 0, ` and let FF be the set of all possible bivariate distributions G whichh h
h h w Ž .xlive on p . Then the model corresponding to Y see 3 is given by

MM ' P h : F g FF , G g FF� 4h F , G h hh

w Ž .xand the model corresponding to Y see 1 is given by
� 4MM ' P : F , G g FF .F , G

w x w xLet D 0, t be the space of bivariate cadlag functions on 0, t as defined in
Ž .Neuhaus 1971 . We are interested in estimating the parameter

w x hq : MM ª D 0, t : q P s S.Ž .h h h F , Gh

Similarly, we define
w xq : MM ª D 0, t : q P s S.Ž .F , G

To begin with we will prove pathwise differentiability of these parameters
w Ž . Ž .xsee, e.g., BKRW 1993 , Chapter 3; van der Vaart 1988 .

Ž . Ž . ŽLet SS F the class of lines « F q 1 y « F, F g FF, with score h s d F y1 1 1
. 2 Ž .F rdF g L F , through F. By convexity of FF this is a class of submodels.0

Ž . 2 Ž . Ž .Let S F ; L F be the corresponding tangent cone i.e., set of scores . It is0
Ž . weasily verified that the tangent space T F the closure of the linear exten-

Ž .x 2 Ž . Ž .sion of S F equals L F . Each submodel of SS F with score g will be0
denoted with F . The score of the one-dimensional submodels P h ; MM ,« , g F , G h« , g h

Ž . h Ž . hg g S F , is given by A g , where A is the score operator,F F

h 2 2 h h h < hA : L F ª L P : A g Y s E g T Y ,Ž . Ž . Ž . Ž .Ž .Ž .F F , G F Fh
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which is a well known result which holds in general for missing data models
w Ž . Ž . Ž . xvan der Vaart 1988 Gill 1989 BKRW 1993 section 6.6 . The score

Ž .operator A for the one-dimensional submodels P ; MM, g g S F , isF F , G« , g

given by
2 2 <A : L F ª L P : A g Y s E g T Y .Ž . Ž . Ž . Ž . Ž .Ž .F F , G F F

Let G ; MM be a line through G with score g . Because of factori-h, « , g hh 11
h Ž . Ž . hŽ . hzation of p y and p y the scores B g of P and theF , G F , G G 1 F , Gh h , « , g1

Ž . hscores B g of p are orthogonal to the range of A and A , respec-G 1 F , G F F« , g1

tively.
w Ž . xIt is easily verified and a well known fact see BKRW 1993 , Section 6.6

that the adjoint of A is given byF

T 2 2 T <A : L P ª L F : A v T s E v Y TŽ . Ž . Ž . Ž . Ž .Ž .F F , G F F , G

and similarly that the adjoint of Ah is given byF

hT 2 h 2 hT h <h hA : L P ª L F : A v T s E v Y T .Ž . Ž . Ž . Ž .Ž .Ž .F F , G F F , G

Hence the corresponding information operator is defined by

h hT h 2 2 h < h <I s A A : L F ª L F : I g X s E E g X Y X .Ž . Ž . Ž . Ž . Ž .Ž .Ž .F F F F F , G F , Gh h

'5 Ž .5 5 5If H ) d ) 0, then it is trivially verified that A h ) d h . Now,P FF F

Ž .application of Lemma 1.3 in van der Laan 1993 tells us that this implies
h 2Ž . 2Ž . wthat I : L F ª L F has a bounded inverse, uniformly in F g FF LemmaF

Ž .5.2 in van der Laan 1995 formulates this result in general for missing data
x 2Ž . 2Ž .models . The same result holds for I : L F ª L F . This proves theF

following lemma.

T 2Ž . 2Ž .LEMMA 3.1. Let I s A A : L F ª L F be the information operatorF , G F F
for MM. We have the following. If H ) d ) 0 F-a.e., for certain d ) 0, then IF , G
has bounded inverse Iy1 with norm smaller than 1rd and is onto. The sameF , G

h 2Ž . 2Ž .holds for the information operator I : L F ª L F , for MM with inverseF , G hh

Iy1 , where the bound is uniform in h.h, F , Gh

w x Ž . Ž .Let b : D 0, t ª R be defined by b F s F t . Define k ' I y S t . Fort t t Ž t, `.
each one-dimensional submodel P , we haveF , G« , g h , « , g1

1
h hb q P y b q P s g dFHŽ .ž /t h F , G t h F , Gž /« , g h , « , g1 h« Ž .t , `

² :s I y S t , gŽ . FŽ t , `.

² :s k , g Ft

² h y1 :s I I k , gŽ . FF h , F t

² h y1 h : hs A I k , A gŽ . Ž . PF h , F t F F , Gh

² h y1 h h : hs A I k , A g q B g ,Ž . Ž . Ž . PF h , F t F G 1 F , Gh
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where we used the orthogonality of the scores at the last step. The same holds
w Ž .xfor q and P without h. This proves by definition see, e.g., BKRW 1993F , G

w x hthat for each t g 0, t , b q is pathwise differentiable at P , for eacht h F , Gh

one-dimensional submodel P at P h with efficient influenceF , G F , G« , g h , « , g1 h

Ž .function suppressing the G in the notation given by

h̃ h y18 I F , t ? s A I k ? ,Ž . Ž . Ž . Ž . Ž .F h , F t

and similarly for q at P withF , G

˜ y19 I F , t ? s A I k ? .Ž . Ž . Ž . Ž . Ž .F F t

Notice that these are the same efficient influence curves as we would have
found in the models where G s G would have been known. In the sequel G0 0
does not vary and therefore we can skip the G in the notation; P h ' P h

F F , Gh

and P ' P , I ' I and so forth.F F , G F F , G0

We recall the relevant efficiency and empirical process theory: an estimator
Ž .F t is efficient ifn

˜F t y F t s P y P I F , t q R ,Ž . Ž . Ž .Ž .n 0 n F 0 n , t0

˜' 'Ž . Ž . Ž .where R s o 1r n . The variable n P y P I F , t is a sum of n i.i.d.n, t P n F 00

mean zero random variables which converges by the CLT to a normal
˜ 2Ž . w xdistribution with mean zero and variance P I F , t . By varying t g 0, tF 00 ˜'Ž Ž . Ž . w x.we obtain an empirical process n P y P I F , t : t g 0, t , which cann F 00

`Ž . � < Ž . < 4be considered as a random element of l GG ' H: GG ª R: sup H g - ` ,g g F
˜ `� Ž . w x4 Ž .where GG s I F , t : t g 0, t and where l GG is endowed with the Borel0

sigma algebra. Empirical process theory investigates if the empirical process
indexed by some class converges in distribution to a tight Gaussian process
corresponding with the covariance structure of the empirical process. Here

Ž .convergence in distribution i.e., weak convergence is defined in the Hoff-
Ž .man]Jørgensen sense, making measurability questions for finite n irrele-

w Ž .vant see, e.g., Hoffmann]Jørgensen 1984 ; van der Vaart and Wellner
Ž . Ž .x1995 ; Pollard 1990 . A class for which this weak convergence holds is

'< < Ž .called a Donsker class. If GG is Donsker and sup R s o 1r n , thent gw0, t x n, t P
we say that F is sup-norm efficient.n

h Ž .Our goal is to prove efficiency of S as an estimator of q P s S . Itn F 00

should be remarked that, for fixed h, application of Theorem 6.2 for a general
Ž . Žclass of missing data models in van der Laan 1995 provides us under the

