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CENSORING MODEL AND
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The NPMLE in the bivariate censoring model is not consistent for
continuous data. The problem is caused by the singly censored observa-
tions. In this paper we prove that if we observe the censoring times or if
the censoring times are discrete, then a NPMLE based on a slightly
reduced data set, in particular, we interval censor the singly censored
observations, is asymptotically efficient for this reduced data and more-
over if we let the width of the interval converge to zero slowly enough,
then the NPMLE is also asymptotically efficient for the original data. We
are able to determine a lower bound for the rate at which the bandwidth
should converge to zero. Simulation results show that the estimator for
small bandwidths has a very good performance. The efficiency proof uses a
general identity which holds for NPMLE of a linear parameter in convex
models. If we neither observe the censoring times nor the censoring times
are discrete, then we conjecture that our estimator based on simulated
censoring times is also asymptotically efficient.

1. Introduction. In this paper we are concerned with estimation of the
bivariate survival function of two dependent survival times. For example, one
might be interested in estimation of the bivariate survival function of twins
with a certain disease. Suppose that for each twin one observes two calendar
times (U,, U,) at which the disease started for twin 1 and twin 2 and that one
keeps track of the bivariate survival time (T, T,) of the twin measured from
(U, Uy) until a given calendar point #,. At ¢, one wants to use the available
data to estimate the bivariate survival function of (T, T,). In this setting, T}
will be potentially Gi.e., if T} > C;) right randomly censored at the observed
censoring time C, = ¢, — U, and similarly 7, will be potentially right ran-
domly censored at the observed censoring time C, = ¢, — U,.

In this paper we propose an estimator for the bivariate survival function of
T = (T, T,) based on bivariate right randomly censored data, assuming that
the censoring times C = (C,,C,) are always observed, as in the example
above, or assuming that the censoring times are discrete. We prove asymp-
totic efficiency of this estimator. In the case that the censoring times are not
observed for the failures and the censoring times are not discrete, then we
propose a simulation of the unobserved censoring variables and conjecture
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BIVARIATE CENSORING MODEL 597

(no proof, but heuristic argument) that our estimator based on these simu-
lated censoring variables will also be asymptotically efficient.

We found it useful not to use a special notation for vectors in R?; if we do
not mean a vector, this will be clear from the context. So if we write T' we
usually mean T = (T,,T,) € R2 ; and if we write <, >, < and <, then
this should hold componentwise: for example, if x, y € R?, then x <y < x,
<Yy, X9 <y, We will write T}, i = 1,..., n, as notation for n i.i.d. bivariate
survival times with the same distribution as T, while we write T, and T, for
the components of 7T'.

Bivariate right randomly censored data can be modelled as follows: T is a
positive bivariate lifetime vector with bivariate distribution F, and survival
function S,; Fy(¢) = Pr(T < t) and Sy (¢) = Pr(T > ¢). Let C be a positive
bivariate censoring vector with bivariate distribution G, and survivor func-
tion H,; G,(¢t) = Pr(C < t) and H,(t) = Pr(C > t). Assume that T' and C are
independent; (T, C) € R* has distribution F, X G,. Let (T,,C,)), i = 1,...,n,
be n independent copies of (T',C). We observe the following many-to-one
mapping ® of (T},C,):

Y, =®(T;,C;) =(T; AC;, I(T; < C))

1
=

with components given by

T,; = min{T,

ij°

C,}, D;=IT;<C;), J=12.
In other words, the minimum and indicator are taken componentwise, so that
T, € [0,%)? and D, € {0,1}* are bivariate vectors. The observations Y, are
elements of [0,%)* X {0,1}* and Y, ~ P 4, = (Fy X G))®'. We are con-
cerned with estimation of S,,.

Each observation Y, tells us that (T,,C,) € B(Y,) = ® '(Y,) c R? X R?,
where B(Y,) = B(Y,); X B(Y,), for the projections B(Y;); € R? and B(Y}), C
R? of B(Y) on the T and C space, respectively. The kind of region B(Y;), for
T; (point, vertical half-line, horizontal half-line, quadrant) generates a classi-
fication of the observations Y; = (T}, D,) in four groups:

Uncensored. If D; = (1, 1), then the observation Y; is called uncensored and it
tells us that T, € B(Y;); = {T}}. So T, = T,.