.assumptions as stated in Section 2.1, by simple verification with efficiency of
Sh among estimators based on the data Y h, i s 1, . . . , n, as an estimator ofn i

Ž h .q P s S . However, we want more than efficiency for a fixed reduction.h F 00

For this purpose we will follow the same analysis as followed for the general
class of missing data models, except that we look carefully at what happens if
h ª 0 when the number of observations diverges to infinity.n
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It works as follows: The model MM is convex and the F ª P h is linear.h F
Ž .Theorem 1.1 in van der Laan 1993 says now that we have the following

w xidentity: for each t g 0, t , we have

h̃ hS t y S t s y I S , t dP ,Ž . Ž . Ž .H1 0 1 F0

2 Ž .for all F with F < F and dF rdF g L F . So in particular this identity1 0 1 0 1 0 1
holds for

h hS a s aS q 1 y a S , a g 0, 1 ,Ž . Ž . Žn 0 n

which provides us with the identity

h h h h˜10 S a t y S t s y I S a , t dP , a g 0, 1 .Ž . Ž . Ž . Ž . Ž . ŽŽ .Hn 0 n F0

hŽ . h Ž h .Notice now that S a y S s a S y S . If a ª 0, the left-hand side ofn n n 0
Ž . hŽ . Ž .10 converges to S t y S t and it has been verified for the general classn 0

w Ž .xof missing data models Lemma 5.12 in van der Laan 1995 that the
h̃ h hŽ .right-hand side converges to yHI S , t dP . In fact in our proof we shown F0

Ž hŽ h . hŽ ..2 hthat H I S , t y I S , t dP ª 0 which basically proves this muchh 0 F0w hŽ . h xweaker result notice that S a converges to S w.r.t. each norm . It followsn n
that we have the following identity:

h h̃ h h11 S t y S t s y I S , t dP .Ž . Ž . Ž . Ž .Hn 0 n F0

It remains to verify the following items:
w xEfficient score equation. For all t g 0, t ,

h̃ h hI F , t dP s 0.Ž .H n n

Ž . y1Ž .The score equations 5 tell us that it suffices to prove that I I hash Ž t, `.Fn

finite sup-norm. This is proved by Lemma 6.2 in Section 6 of this paper.
Ž .The efficient score equation and the identity 11 provide us with the

crucial identity

h h̃ h h h12 S t y S t s I F , t d P y P .Ž . Ž . Ž . Ž .H Ž .n 0 n n F0

Empirical process condition. Now, we will show, for an appropriate rate
h ª 0, thatn

h h h h h˜ ˜ 'hsup I F , t y I F , t d P y P s o 1r n .Ž . Ž .Ž .Ž .H Ž .n 0 n F P0 F0w xtg 0, t

Ž .This condition requires a lot of hard work done in Sections 4 and 7 . The
Ž̃ .reason for this is that we are not able to prove that I F , t has any nice0

2 Ž .properties, except that it exists as an element in L P , due to the very0 F0 h̃ hŽ .complicated form of the information operator I . Therefore I F , t cannotF n0

be shown to be an element of a fixed Donsker class when h ª 0. In othern
words, the P-Donsker class and r -consistency condition as used in the proofP
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w Ž .xfor the general class of missing data models van der Laan 1995 do not help
us here. More sophisticated conditions are needed. The technique will be to

h̃ hŽ .determine how quickly I F , t loses its Donsker class properties, for h ª 0,n n
Ž . 5 h 5and then to use 12 in order to obtain a rate for S y S so that terms can`n 0

be shown to converge to zero if h ª 0 slowly enough.n
w Ž .xThe empirical process condition provides us with see, e.g., Pollard 1990

h h h h˜ 'hS t y S t s I F , t d P y P q o 1r n ,Ž . Ž . Ž . Ž .H Ž .n 0 0 n F P0 F0

where the remainder holds uniformly in t.
Approximation condition. Finally, we need to show

h h h 2˜ ˜'I F , t d n P y P « N 0, s I F , t .Ž . Ž .Ž .H Ž . ž /0 n F D 00

Notice that the left-hand side is a sum of i.i.d. random variables given by
n h h h h˜' Ž . Ž . Ž .Ž .1r n Ý X t , where X t ' I F , t Y . By Bickel and Freedmanis1 i i 0 i

Ž . hŽ . Ž . Ž hŽ ..1981 we have that if, for h s h ª 0, X t « X t and Var X t ªn i D i i
Ž Ž ..Var X t , then this sum converges weakly to a normal distribution withi

Ž Ž ..mean zero and variance equal to Var X t . These two conditions are provedi
by Lemma 4.7.

We also show the approximation condition for the case that we consider
the left- and right-hand side as a random element of a L2-space of functions
in t, which provides us with pointwise and L2-efficiency.

4. Proof of efficiency of SOR-MLE. Recall the assumptions made in
Ž . h Ž . w xSection 2.1: In particular F t s 1 and hence P ?, d lives on 0, t . In all0 F0

Ž .statements the width of grid h converges to zero for n ª `. The problem is
to find a lower bound for the rate at which h should converge to zero.

4.1. Uniform consistency of F h for h ª 0. The starting point of then n
Ž .analysis is 12 . The indicators are a uniform Donsker class. This tells us that

h h '5 5 Ž .sup P y P s O 1r n .`h n F P0 w x 2A real-valued function on 0, t ; R is said to be of bounded uniform
w Ž .sectional variation if the variations of all sections s ª f s, t is a section of

x Žthe bivariate function f and of the function itself is uniformly in all
. 5 5Usections bounded. The corresponding norm is denoted with ? . In van derv

wŽ . .xLaan 1996 , Example 1.2 it is proved that the class of functions with
uniform sectional variation smaller than M - ` is a uniform Donsker class
Žit is well known that the real-valued functions with variation smaller than
M - ` form a uniform Donsker class, so this is a generalization of this

. 5 5Uone-dimensional result . Another fact is that if f ) d ) 0, then 1rf Fv
5 5U w Ž .xM f , for some M - `, which does not depend on f Gill 1994 . We havev

the following lemma:

Ž .LEMMA 4.1 Uniform sectional variation of efficient influence curve . Let
h Ž . Ž x w . h h Ž .E 1, 0 ' u , u = v , ` be the vertical strips of p and let E 0, 1k , l k kq1 l k , l
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h Ž hn .be the horizontal strips. Suppose that the grid p is so that F E ) d h ,0 k , l n
Ž . 3r2for certain d ) 0. Let r h s 1rh .1 n n

2 h̃ h� 4 Ž .Ž . w xFor all d g 0, 1 we have that, for some M - `, I F , t ?, d g D 0, tn
and

h̃ h U5 5sup I F , t ?, d F Mr h with probability tending to 1.Ž . Ž .Ž . vn 1
w xtg 0, t

For the proof, see Section 6.
w x w xConsider an integral HF dH , where F g D 0, t and H g D 0, t are1 1 1 1

bivariate real-valued cadlag functions which are of bounded uniform sectional
w Ž .variation. By integration by parts see Gill 1992 or Lemma 1.3 in van der

U h̃ hŽ .x 5 5 5 5 Ž .Ž .Laan 1996 we can bound it by C H F . Because I F , t ?, d gener-` v1 1 n
w Ž .xates a signed measure see Lemma 1.2 in van der Laan 1996 , we can apply

h̃ h h hŽ . Ž .Ž . Ž .Ž .this to 12 with F s I F , t ?, d and H s P y P ?, d and apply1 n 1 n F0

Lemma 4.1 to F . This proves the following lemma:1

Ž .LEMMA 4.2 Uniform consistency . Under the assumption of Lemma 4.1 we
have

r h 1Ž .1 nhn5 5F y F s O s O .`n 0 P P 3ž /' ž /n 'nhn

y1r3 h ŽSo if h ª 0 slower than n , then F is uniformly consistent also for h isn
.fixed .

h h h h' Ž .4.2. Empirical process condition. Define Z ' n P y P and f 'n n F nt0h̃ h h̃ h hŽ . Ž .I F , t y I F , t . We will show that Hf dZ converges to zero uniformlyn 0 nt n
h '5 5 Ž Ž . .in t with probability tending to 1. By using that F y F s O r h r n`n 0 P 1 n

Ž .Lemma 4.2 we are able to show the following lemma:

Ž .LEMMA 4.3 Sup-norm convergence of efficient influence curve . Under the
� 42 Ž . 3assumption of Lemma 4.1 we have, for all d g 1, 0 , with r h s 1rh ,2 n n

h 9'5 5 'f ?, d s O r h r h r n s O 1r nh .Ž . Ž . Ž .Ž .` ž /nt P 1 n 2 n P n

For the proof, see the Appendix.
h Ž Ž .. hAnalysis of the uncensored term. Let us first analyze Hf I d s 1, 1 dZ .nt n

h n'Ž Ž .. Ž Ž .. Ž .Recall that Z I d s 1, 1 s Z I d s 1, 1 s n P y P , where p sn n 11 11 11
f H . We will assume that F s F d q F c, where F c is absolutely continuous0 h 0 0 0 0
w.r.t. the Lebesgue measure with continuous density which is bounded away
from zero and F d is purely discrete with finite support. Then we can0
decompose P s P d q P c , where pd s f dH is purely discrete on the finite11 11 11 11 0 h
number of support points of F d, and P c is absolutely continuous w.r.t.0 11
Lebesgue measure with density bounded away from zero.

For P n we have a corresponding decomposition P n s P nd q P nc, where11 11 11 11
P nd only counts the number of observations coming from P d . First consider11 11
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nd d d d' Ž .the integral w.r.t. n P y P . Let p be the density of P w.r.t. the11 11 11 11
counting measure, say m , which lives on the support of P d . We have thatk 11

nd d nd d' '< < Ž . Ž .H p y p dm s O 1r n . Therefore, with Z ' n P y P we have11 11 k P nd 11 11

h h nd d'f I d s 1, 1 dZ s n f I d s 1, 1 p y p dmŽ . Ž .Ž . Ž . Ž .H Hnt nd nt 11 11 k

h nd d' 5 5 < <F n f I d s 1, 1 p y p dmŽ .Ž . Ž .`Hnt 11 11 k

1 1's n O OP P9 ž /'ž / n'nhn

1
s O ,P 9ž /'nhn

where the bound does not depend on t. Consequently, if nh9 ª `, thenn
h Ž Ž . Ž .Hf I d s 1, 1 dZ s o 1 .nt nd P

h c c nc c'Ž Ž .. Ž . Ž .Consider now Hf I d s 1, 1 dZ , where Z I d s 1, 1 s n P y P .nt n n 11 11
For convenience, we denote Zc with Z , again. We construct a lattice gridn n

an Ž . w x w x w xp s t , t , with maximal mesh a - h , on 0, t s 0, t = 0, t , whichi j n n 1 2
we force to be such that p hn ; p an. Now

w x w x0, t s A a , where A a ' t , t = t , t l 0, tŽ . Ž . Ž ŽD Ž .i , j n i , j n i iq1 j jq1
i , j

Ž . Ž .and the union is over all partition elements A a , i s 1, . . . , n a , j si, j n 1 n
Ž . Ž .1, . . . , n a . The number of partition elements will be denoted by n a and2 n n

Ž . Ž 2 .it is clear that n a s O 1ra . Now we define an approximation of Z asn n n
follows:

Zan t ' Z t , t if t g A a .Ž . Ž .Ž .n n i j i , j n

an Ž . Ž .So Z is constant on each A a with value Z t , t .n i, j n n i j
Ž . ŽBy using integration by parts it is clear that we have, for d s 1, 1 the

w x .integral is over y g 0, t , fixed d ,

f h y , d dZ y , dŽ . Ž .H nt n

s f h y , d d Z y Zan y , d q f h y , d dZan y , dŽ . Ž . Ž . Ž .Ž .H Hnt n n nt n

5 h 5U 5 an 5 5 h 5 5 an 5UF C f ?, d Z y Z ?, d q f ?, d Z ?, dŽ . Ž . Ž . Ž .Ž .v ` ` vnt n n nt n

5 an 5F O r h Z y Z ?, dŽ . Ž .Ž .Ž . `P 1 n n n

r h r hŽ . Ž .1 n 2 n Uan5 5q O Z ?, d .Ž . vP nž /'n
h Ž . Ž . Ž .In order to show that Hf y, d dZ y, d s o 1 , for a rate h ª 0, itnt n P n

suffices to show that there exists a rate a for which the last two termsn
converge to zero in probability.
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For convenience we will neglect the d in our notation. Define

h < <W a ' sup Z s y Z tŽ . Ž . Ž .i , j n n n
Ž .s , tgA ai , j n

and
W a ' max W n a .Ž . Ž .n n i , j n

i , j

Ž .It other words, W a is a modulus of continuity of a bivariate empiricaln n
nŽ .process. First, we will bound the two terms in W a .n

5 an 5 n Ž .We have Z y Z F max W a . Therefore,`n n i, j i, j n

5 an 513 P Z y Z ) « F P W a ) « .Ž . Ž .Ž . Ž .`n n n n

Furthermore we have

cUa nn5 514 Z F W a F W a .Ž . Ž . Ž .Ývn i , j n n n2ani , j

Analysis of the modulus of continuity. For a rectangular R we define
Ž .Z R as the measure of R assigned by the bivariate signed measure Z .n n

Ž . < Ž . < Ž .Define W a ' sup Z R . Einmahl’s 1987 inequality 6.4, forn, R n R: R < F a nn
Ž .W a , holds for an empirical process from a sample of a continuousn, R n

w xdensity which is bounded away from zero and infinity on 0, t and is given by

C yc l2 l1
15 P W a ) l F exp C for any l ) 0,Ž . Ž .Ž .n , R n ž /ž /a a na'n n n

Ž . Ž . Ž .where C x G 1r 1 q 1r3x . Notice that W a is a bound on the measuren n
assigned by Z to strips instead of rectangles. However, the strips are a unionn

Ž . Ž .of at most cra rectangles A a and on each rectangle, A a of thesen i, j n i, j n
c Žstrips, p is bounded away from zero and infinity and is continuous here we11

hn an.use the nesting of p in p , and hence for the modulus of continuity on the
Ž . Ž .sets A a the discontinuities on p play no role. Consequently, 15 can bei, j n h

Ž . Ž .applied to each rectangle A a in the strips. So the bound 15 implies thei, j n
Ž .following bound for W a :n n

c
P W a ) l F P W a ) lŽ . Ž .Ž . Ž .n n n , R nan

C yc l2 l1F exp C for any l ) 0,2 ž /ž /aa na'nn n

Ž . Ž .where C x G 1r 1 q 1r3x and where the C is now different from the
preceding one.