Singly censored. If D; = (0,1) or D; = (1,0), then the observation Y; is called
singly censored. If D, = (0, 1), then it tells us that T; € B(Y)), = {(T};,>) X
{7}2}} (horizontal half-line), and if D, = (1,0), that T, € B(Y,); = {{T};} X
(T}5, )} (vertical half-line).

Doubly censored. If D, =(0,0), then the observation Y; is called doubly

censored and it tells us that T, € B(Y;), = {T};,) X (T},,*)} (upper quad-
rant).

The uncensored observations are the complete observations and the singly
censored and doubly censored are incomplete observations. An NPMLE solves
the self-consistency equation [Efron, (1967); Gill, (1989)] and a solution of the
self-consistency can be found with the EM algorithm [Dempster, Laird and
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Rubin, (1977); Turnbull, (1976)], which does in fact nothing else than iterate
the self-consistency equation. In the EM algorithm each observation Y, gets
mass 1/n, which it needs to redistribute over B(Y;); in a self-consistent way.
The incomplete observations Y, need to get information from the observed T;
about how to redistribute their mass 1/n over B(Y));, and for this purpose
they need complete observations in B(Y});. The EM algorithm listens only to
the observations with a region B(Y}); which has an intersection with B(Y}),.
It is only possible to have uncensored observations in B(Y)); if F(B(Y;);) > 0,
which is typically not true for the singly censored observations. If F| is
continuous, then the probability that T' falls on a line is zero. Indeed it is well
known that the NPMLE for continuous data is not consistent [Tsai, Leurgans
and Crowley (1986)].

Many proposals for estimation of the bivariate survival function in the
presence of bivariate censored data have been made. Because the usual
NPML and self-consistency principle do not lead to a consistent estimator for
continuous data, most proposals are explicit estimators based on representa-
tions of the bivariate survival function in terms of distribution functions of
the data: among these proposals are Tsai, Leurgans and Crowley (1986),
Dabrowska (1988, 1989), Burke (1988), the so-called Volterra estimator of P.
J. Bickel [see Dabrowska (1988)] and Prentice and Cai (1992a, b).

Prentice and Cai (1992a) proposed a nice estimator which is closely related
to Dabrowska’s estimator except that it also uses the Volterra structure
suggested by Bickel. Dabrowska’s multivariate product-limit estimator, based
on a very clever representation of a multivariate survival function in terms of
its conditional multivariate hazard measure, and the Prentice—Cai estimator
have a better practical performance in comparison w.r.t. the Volterra, path-
wise estimator and the estimator proposed in Tsai, Leurgans and Crowley
(1986) [see Bakker (1990), Prentice and Cai (1992b), Pruitt (1993) and
Chapter 8 of van der Laan (1996)]. It is expected that the Dabrowska and
Prentice—Cai estimators are certainly better than the other proposed explicit
estimators. Besides, these two estimators are smooth functionals of the
empirical distributions of the data so that such results as consistency,
asymptotic normality, correctness of the bootstrap, consistent estimation of
the variance of the influence curve and LIL all hold by application of the
functional delta method: see Gill (1992), Gill, van der Laan and Wellner
(1993) and van der Laan (1990). In Gill, van der Laan and Wellner (1993),
Dabrowska’s results about her estimator are reproved and new ones are
added by application of the functional delta method, and similar results are
proved for the Prentice-Cai estimator. Moreover, it is proved that the
Dabrowska and Prentice—Cai estimators are efficient in the case that
T,,T,,C,,C, are all independent.

All the estimators proposed above are ad hoc estimators which are not
asymptotically efficient [except at some special points (F,G)]. This is also
reflected by the fact that most of these estimators put a nonnegligible
proportion of negative mass to points in the plane [Pruitt, (1991a); Bakker
(1990)].
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Pruitt (1991b) proposed an interesting implicitly defined estimator which
is the solution of an ad hoc modification of the self-consistency equation.
Pruitt points out why the original self-consistency equation has a wide class
of solutions and his estimator tackles this nonuniqueness problem in a very
direct way by estimating conditional densities over the half-lines implied by
the singly censored observations. Uniform consistency, Vn -weak convergence
and the bootstrap for his normalized estimator are proved in van der Laan
(1993c) and Chapter 7 of van der Laan (1996) under some smoothness
assumptions which are due to the fact that his estimator uses kernel density
estimators. However, this estimator is not asymptotically efficient (except at
some special points) and its practical performance is (somewhat surprisingly)
worse, except at the tail where one hardly finds uncensored observations [as
shown in Chapter 8 of van der Laan (1996)] than the Dabrowska and
Prentice and Cai estimators. In the case that the sampling distribution is
smooth, Pruitt’s estimator appeared (as expected) to improve by using large
bandwidths.