BIVARIATE CENSORING MODEL 613

By using this inequality with l s a0.5y« it is trivial to see that if na ª `n n
Ž « .at an arbitrarily small polynomial rate n , then for each « ) 0 there exists

a sequence d ª 0 and an « X ) 0 so thatn

W a C CŽ .n n 1
16 P ) d F exp y X .Ž . n «0 .5y« 2 ž /ž / aa a nn n

Ž . 0.5y«So W a ra converges to zero in probability exponentially fast.n n n
Ž . Ž .Assume na ª ` at a polynomial rate. Applying 16 to 13 provides usn

with
5 an 5Z y Z C C`n n 1

P ) « F exp y X s o 1 .Ž .«05y« 2 ž /ž / aa a nn n

5 an 5 Ž 0.5y« . Ž .5Ž an.Ž .5So Z y Z s o a . This proves that r h Z y Z ?, d s` `n n P n 1 n n n
Ž Ž . 0.5y« .o r h a , for any « ) 0.P 1 n n

Ž . Ž .Furthermore, applying 16 to 14 provides us with

5 an 5U 2 0 .5y« yŽ1 .5q« .Z s O 1ra o a s o a .Ž . Ž . Ž .vn n P n P n

ŽConsequently, this tells us that for each « ) 0 we have: If na ª ` at leastn
.at a polynomial rate , then

r h r hŽ . Ž .1 n 2 nh 0 .5y«17 f y , 1, 1 dZ y s o r h a q o .Ž . Ž . Ž . Ž .Ž .H nt n P 1 n n P 1 .5q«ž /'n an

For the first term it suffices that a converges to zero more quickly than h3 .n n
Substituting this in the second term tells us that it suffices to let h convergen
to zero slower than ny1r18. This proves the following lemma:

LEMMA 4.4. Suppose that F s F d q F c, where F c is absolutely continu-0 0 0 0
ous w.r.t. Lebesgue measure with continuous density which is bounded away

w x d w xfrom zero on 0, t and F is purely discrete with finite support on 0, t . If h0 n
y1r18 h Ž Ž .. h Ž .converges to zero slower than n , then Hf I D s 1, 1 dZ s o 1 .nt n P

h ŽAnalysis of the censored terms. We will now analyze the terms Hf I D /nt
Ž .. h h Ž Ž .. h1, 1 dZ . Recall that P I D / 1, 1 is purely discrete on the grid p ,n F0

Ž 2 . h h hwhich contains O 1rh points. Let p and p be the densities of P andn F n F0 0h h, nŽ . hŽ .P w.r.t. n , respectively. So p v , v ' p v , v , 0, 0 is the fraction ofn h 00 i j n i j
Ž . Ž .doubly censored observations which falls on v , v and similarly for D s 1, 0i j

h h 'Ž . 5 5 Ž .and D s 0, 1 . It is clear that, for fixed h , we have p y p s O 1r n .`n n F P0

In the following result for h ª 0 we do not make any assumptions. Undern
2Ž .'weak assumptions, the rate would be O 1r h n , but this improvement isp n

not interesting because of the slow rate in Lemma 4.4.

LEMMA 4.5. We have that

1
hn h5 5p y p s OL Žn .01 01 P1 h 4ž /'h n

and we have the same rate result for phn and phn.10 00
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PROOF. We give the proof for the first term; the others are dealt with
similarly. Because we are just dealing with a multinomial distribution on the

h Ž nhŽ .. h Ž . Ž nhŽ ..grid p , we have that E p u , v s p u , v and Var p u , v s01 k l 01 k l 01 k l
Ž . h Ž .Ž h Ž .. h Ž 2 . Ž .1rn p u , v 1 y p u , v . p has O h grid points u , v by defini-01 k l 01 k l n k l
tion of p h. Now, we have

hn h hn hE p y p u , v s E p y p u , vŽ . Ž .Ž . Ž .Ž .Ý Ý01 01 k l 01 01 k lž /
k , l k , l

1
h hF p u , v 1 y p u , v' Ž . Ž .Ž .Ý 01 k l 01 k l'n k , l

1 1
F . I2' hn

Again, we will neglect the d in our notation, but the reader should
remember that we only integrate over the singly censored and doubly cen-
sored observations. Now we have

h h h h h'f dZ s n f p y p dnH H Ž .nt n nt n F n0

h h h' 5 5 5 5F n f p y p` L Žn .nt n F 1 h0

1 1's n O OP P9 4ž / ž /' 'h n nhn n

1
s O .P 13ž /'h nn

This proves the following lemma:

LEMMA 4.6. If h converges to zero slower than ny1r13, thenn

f h I D s d dZh s o 1 for d g 1, 0 , 0, 1 , 0, 0 .� 4Ž . Ž . Ž . Ž . Ž .H nt n P

Lemmas 4.4 and 4.6 prove the empirical process condition for a rate of hn
slower than ny1r18. Recall that all the derived lower bounds are derived

Ž̃ .without any knowledge about I F , t , except that it has a finite variance,0
and therefore they only have a theoretical value. I

4.3. Approximation condition.
w x hŽ .4.3.1. Pointwise convergence. Let t g 0, t be fixed. Define V t 'n

h̃ h hŽ .Ž . Ž . Ž .HI F , t y dZ y . V t is a sum of i.i.d. mean zero random variables0 n n
n h h h h˜'Ž . Ž . Ž . Ž .Ž .given by 1r n Ý X t , where X t ' I F , t Y . By Bickel andis1 i i 0 i

Ž . hŽ . Ž .Freedman 1981 we have that if, for h s h ª 0, X t « X t andn i D i
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Ž hŽ .. Ž Ž ..Var X t ª Var X t , then this sum converges weakly to a normal distri-i i
Ž Ž ..bution with mean zero and variance equal to Var X t . We will prove thesei

two conditions:

hŽ .LEMMA 4.7. Define the following real-valued random variables X t '
h̃ h h h ˜Ž .Ž . Ž . Ž .Ž .I F , t Y , Y ; P , and X t ' I F , t Y , Y ; P . We have for each0 F 0 F0 0w xt g 0, t that for h ª 0,n

2hnE X t y X t ª 0Ž . Ž .Ž .ž /
and

hn hn w xE X t X s ª E X t X s uniformly in s, t g 0, t .Ž . Ž . Ž . Ž .Ž .Ž .

For the proof, see Section 6. Lemma 4.7 has the following corollary:

h̃n hnŽ .Ž . Ž .COROLLARY 4.1. The empirical process HI F , t y dZ y converges in0 n
distribution to a normal distribution with mean zero and variance equal to

0̃Ž Ž ..Var I F , t .P 0F0

4.3.2. Hilbert space convergence. For showing that V h converges weaklyn
˜Ž w x 5 5 . � Ž . w x4as a process in D 0, t , ? we need to show at least that I F , t : t g 0, t` 0

is a P -Donsker class. We have not been able to do this. Therefore weF0

concentrate on proving weak convergence as a process in a Hilbert space. We
wŽ .use the following result, which can be found in Parthasarathy 1967 , page

x153 .

LEMMA 4.8. Let Z , Z be random processes in a Hilbert space HH endowedn 0
with the Borel sigma algebra BB. Let e , e , . . . be an orthonormal basis of HH.1 2

² : ² : Ž ` ² :2 .If e , Z « e , Z , for all j, and lim sup E Ý e , Z s 0,j n D j 0 N ª` n jsNq1 j n
then Z « Z in HH.n D 0

n'Ž . Ž . Ž .Let V t s 1r n Ý X t . First, we will prove the first condition ofn is1 i
Lemma 4.8 with Z s V h and Z s V , the optimal Gaussian process. Wen n 0 0
have

² h: ² h : ² :e , V s e , V y V q e , V .j n j n n j n

² h : Ž . hFirst, we will show that e , V y V s o 1 . The fact that V and V arej n n P n n
sums of i.i.d. random variables X h and X , respectively, and thei i
Cauchy]Schwarz inequality tell us that

² h : ² h :Var e , V y V s Var e , X y XŽ . Ž .j n n j

² h :2F E e , X y Xž /j

² : ² h h :F e , e E X y X , X y X .j j
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2Ž .Assume now that HH s L l for a certain finite measure l. By Lemma 4.7 we
Ž hnŽ .. Ž Ž .. ŽŽ hnŽ . Ž ..2 .have Var X t converges to Var X t and E X t y X t ª 0, both

uniformly in t. Therefore,

2h h h² :E X y X , X y X F sup E X y X s dl s ª 0,Ž . Ž . Ž .Ž . H
w xsg 0, t

² h :which proves the convergence of e , V y V to zero in probability. Further-j n n
more, we have

n1
² :e , V s e s X s dl s ,Ž . Ž . Ž .Ý Hj n j i'n is1

which is just a sum of i.i.d. mean zero random variables. By the CLT, to show
² :that this converges in distribution to e , V , it suffices to have thatj 0

Ž Ž . Ž . Ž ..Var He s X s dl s - `. This follows immediately from the fact thatj i
5 Ž 2Ž ..5 ² h: ² :E X s - `. This proves the weak convergence of e , V to e , V .` j n j 0

We will now verify the tightness condition. We have
`

2h² :E e , VÝ i nž /
isNq1

`
2h² :s E e , VŽ .Ý i n

isNq1
`

h hs E e s e t V s V t dl s dl tŽ . Ž . Ž . Ž . Ž . Ž .Ý HH i i n nž /
isNq1

`
h hs e s e t E V s V t dl s dl tŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ý HH i i n n

isNq1
`

s e s e t E V s V t q o 1 dl s dl tŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý HH i i 0 0
isNq1

` `
2 2² : ² :s o 1 e , 1 q e , V .Ž . Ž .Ý Ýi i 0ž /

isNq1 isNq1

In the first, second and third equality we used Fubini’s theorem, then we use
Ž hŽ . hŽ .. Ž Ž . Ž .. Ž .the uniform convergence of E V s V t to E V s V t by Lemma 4.7n n 0 0

and finally we again apply Fubini’s theorem but now in the reversed order.
5 5 2 ` ² :2The last bound does not depend on n anymore. Because V s Ý V , e0 is1 0 i

and similarly for the function 1, it follows that if we take the limit for N ª `,
Ž .then both tail series convergence to zero.

Application of Lemma 4.8 provides us now with the following lemma.

LEMMA 4.9. Suppose the same assumption as in Lemma 4.7. If l is a finite
hn 2Ž .measure and h ª 0, then V « V as random elements in L l .n n D 0

5. Results. We will summarize the necessary notation for the theorem.
Recall the reduced i.i.d. data Y h ; P h , obtained by generating n i.i.d.i F , G0 h
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C ; G and the p h-interval censoring of the singly censored observations.i h
h Ž . h Ž . hWe defined E 1, 0 and E 0, 1 as the vertical and horizontal strips of pk , l k , l

h h h'Ž . Ž .starting at u , v . We defined Z ' n P y P as the empirical pro-k l n n F , G0 hh̃Ž .cess corresponding to the reduced data, I F , t as the efficient influence0
˜Ž . Ž .function for estimating F t using the reduced data and I F , t as the0 0

Ž .efficient influence function for estimating F t using the original data.0
We have proved all ingredients of the general efficiency proof of Section 3

Ž .in Section 4. Recalling Lemma 4.2 uniform consistency and that for fixed h,
Ž .we have that efficiency among all estimators based on the reduced data

under the assumptions as stated in Section 2.1 provides us with the following
theorem:

w x Ž . Ž .THEOREM 5.1. Let 0, t ; R be a rectangle so that H t ) 0, S t yG 0 0
Ž . Ž w x.) 0 and F t s 1 data reduced to 0, t .0

Fixed grid efficiency. Suppose that we do not change the grid p h, for
Ž . Ž h Ž ..n ª `, and that for each grid point u , v , F E 1, 0 ) 0 andk l 0 k , l

Ž h Ž .. hF E 0, 1 ) 0. Then S is a sup-norm-efficient estimator of S for the data0 k , l n 0
Y h, i s 1, 2, . . . , n:i

h h h h˜'n F y F t s I F , t dZ q R t ,Ž . Ž . Ž .Ž . Hn 0 0 n n

h h̃ h5 5 Ž . Ž . Ž w x 5 5 .where R s o 1 and HI F , t dZ converges weakly in D 0, t , BB, ?` `n P 0 n
to a Gaussian process N with mean zero finite-dimensional distributions andh
covariance structure given by

h̃ h̃
hE N s N t s E I F , s I F , t .Ž . Ž . Ž . Ž .Ž . Ž .h h P 0 0F0

h Ž hn Ž ..Uniform consistency. Suppose that the grid p is such that F E 1, 0 )0 k , l
Ž hn Ž ..d h and F E 0, 1 ) d h , for some d ) 0. Then, for any rate h ª 0,n 0 k , l n n

h 3n5 5 'S y S s O 1r nh .` ž /n 0 P n

Efficiency. Suppose F s F d q F c, where F d is purely discrete with finite0 0 0 0
support and F c is absolutely continuous w.r.t. Lebesgue measure with contin-0

w xuous density uniformly bounded away from zero on 0, t .
We have that, for h ª 0,n

h̃ h h̃ h ˜ ˜hE I F , s Y I F , t Y ª E I F , s Y I F , t YŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .P 0 0 P 0 0F F0 0

w xuniformly in s, t g 0, t .
y1r18 5 h 5If h converges to zero, but slower than n , then we have that R s`n n

h h̃ hŽ . w x Ž . Ž .o 1 and, for each t g 0, t , V t ' HI F , t dZ converges in distributionP n 0 n
Ž .to the normal distribution N t with mean zero and variance0

˜Var N t s Var I F , t .Ž . Ž .Ž . Ž .0 0

h 2Ž .Moreover, for any finite measure l, V converges weakly as a process in L ln
to N .0
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hnŽ . Ž .This implies that F t is an efficient estimator of F t , pointwise and asn 0
2Ž .an element in L l .

We see that if nh3 ª `, then F hn converges uniformly to F . Therefore, wen n 0
think that ny1r3 can also be used as a lower bound for asymptotic efficiency,
though we did not prove this.