As noticed by Pruitt (1991b), the inconsistency of the NPMLE is due to the
fact that the singly censored observations imply half-lines for 7' which do not
contain any uncensored observations. Based on this understanding we pro-
pose in Section 2 to (slightly) interval censor the singly censored observations
in the sense that we replace the uncensored component (say) T, of the singly
censored observations by the observation that T'; lies in a small predeter-
mined interval around T',. These intervals are determined by a grid partition
7, with a width A = h,. Now, for these interval censored singly censored
observations Y/ the regions B(Y), are strips with contain with positive
probability uncensored observations.

The interval censoring of the singly censored observations causes one
problem. The joint likelihood for F' and G does not factorize anymore in an
F-term and a G-term, which is due to the fact that the region for (T',C)
implied by the interval censored singly censored observations is not rectangu-
lar anymore. This tells us that for computing the NPMLE of F we also need
to estimate G by maximizing over G. Because of similar reasons as for the
NPMLE of F, the NPMLE of G will only be good if we do a symmetric
reduction (lines should be strips for C as well as for T'). In other words, an
extra reduction of the data will be necessary. Because the involvement of G
in computing the NPMLE F" certainly complicates the analysis and makes
the estimator more computer intensive, we decided to choose a reduction of
the data which recovers the orthogonality (i.e., factorization of the likelihood),
while at the same time, as will appear, not losing asymptotic efficiency. The
further reduction is based on the insight that if G, is purely discrete on 7",
then pﬁO’GO(-, d) factorizes, as shown in Section 2. Hence if the actual G is
discrete, then by choosing 7, (which can be done with probability tending to
1 if the number of observations converges to infinity) so that censoring
variables lie on the grid 7", we still have factorization of the likelihood. If the
actual G is not discrete, but we observe Cy,...,C,, then we can (1) discretize
(to the left) these C;’s to C!" on m,, (2) replace the original Y;’s by ®(T},C})
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and (3) replace the singly censored observations of ®(7,,C") by interval
singly censored observations Y.”. In this way, we construct new observations
Y/ for which the density factorizes in an F and G part.

This further reduction leads also to a good practical estimator as appears
in the simulations in Chapter 8 of van der Laan (1996). Its performance for a
small value of & is better than the Dabrowska, Prentice and Cai and Pruitt
estimators, except at the tail and under complete independence of
T,,T,,C,,C,. We show that if 2, — 0 at a rate slower than n /8 then the
estimator is asymptotically efficient, and if % is fixed, then one still has an
asymptotically normal estimator with an asymptotic variance arbitrarily
close (small A) to the asymptotic optimal variance. Our derived lower bound
is purely of theoretical value since it shows the existence of rates & = h, for
which the estimator is efficient, but quicker rates will also provide efficient
estimators. Obtaining theoretical insight about the precise rate at which £,
should converge to zero if n — o« is very hard and not very useful because
constants are not available. Simulations show that if n = 200 and the range
of the observations is transformed back to [0, 1] X [0, 1], then choosing the
width of the strips equal to A = 0.02 gives a very good estimator, so a few
observations in each strip is already effective. The estimator gets essentially
worse if we increase 4 independent of the smoothness of (F, G). This band-
width behavior is explained as follows. A large A means a large reduction of
the data and hence an increase in asymptotic variance. On the other hand,
we needed a A > 0 so that the EM algorithm is able to use the uncensored
observations in the strips around the singly censored half-lines for obtaining
a redistribution of mass 1/n over the half-lines. However, our primary
interest is not the distribution over the half-line, but the survival function
itself (which integrates over the distributions over the half-lines), which
explains that a smaller bandwidth than the one advised by density estima-
tion literature will suffice. In practice, a sensible method for programming a
sensible grid 7" would be to set the width for the horizontal axis equal to a
fixed proportion of the cross-validated bandwidth A% using the observed T',’s
and similarly compute the vertical width.