6. Technical lemmas. In formulas the score operator Ah evaluated atF0h ˜ h ˜Ž . w Ž .observation Y s T, D is given by recall that T for D / 1, 1 lives on the
h xgrid p

hh ˜A g T , DŽ . Ž .F0

˜s g T I D s 1, 1Ž .Ž . Ž .
F ds , dsŽ .0 1 2q g s , s I D s 1, 0Ž . Ž .Ž .H H 1 2 x wF u , u , v , `Ž x Ž . Ž .Ž .u , u v , ` 0 k kq1 lk kq1 l

F ds , dsŽ .0 1 2q g s , s I D s 0, 1Ž . Ž .Ž .H H 1 2 w xF u , ` , v , vŽ . Ž x Ž . Ž .u , ` v , v 0 k l lq1k l lq1

F ds , dsŽ .0 1 2q g s , s I D s 0, 0 .Ž . Ž .Ž .H H 1 2 wF u , ` , v , `Ž .Ž . Ž . .Ž .u , ` v , ` 0 k lk l

˜Ž .Recall that u , v is a function of T and therefore it is natural to consider vk l l
˜ ˜ ˜Ž . Ž xas a function in T : v T s v , if T g v , v , and similarly for u . In this2 l 2 l 2 l lq1 k

w xway all four terms can be considered as functions on 0, t , where the last
three are step functions on p h.

In formulas, I h is given by0

I h g T s g T H TŽ . Ž . Ž . Ž .F , G h0 h

F ds , dsŽ .T 0 1 22q g s , sŽ .H H H 1 2ž /x wF u , u , v , `Ž x Ž . Ž .Ž .0 u , u v , ` 0 k kq1 lk kq1 l

� 4=G u , ` , vŽ .Ž .h k l

F ds , dsŽ .T 0 1 21q g s , sŽ .H H H 1 2ž /w x xF u , ` , v , vŽ . Ž x Ž . Ž .0 u , ` v , v 0 k l lq1k l lq1

� 4=G u , v , `Ž .Ž .h k l

F ds , dsŽ .0 1 2q g s , sŽ .H H H 1 2ž /F u , ` , v , `. Ž .Ž x Ž . . Ž .0, T u , ` v , ` 0 K lk l

� 4 � 4=G u , v .Ž .h k l

Ž .We will write down the singly censored term second term above of I :F , G0 02Ž . 2Ž .L F ª L F :0 0

F T , dsŽ .T 01 1 22 h T , s H T , dv .Ž . Ž .H H 1 2 0 1 2ž /wF T , v , `Ž . Ž . .0 v , ` 01 1 22
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6.1. Proof of Lemma 4.1.

h Ž . Ž x w . hLEMMA 6.1. Let E 1, 0 ' u , u = v , ` be the vertical strips of pk , l k kq1 l
h Ž . Ž .and let E 0, 1 be the horizontal strips. Suppose that H t ) 0 andk , l 0

Ž hn .F E ) d h , for certain d ) 0. Then there exists an « ) 0 so that, for any0 k , l n 'sequence h which converges to zero slower than 1r n , we haven

min F hn Ehn 1, 0 G « h with probability tending to 1.Ž .Ž .n k , l n
k , l

hn Ž .Similarly, for E 0, 1 .k , l

PROOF. We use the notation Eh for both strips. First, by the EMk , l
w Ž .xequations see 7 , we have

18 F h Eh G P n Eh ,Ž . Ž . Ž .n k , l 11 k , l

where P n is the empirical distribution of the uncensored observations of11
Y h ; P h . We havei F , G0 h

19 P Ehn G H t F Ehn ) d h for some d ) 0.Ž . Ž .Ž . Ž .11 k , l 0 0 k , l 1 n 1

� h Ž x 4 hFurthermore, I : h g 0, 1 , k, l , the collection of indicators of E over allE k , lk , l
Ž . h Ž xu , v g p and for all h g 0, 1 , is a uniform Donsker class. Consequently,k l 'Ž .we have for any « ) 0 and rate r n slower than n that

«
n hn< <20 P sup P y P E ) ª 0.Ž . Ž . Ž .11 11 k , lž /r nŽ .k , l

Assume that there exists an « - d so that1

21 lim sup P min P n Ehn F « h ) d ) 0 for some d ) 0.Ž . Ž .11 k , l nž /
k , lnª`

We will prove that this leads to a contradiction if h converges to zeron'slower than 1r n . The contradiction proves that, for each « - d and h1 n'slower than n ,

lim P min P n Ehn G « h s 1,Ž .11 k , l nž /
nª` k , l

Ž .which combined with 18 proves the lemma. So it remains to prove the
Ž . Ž .contradiction. We have by 19 and 21 , respectively,

< n hn <lim sup P sup P y P E ) d h y « hŽ . Ž .11 11 k , l 1 n nž /
nª` k , l

G P min P n Ehn F « h ) d ) 0.Ž .11 k , l nž /
k , l

Ž .However, we also have 20 . These two contradict if h converges to zeron'slower than 1r n . I

To obtain a bound for the uniform sectional variation norm of the efficient
hŽ .Ž . Ž .influence function, consider the equation I g x s f x , for certain f gF
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2Ž . hŽ . hŽ . hŽ .L F . We can write I g s H g q K g , where K g is the sum of theF h F F
three terms corresponding to the censored observations. Then this equation is
equivalent to the following equation:

1
h22 g x s f x y K g x .Ž . Ž . Ž . Ž . Ž .� 4FH xŽ .h

hŽ .Ž .For the moment denote the right-hand side by C g, f x ; that is, weF
Ž . hŽ .Ž .consider the equation g x s C g, f x .F

X 2Ž .We know by Lemma 3.1 that, for each f , there exists a g g L F , which
2Ž . 5 hŽ X. 5 5 X hŽ X .5is unique in L F , with I g y f s 0, that is, g y C g , f s 0.F FF F

5 5 hŽ .Ž .Notice that if g y g s 0, then for each x, C g y g, f x s 0. So evenF1 F 1
X 2Ž . hŽ X .Ž .if g is only uniquely determined in L F , then C g , f x is uniquelyF

Ž . hŽ X .Ž .determined for each x. Now, we can define g x ' C g , f x . ThenF
5 X 5 5 Ž X . X 5g y g s C g , f y g s 0, so in this way we have found a solution gF F

Ž . 2Ž .of 22 which holds for each x instead of only in the L F sense.
y1 Ž . Ž . hŽ X .Ž .To summarize, we have g s I f is given by g x s C g , f x ,h h, F h F h

X y1 Ž . 2Ž .where g s I f in the L F sense. Moreover, by the bounded invertibil-h h, F
h 2Ž . 5 X 5 5 5ity of I w.r.t. the L F -norm, we have that g F C f , where C F 1rdF FF h

does not depend on the width h.
5 5U 5 5 5 hŽ .5Assume that f - 1. Now we can conclude that g F M K gv ` `h F h

5 5U 5 hŽ .5Uand g F M K g , for certain M - `.v vh F h
Therefore it remains to bound the sup-norm and uniform sectional varia-

hŽ .tion norm of K g and find out how this bound depends on the width h . ItF n
hŽ .suffices to do this for one of the singly censored terms of K g . We take theF h

Ž .D s 1, 0 term which is given by

F ds , dsŽ .T 1 22 � 4W T ' g s , s G u , v .Ž . Ž . Ž .H H H h 1 2 h k lž /x wF u , u , v , `Ž x Ž . Ž .Ž .0 u , u v , ` k kq1 lk kq1 l

Ž .For convenience, we will often denote E 1, 0 by E .k , l k , l
5 5Supnorm. Recall that f F 1. By the Cauchy]Schwarz inequality and`

5 5 5 5g F C f , we haveF Fh

F ds , dsŽ .1 2
g s , sŽ .H H h 1 2 x wF v , u , v , `Ž x Ž . Ž .Ž .u , u v , ` k kq1 lk kq1 l

F ds , dsŽ .1 2s I s , s g s , sŽ . Ž .H E 1 2 h 1 2k , l F EŽ .k , l

1
5 5F g FhF E' Ž .k , l

C
F .