If we do not observe C;, then we can draw a C; from a conditional
distribution of C, given C € B(Y;),, and consider these simulated C! as the
observed C,’s above. For example, if we observe that C,; € (T;,©), we set
Ci;, =T, + U, where U, is a realization from a known distribution on (0, 7].
Then Y; = ®(T,,C}) = Y,, but we now observe C,. Ci, i = 1,...,n, are still
ii.d., but C; depends on 7T; only through Y,. However, if the density of C,
given T = ¢, depends only on T through Y = ®(C,T), then the censoring
mechanism satisfies coarsened at random [see Heitjan and Rubin (1991)],
which implies that the density of Y still factorizes, where the F' part of the
density of Y’ is still the same as the F' part of the density of Y, that is where
C and T are independent. Consequently, we have that the efficient influence
function for estimating F based on Y; equals the efficient influence function
for estimating F' based on Y,. Hence, if we construct an estimator of F' based
on (C!},Y/) which is efficient, then it is also efficient for the original data Y;. In
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other words, without any loss we arranged that we have available a set of
observed C;’s. However, because of the dependence between C' and T, the
likelihood does not factorize anymore for the data ®(7T',C)) based on the
discretized Cj, so that our proposed estimator is not a NPMLE for the
interval censored ®(T', C}) and hence has a bias. On the other hand, we let A
converge to zero when the number of observations converges to infinity so
that this bias converges to zero. Therefore, we conjecture (no proof) that our
estimator based on these simulated C’ is asymptotically efficient if hA = £,
converges to zero at an appropriate rate (not too slow and not too quick). In
the sequel it will be assumed that the C;’s are observed or that G, is discrete.

We will call the MLE based on a reduction (or call it a slight transforma-
tion) of the data a “sequence of reductions” MLE and will abbreviate it with
SOR-MLE. It is a general way to repair the real NPMLE in problems where
the real NPMLE does not work. If one understands why the usual NPMLE
does not work, then one can hope to find a natural choice for the transforma-
tion of the data. Moreover, if we do not lose the identifiability, we have for a
fixed transformation, consistency, asymptotic normality and efficiency of the
NPMLE among estimators based on the transformed data, while we obtain
efficiency by letting the amount of reduction of the data converge to zero
slowly enough if n converges to infinity.

In the next section we will define, in detail, the SOR-MLE for the bivariate
censoring model. In Section 3 we will give an outline of the efficiency proof,
which is based on an identity for the SOR-MLE which holds in general for
convex models which are linear in the parameter [van der Laan (1993)]. This
identity gives a direct link between efficiency of the SOR-MLE and properties
of the efficient influence function corresponding with the data Y},. In Section 4
we prove the ingredients of this general proof; the crucial lemmas of this
section are proved in Section 6. We summarize the results in Section 5.

For validity of the nonparametric and semiparametric bootstrap we refer
to Section 4.7 in van der Laan (1996); these results follow easily from the
identity approach which we follow.

2. SOR-MLE for the bivariate censoring model. Our original obser-
vations are given by

(Ti,Di) = &(T,,C;)) ~ Py ("), i=1,...,n.

Let Py() = Pp (T <-,D =(1,1)) be the subdistribution of the (doubly)
uncensored observations and similarly let Py, P,, and P,, be the subdistri-
butions corresponding to D =(0,1), D =(1,0) and D = (0,0), respectively.
Then

PFO,GO('7D =d) :P11(')I(d = (1’1)) + P01(')I(d = (0’1))
+ Pyy(1)I(d = (1,0)) + Pyo(-)I(d = (0,0)).

Let f, = dF,/du, for some finite measure u which dominates F. Similarly,
let G, < v with density g,. So(x,, ) generates a measure on R ,. This

(1)
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measure is absolutely continuous w.r.t. u((x;,),-), the marginal of the
measure u restricted to (x;,%) X R, ,. Now, we define Sy ,(x,, x,) =
—So(xy, dxy)/m(x, ), dx,) as the Radon—Nikodym derivative and similarly
we define S (xq, x5) = —S(dxy, x5)/uldxq, (x4, ), Hy(x, x5) =
—Hy(dxq, x9)/v(dx,(x4,%) and Hy,(x,, x5) = —H (x4, dxy)/v(xq,%), dx,).
Then the density py ¢, of Pp ¢, wrt. (u X v)® ! is given by
PFO,GO(xp x9,d) = fo(x)Hy(x)I(d = (1,1))

+ Soi( %y, x5) Hoa( %1, x3)I(d = (1,0))

+ Soa( %1, x5) Hyy (x4, x,) I(d = (0,1))
@ +Sy(x)gy(x)1(d = (0,0))

=pu(x)I(d = (1,1)) + py(x)I(d = (1,0))
+po(x)I(d = (0,1)) + pgo(x)I(d = (0,0))
Y p(x)I(d=3).

s5e{1,0)2

Suppose that we observe C; and (T D), ,n. We will transform
(T D,) and base our NPMLE on the transformed data The transformation
depends on a grid. For this purpose, let 7" = (u,,v,)" be a nested grid in
h =h, of [0,7] which depends on a scalar A =k, in the following way:
eh, <u,,; —u, <Mh,, where £ and M are independent of n, k£, and simi-
larly for v;,; — v;. W1th nested we mean that the grid points of 7, are a
subset of the grid points of 7, , (we use this in order to make martlngale
arguments work for conditional expectatlons given increasing sigma fields).
In other words, the grid must have a width between ¢k, and Mh,. This tells
us that the grid #” has (in order of magnitude) 1/A% points (u,,v,). Let
Ry = (up,uy ] X (0,4
Move each C,; to the left lower corner (u,,v,) of the rectangle R, ; of wh

which contains C Denote these discretized C; with C!'. Then C!" ~ Gh where
G, is the step functlon with jumps on 7" correspondmg to Gy:

P(C" = (uy,v)) =[R dGy(c).

Consider now the n i.i.d. observations
Yi(Ti’Cih) = (I)(Ti’cih) ~ PFO,Gh'

Notice that we are able to observe these Y,(T,, C!") because we only need to
know Y,(T,,C)). If h = h, converges to zero, then the distribution of ®(T,C")
converges to the distribution of ®(T',C). ;
For convenience we will denote ®(T,,C!) with Y, = (T}, D,), again, and
still use the notation pq;, p1g, P and pyo, suppressing the dependence on
h, but we have to realize that all censored T',; equal u,, for some %, and T,
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equal v,, for some [. Now we can define the reduced data (T, D,)", which we
will use for our estimator:

Y} = (,,D,)" = ®"(T},Cl) = 1a*((T;, D)) = 1a*(® (T}, C1)),

where Id” is a many-to-one mapping on the data (Tf’i, D,), which is defined as
follows:

1d"(T,D) = (T,D) if D =(1,1),
1d"(T, D) = ((u;,T,), D) for u;st. Ty €(u;, u;.,] if D = (1,0),

1d"(T, D) = ((7,,v;), D) for v;st. T, €(v;,0;.,] i D = (0,1),

1> %5
1d"(T,D) = (T, D) if D = (0,0).

Notice that Id* equals the identity for the uncensored and doubly censored
observations and it groups all singly censored observations (T, C,, I(T; <
C)=1, I(T, < C,) =0) with T; € (u,, u,., ] to one observation and simi-
larly with the singly censored observations with D = (0,1). We used the
notation Id" (Id from identity) because, for 4 — 0 (in other words, if the
partition gets finer), this transformation converges to the identity mapping.
We will still call the Y* with D =(1,0) and D = (0,1) singly censored
observations, in spite of the fact that they are really censored singly censored
observations. Y;" are i.i.d. observations with a distribution which is indexed
by the (same as for Y;) parameters F;, and G,.
To be more precise, we have

Y' ~Pg 65,
where
Py (x,D=d) =P,(")I(d =(1,1)) + P§i(-)I(d = (0,1))
+ Ply(1)I(d = (1,0)) + Pyo(-)I(d = (0,0)),

where the density pz of Pg ; wrt. (uX v,)®,", v, being the counting
measure on 7, is given by

P1(y1,¥2) = fo(y1, ¥2) Hy( 15 ¥2)
Poo(Vr,0;) = So(vy,0;)84(vs,0p)

(3)

and

pgl(vkavl) =f pOI(Uk,yZ)/.L((Uk,OO),dy2)

(v, 0741

=f( SOZ(vk’yQ)H(;LI(Uk’vl)“((vk’w)’dy2)
U5 V41
= FO((vk’oo)’(vl’vl+1])H(§ll(Uk>vl)'

Similarly, p*(u,, y,) = Sy,((v,, v, 11, v, )HE(v,, v,). Notice that p’(-,d), d
#+ (1,1), is discrete on ;. The independence between C, and T and the fact
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that C, is discrete on 7, implied that the density pgo(', d) also factorized for
d=(@1,0)and d = (0, 1).