F E' Ž .k , l
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hnŽ .By Lemma 6.1 we can assume that F E ) « h , for certain « ) 0. Thisn k , l n
Ž . hproves, by replacing F above by F :n

LEMMA 6.2. There exists a C - ` so that
C

y15 5hsup I f F with probability tending to 1.Ž . `h , Fn h'5 5f s1 n`

w xUniform sectional variation norm over 0, t . Notice that W is purely
Ž .discrete with jumps at the grid points u , v . Therefore the uniform sec-k l

tional variation norm of W equals the sum of the absolute values of all jumps.
We have

F ds , dsŽ .1 2� 4 � 4W T , v s g s , s G u , v .Ž .Ž . Ž .H H1 l h 1 2 h k lx wF v , u , v , `Ž x Ž . Ž .Ž .u , u u , ` k kq1 lk kq1 l

So
F ds , dsŽ .1 2

DW u , v s D H u , v g s , sŽ . Ž . Ž .Hk l h k l h 1 2 F EŽ .E k , lk , l

yH g s , s F ds , dsŽ . Ž .E h 1 2 1 2k , lq F E y F EŽ . Ž .Ž .kq1, l k , l2F EŽ .k , l

= � 4H u , vŽ .h k l

H g s , s F ds , ds y H g s , s F ds , dsŽ . Ž . Ž . Ž .Ž .E h 1 2 1 2 E h 1 2 1 2kq 1, l k , lq
F EŽ .k , l

= � 4H u , v .Ž .h k l

ŽNow doing nothing more sophisticated than we use Lemma 6.2 in the first
.inequality and Lemma 6.1 in the second

H g dFE hk , L 5 523 F g F Mr h and F E ) « h ,Ž . Ž .'`h n k , l nF EŽ .k , l

we obtain the following bound:
M

< < <DW u , v F D H u , vŽ . Ž .k l h k l h' n

C
h h < <q F E q F E H u , Dv .Ž . Ž . Ž .Ž .n k , l n kq1, l h k l3r2hn

Consequently, we have, for the variation of W with F replaced by F h,n

1 C
h< < < < < <DW u , v F D H u , v q F E H u , DvŽ . Ž . Ž . Ž .Ý Ý Ýk l h k l n k , l h k l3r2hh' nnk , l k , l k , l

1 C 1
F q s O ,3r2 3r2ž /h hh' n nn
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where the bounds hold with probability tending to 1. So we have proved the
following lemma:

LEMMA 6.3. There exists a C - ` so that

CUy15 5h24 sup I f F with probability tending to 1.Ž . Ž . vh , F 3r2nU h5 5 nf s1v

y1 Ž .hLet g s I f . The uniform sectional variation of the uncensored term ofh, Fn
Ž .hA g is bounded by a constant times the uniform sectional variation of gFn

and the uniform sectional variation of the censored terms can be bounded as
Ž . 3r2above using 23 by Crh . Therefore the uniform sectional variation of then

Ž .efficient influence curve is also bounded by the rate given in 24 . This
Ž .completes the proof of Lemma 4.1 the cadlag property follows also trivially .

I

6.2. Proof of Lemma 4.3. We will suppress the d in our notation. We have

h h̃ h h̃5 5 5 5f s I F , t y I F , tŽ .Ž .` `nt n 0

< h < 5 h y1 h y1 5F S y S t q A I k y A I k .Ž . Ž . Ž .Ž . `n 0 n h , n t 0 h , 0 t

h 35 5 Ž Ž ..'We know that F y F s O 1r nh . The rate will be determined by`n 0 P n
h y1 Ž .the second term. Let g ' I k . We rewrite the second term as a sum of0 t h, 0 t

two differences:

Ah Iy1 k y Ah Iy1 kŽ . Ž .n h , n t 0 h , 0 t

s Ah y Ah Iy1 k q Ah Iy1 I h y I h Iy1 kŽ . Ž .Ž . Ž .n 0 h , 0 t n h , n n 0 h , 0 t25Ž .
s Ah y Ah g h q Ah Iy1 I h y I h g h .Ž . Ž . Ž . Ž .n 0 0 t n h , n n 0 0 t

We will consider the first term. It suffices to do the analysis for one of the
Ž .singly censored terms. We consider the d s 1, 0 term. We have, by tele-

scoping,

Ah y Ah g h u , v , dŽ .Ž . Ž .n 0 0 t k l

H g h dF h H g h dFEŽk , l . 0 t n EŽk , l . 0 t 0s yh F EF E Ž .Ž . 0 k , ln k , l

H g h d F h y F F h y F E H g h dF hŽ .Ž . Ž .EŽk , l . 0 t n 0 n 0 k , l EŽk , l . 0 t ns q .hF E F E F EŽ . Ž . Ž .0 k , l n k , l 0 k , l

In the first term, we can apply integration by parts. So the first term is
bounded by

5 h 5Ug v0 th5 5C F y F .`n 0 F EŽ .0 k , l
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Uh 35 5 Ž . Ž .'By Lemma 6.3 we have g s O 1r h and we have F E ) d h.v0 t n 0 k , l
Therefore the first term is bounded by

1 1 1 1
O O O s O .P P P3 3 8ž /ž / ž / ž /h' ' 'nh h nhnn n n

The second term is bounded by

1 1
h h5 5 5 5C F y F g s O .` `n 0 0 t P 6ž /F EŽ . 'nh0 k , l n

This proves that

1
h h h5 5A y A g s O .Ž . Ž . `n 0 0 t P 8ž /'nhn

Ž . TConsider now the second term of 25 . Because A only depends on G, we0
Ž h h.Ž h .have, for the term I y I gn 0 0 t

I h y I h g h s AhT Ah y Ah g h .Ž . Ž . Ž . Ž .n 0 0 t 0 n 0 0 t

hT 5 hT Ž .5 5 5Because A is just a conditional expectation, we have that A g F g .` `0 0
h h h 85Ž .Ž .5 Ž .'Therefore, we also have that I y I g s O 1r nh . Now, we apply`n 0 0 t n

y15 Ž .5 Ž .5 5Lemma 6.2 which tells us that I g F 1r h g . This tells us that'` `h, n n

1
h y1 h h h5 5A I I y I g s O .Ž . Ž . `n h , n n 0 0 t 9ž /'nhn

This completes the proof of Lemma 4.3. I

6.3. Proof of Lemma 4.7. Lemma 4.7 will be proved as a corollary of the
next lemma.

2Ž . 2Ž .LEMMA 6.4. Let C ; L F be any compact set in L F . Then we have0 0

5 h 526 sup I y I g ª 0Ž . Ž .Ž . F0 0 0
ggC

and
2hsup E A g y A g ª 0 for h s h ª 0.Ž . Ž .Ž .0 0 n

ggC

h 2Ž .PROOF. By the compactness of C and the continuity of I : L F ª0 0
2Ž . Ž .L F , the supremum in 26 is attained by some g g C. Let g be a0 0 k