Let P! be the empirical distribution function based on n ii.d. Y,*(T},C!")

}‘ .g,» Which is the distribution of the data corresponding to T ~ Fj,

C Gh, where G, is discrete on the grid 7" and the singly censored
observations are interval censored by Id” (i.e., half-lines are grouped to
strips). Let {x,,..., x,,,)} consist of the uncensored T: and one point of each
B(Y}); which does not contain uncensored 7;. Let u, be the counting measure
on {x,,..., x,,)}. Now, we let #(,) be the set of all distributions which are
absolutely continuous w.r.t. u,.

We define our SOR-MLE F,f‘ of F, which we will analyze:

4 F" = arg max [log(pk . )dP!,
( ) n gFeg‘_(p,n)'[ g(pF,Gh) n

where the maximum can be determined without knowing G, by maximizing
the term which only depends on F. We define S’ as the survival function
corresponding to F".

2.1. Existence and uniqueness of the SOR-MLE and EM equations. In
Lemma 4.1 in van der Laan (1995), for a general class of missing data models,
it is proved that the MLE over all F with support {x, ..., x,,,} exists and is
unique if the following two assumptions hold: H, > 6> 0 F, a.e. and
Fy(B(Y/"),) > 0, for all censored Y;" [D = (1,0), D = (0,1), D = (0,0)]. This
holds if all data live on a rectangle [0,7] C R_,, where 7 is such that
Hy(r)>0, Sj(r—)>0, F(r) =1, F(T,€lu;,u;,11, Ty > 75) >0 and
F(T, > 7y, Ty € [v;,v;,4D) > 0, for all grid points (u;,v;). By making all
observations T} € [O 7]° uncensored at the projection point on the edge of
[0, 7], we obtain truncated observations with distribution Pg; ; , where Fj
equals F on [0, 7), but puts all (= 1) its mass on [0, 7]. This means that our
efficiency result proves efficiency for data reduced to [0, 7]. For obtaining full
efficiency, we can let 7 = 7, converge slowly enough to infinity, for n — «. In
our analysis this will mean an extra singularity of magnitude 1/H(r,) and
therefore our analysis can be straightforwardly extended to this case.

Let g € L*(F") have finite supnorm. We will use the notation F(g) = [gdF.
We have that th =1+ e(g—FHg))dF", £€(-6,8), §>0 small
enough, is a one- dlmens1onal submodel through the MLE th and hence by
definition of F*,

&~ [log(pfy c,) dP!
is maximized at & = 0. Consequently, the derivative of this real-valued

function on (—§, ) at & = 0 equals zero, so that exchanging integration and
differentiation provides us with

(5) Pnh(A’,én(g ~F!(g))) =0 forall g € L*(F}) with llgll. <<,
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where the so-called score operator A% for a distribution function F is given
by
Al H(F) > 12(Ph,): 8 = Ee((T)Y").

The form of the score operators follows from the general fact that the score
operator in missing data models equals the conditional expectation operator
[see Gill (1989); Bickel, Klaassen, Ritov and Wellner (hereafter BKRW)
(1993), Section 6.6]. In particular, by setting g(T') =1, ,(T) in (5) one
obtains the well known self-consistency equation [Efron (1967)]

1 n
(6) Fi(t) =~ ¥ Py(T <tlY?),  te(o,r],
i=1

where Pp(T < t|Y") = Po(T < t|IT € B(Y"),), where B(Y"), is a point, hori-
zontal strip, vertical strip or an upper quadrant, where the strips and
quadrants start at the grid points. The SOR-MLE F" is computed by iterat-
ing this equation with an initial estimator of F which puts mass on each
point of the support of F*. The self-consistency equation tells us that F* puts
at least mass 1/n on each uncensored observation, which provides us with
the following useful bound: for each set A,

(7 F(A) = Piy(A).

3. Outline of the efficiency proof. First, we define the models corre-
sponding to the data Y" and Y. Let % be the set of all bivariate distributions
on [0, ) and let %, be the set of all possible bivariate distributions G, which
live on 7". Then the model corresponding to Y” [see (3)] is given by

M, =P} :FeF G, e}

and the model corresponding to Y [see (1)] is given by
M={Pp ¢: F,G €T}
Let DI[0, 7] be the space of bivariate cadlag functions on [0, 7] as defined in
Neuhaus (1971). We are interested in estimating the parameter
ﬁh: ‘%h i D[O, T]: ’l?h(PIg}’Gh) = S.

Similarly, we define

O:.#4 - D[0,7]: 9(Pp g) =S.
To begin with we will prove pathwise differentiability of these parameters
[see, e.g., BKRW (1993), Chapter 3; van der Vaart (1988)].

Let A(F) the class of lines ¢F; + (1 — &)F, F, € 7, with score h = d(F; —
F)/dF € L%(F), through F. By convexity of % this is a class of submodels.
Let S(F) c L3(F) be the corresponding tangent cone (i.e., set of scores). It is
easily verified that the tangent space T'(F') [the closure of the linear exten-
sion of S(F)] equals L3(F). Each submodel of A(F) with score g will be

denoted with F, .. The score of the one-dimensional submodels P,,’i G, S
g € S(F), is given by A%(g), where A’ is the score operator, '

Al I2(F) - L (Pfg,): Al(8)(Y") = En(g(T)IY"),
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which is a well known result which holds in general for missing data models
[van der Vaart (1988) Gill (1989) BKRW (1993) section 6.6]. The score
operator Ay for the one-dimensional submodels P .aCH, g€ S(F), is
given by

Ap: I*(F) > L*(Pp g): Ap(8)(Y) = Ep(g(T)IY).
Let Gy ., 3 C, be a line through G, with score g;. Because of factori-
zation of pFG(y) and pp o(y) the scores Bl(g,) of PFG ., and the

scores B;(g;) of Pr.q, ,, are orthogonal to the range of Ay and AF, respec-
tively.

It is easily verified and a well known fact [see BKRW (1993), Section 6.6]
that the adjoint of Ay is given by
AL: L2 (Py ) — L(F): Ab(0)(T) = By (u(Y)IT)
and similarly that the adjoint of A% is given by
ALl L2 (Pggn) = L2(F): A (v)(T) = Ep gr(v(Y")IT).
Hence the corresponding information operator is defined by
Ih = AWTAL: [2(F) - L*(F): I} (g)(X) = EFﬁh(EF,Gh(g(X)|Yh)|X).

If H> 6> 0, then it is trivially verified that [|Az(R)lp, > V8llhllr. Now,
application of Lemma 1.3 in van der Laan (1993) tells us that this implies
that I*: L>(F) — L?*(F) has a bounded inverse, uniformly in F €. [Lemma
5.2 in van der Laan (1995) formulates this result in general for missing data
models]. The same result holds for I,: L?(F) — L*(F). This proves the
following lemma.

LEMMA 3.1. Let I, = AL Ap: L*(F) — L*(F) be the information operator
for #. We have the followzng IfH > 8> 0 F-a.e., for certain 6 > 0, then I g
has bounded inverse I;'g with norm smaller than 1/6 and is onto. The same
holds for the information operator I F.G,: : LA(F) - L*(F), for #, with inverse
L% G,» Where the bound is uniform in h.

Let b,: D[0,7] — R be defined by b,F = F(t). Define «, = I, .., — S(¢). For
each one-dimensional submodel Py, s, ., we have

S0P o) bi(Pha) - J_par

t,)
=y, —S(t), 8r
= (K;, &)F
= (II, w(x,), 8)F
= (ALL; w(k,), AL (8))pp g,
= (AL (k) AR(8) + Bé(81))p) 4,5
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where we used the orthogonality of the scores at the last step. The same holds
for ¢ and P ; without 4. This proves by definition [see, e.g., BKRW (1993)]
that for each ¢ € [0, 7], b,9, is pathwise differentiable at PF Gy for each
one-dimensional submodel Pp = at P} G, Wwith efficient influence

function (suppressing the G in the notatlon) given by

(8) I"(F,t)(-) = AR (k) (),

and similarly for ¥ at Py ; with

9) I(F,t)() = ApIp' (k) (")

Notice that these are the same efficient influence curves as we would have
found in the models where G = G, would have been known. In the sequel G,
does not vary and therefore we can skip the G in the notation; P} = Plf{Gh
and Py = Py ¢, Iy = Iy ¢ and so forth.