5 5 5 5sequence so that g y g ª 0 and g - `, for k s 1, 2, . . . . We haveF `k 0 k0

5 h 5 5 h 5 5 h 5I y I g F I y I g y g q I y I g ;Ž . Ž . Ž .Ž . Ž . Ž .F F F0 0 0 0 0 0 k 0 0 k0 0 0
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5Ž h .Ž .5 5 5I y I g y g F 2 g y g , which converges to zero for k ª `.F F0 0 0 k 0 k0 0

5Ž hn .Ž .5Therefore it suffices now to show that I y I g ª 0, for each fixed k.F0 0 k 0

Now, we have

I h y I g s AhT Ah y A g q AhT y AT A g .Ž . Ž . Ž .Ž .Ž . Ž . Ž .0 0 k 0 0 0 k 0 0 0 k

The differences in the first term are comparable because all can be considered
Ž .as functions of C, T and thereby are defined on the same probability space.

First, we will consider the second term. It suffices to deal with one of the
Ž . Ž . Ž .singly censored terms. Let d s 1, 0 and f ' A g I D s d . We havek 0 k

T2hT TA y A f T , T s f T , v G y G T , ` , dv .Ž . Ž . Ž . Ž . Ž .Ž .Ž . H0 0 k 1 2 k 1 h 0 1
0

Ž . Ž .Let T s T , T be fixed and let T be a point where H T , DT s 0. By1 2 2 0 1 2
Ž . Ž .definition of weak convergence of H T , dv to H T , dv we have now thath 1 0 1

Ž . Ž . Ž hTif v ª f T , v is bounded and continuous H T , ? a.e., then A yk 1 0 1 0
T . Ž . 5 5 5 5A f T , T ª 0, for this T. The boundedness follows from f F g -` `0 k 1 2 k k

Ž .`. We have that v ª f T , v is given byk 1

H`g T ,k v F T , dvŽ . Ž .v k 1 2 01 1 2
v ª .

F T , v , `Ž .Ž .01 1

Ž .This function is continuous at v if v ª F T , v is continuous at v. Conse-01 1
Ž . Ž .quently, we need that F T , dv puts no mass at a point where H T , dv01 1 0 1

puts mass. By our convention that if T s C, then the observation is un-
censored, this is satisfied. This proves the pointwise convergence of f 'h
Ž hT T .Ž . 2A y A f to zero F-a.e. We need to show that Hf dF ª 0. However, we0 0 k h 0

5 5 5 5also have f F 2 g and therefore the dominated convergence theorem` `h k
provides us with Hf 2 dF ª 0.h 0

hT Ž h .Ž . hLet us now consider the first term A A y A g . Because A is a0 0 0 k 0
conditional expectation, its second moment is bounded by the second moment

Ž h .Ž . ŽŽ h .Ž .2 .of A y A g . Therefore it suffices to show that E A y A g ª 00 0 k X , C 0 0 k
h Ž . hfor h ª 0, where we consider A and A as functions in T, C via Y and Y,0 0

respectively.
˜ hŽ . .Recall how we constructed the data T, D : ; 1 We have a nested

h Ž .sequence of partitions p and we observed i.i.d. C , . . . , C ; G. 2 Now we1 n
discretize C such that C h ; G , where G lives on p h. This provides us withi i h h

˜ ˜Ž . Ž . Ž .data T, D ; P . 3 Finally, we discretize T, D in order to obtainh F , G h0 h
h ˜ h h h hŽ .Y s T, D ; P . Denote the sigma field generated by Y with AA .F , G0 h

Because p h is nested and the sigma field generated by p h converges to the
w x h ` `Borel sigma field on 0, t , we have that AA ­ AA , for h ª 0, where AA is the

˜Ž ..sigma field generated by Y s T, D , Y ; P .F , G0 0
Ž Ž . < hn.Consequently M ' E g T AA is a martingale in n and it is wellX , C khn

Ž 2 . ŽŽ .2 .known that if sup E M - `, then E M y M ª 0. We haveh h h 0

2h< 5 5sup E E g T AA F g - `Ž .Ž . `ž /h k
h
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5Ž h .Ž .5and consequently we have A y A g ª 0. This also proves theF =G0 0 k 0 0

second statement in Lemma 6.4. I

COROLLARY 6.1. We make the same assumptions as in Lemma 6.4. For
2Ž . 5 5each set C ; L F which is compact w.r.t. ? , we have, for h ª 0,F0 0

5 y1 y1 527 sup I y I g ª 0.Ž . Ž .Ž . F0 h , 0 0
ggC

This implies
h y1 h y1 y1 y1

h² : ² :sup A I g , A I g y A I g , A I g ª 0.Ž . Ž . Ž . Ž .P P0 h , 0 0 h , 0 1 0 0 0 0 10 F0
g , g gC1

Moreover, we have
2h y1 y1sup E A I g y A I g ª 0.Ž . Ž .Ž .0 h , 0 0 0

ggC

PROOF. We have

Iy1 y Iy1 g s Iy1 I Iy1 y I hIy1 gŽ . Ž .Ž . Ž .h , 0 0 h , 0 0 0 0 0

s yIy1 I h y I Iy1 g .Ž .Ž .h , 0 0 0 0

2 Ž . y1Ž .First, notice that by the bounded L -invertibility of I Lemma 3.1 , I C is0 0
2Ž .compact in L F . Now, by the preceding lemma we have that0

5 h y1 5sup I y I I g ª 0.Ž .Ž . F0 0 0 0
ggC

5 y1 5Finally, we know by Lemma 3.1 that sup I - `. This proves the firstFh h, 0 0

statement. For the second statement notice that

² h y1 h y1 : h ² y1 :A I g , A I g s I g , gŽ . Ž . Ž .P F0 h , 0 0 h , 0 1 h , 0 1F 00

² y1 y1 : ² y1 :s I g y I g , g q I g , g .Ž . Ž . Ž .F Fh , 0 0 1 0 10 0

Ž .The first term converges to zero by the Cauchy]Schwarz inequality and 27 .
² y1Ž . y1Ž .:The second term equals A I g , A I g .PF0 0 0 0 1 0

It remains to prove the last statement. By the compactness of C and
continuity of A Iy1 and Ah Iy1 it suffices to show the statement for a fixed0 0 0 h, 0

2 Ž .g g L F . We have0 0

A hIy1 g y A Iy1 g s Ah y A Iy1 g q Ah Iy1 y Iy1 g .Ž . Ž . Ž . Ž .Ž . Ž .0 h , 0 0 0 0 0 0 0 h , 0 0

The first term converges to zero by the second statement of Lemma 6.4.
For the second term we have

5 h y1 y1 5 h 5 y1 y1 5A I y I g F I y I g ª 0 by 27 . IŽ . Ž . Ž .Ž . Ž .P F0 h , 0 0 h , 0 00 0

� Ž x w x4 2Ž .Notice that C ' I 0, t : t g 0, t ; L F is a compact set. Application of0
the corollary to this set C provides us with Lemma 4.7. I
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