We recall the relevant efficiency and empirical process theory: an estimator
F,(¢) is efficient if

F,(t) — Fy(t) = (P, _PFO)f(Fo’t) +R, .,

where R, , = 0p(1/ Vn). The variable yn (P, — PFO)f(FO, t)is a sum of n ii.d.
mean zero random variables which converges by the CLT to a normal
distribution with mean zero and variance P, I(F,, ¢)?. By varying ¢ € [0, 7]
we obtain an empirical process (Vn (P, — Py Sf(FO, t): t [0, 7], which can
be considered as a random element of [*(%) = {H Z - R:sup, . ol H(g)| < o},
where & = {I(F,,t): t €[0,7]} and where [“(2) is endowed with the Borel
sigma algebra. Empirical process theory investigates if the empirical process
indexed by some class converges in distribution to a tight Gaussian process
corresponding with the covariance structure of the empirical process. Here
convergence in distribution (i.e., weak convergence) is defined in the Hoff-
man-Jgrgensen sense, making measurability questions (for finite n) irrele-
vant [see, e.g., Hoffmann-Jgrgensen (1984); van der Vaart and Wellner
(1995); Pollard (1990)]. A class for which this weak convergence holds is
called a Donsker class. If & is Donsker and sup, ¢y ,|R, | = 0p(1/ Vn), then
we say that F, is sup-norm efficient.

Our goal is to prove efficiency of S" as an estimator of G(Pp) =S, It
should be remarked that, for fixed A, application of Theorem 6.2 for a general
class of missing data models in van der Laan (1995) provides us (under the
assumptions as stated in Section 2.1, by simple verification) with efficiency of
S* among estimators based on the data Y,”, i = 1,..., n, as an estimator of
ﬁh(P}LO) = S,. However, we want more than efficiency for a fixed reduction.
For this purpose we will follow the same analysis as followed for the general
class of missing data models, except that we look carefully at what happens if
h, — 0 when the number of observations diverges to infinity.
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It works as follows: The model .#, is convex and the F — P} is linear.
Theorem 1.1 in van der Laan (1993) says now that we have the following
identity: for each ¢ € [0, 7], we have

Si(t) = Sy(t) = — [T"(S,,¢) dP},,
for all F, with F, < F, and dF,/dF, € L3(F,). So in particular this identity
holds for
Si(a) =aS,+ (1 —a)S!, ae€(0,1],
which provides us with the identity

(10) Sfj(a)(t)—So(t)=—ffh(Sfj(a),t)dP}lo, ae(0,1].

Notice now that S"(a) — S" = a(S* — S,). If a — 0, the left-hand side of
(10) converges to S"(¢) — S,(¢) and it has been verified for the general class
of missing data models [Lemma 5.12 in van der Laan (1995)] that the
right-hand side converges to — ff h(Sk, 1) dP;f In fact in our proof we show
that [(I"(S!, ¢) — I"(S,,t))? dPF — 0 which basically proves this much
weaker result [notice that S(«) converges to S” w.r.t. each norm]. It follows
that we have the following identity:

(11) Si(t) = So(t) = — [T"(Sk,¢t) dPf,.

It remains to verify the following items:
Efficient score equation. For all ¢t € [0, 7],

JI"(F},t)dP) = 0.

The score equations (5) tell us that it suffices to prove that I, o (I (t.=)) has
finite sup-norm. This is proved by Lemma 6.2 in Section 6 of this paper.

The efficient score equation and the identity (11) provide us with the
crucial identity

(12) Si(t) = So(t) = [I"(F}!,¢)d(P} — Pf).

Empirical process condition. Now, we will show, for an appropriate rate
h, — 0, that

sup | [(I"(Ep,¢t) - I"(Fy,t))d(P! - Ph)

tel0, 7]
This condition requires a lot of hard work (done in Sections 4 and 7). The
reason for this is that we are not able to prove that f(FO, t) has any nice
properties, except that it exists as an element in L3 (PF ), due to the very
complicated form of the information operator I, . . Therefore I h(Fh t) cannot
be shown to be an element of a fixed Donsker class when A, — 0. In other

words, the P-Donsker class and pp-consistency condition as used in the proof

- op;‘lo(l/\/;).
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for the general class of missing data models [van der Laan (1995)] do not help
us here. More sophisticated conditions are needed. The technique will be to
determine how quickly I”(F", ¢) loses its Donsker class properties, for 4, — 0,
and then to use (12) in order to obtain a rate for [|S” — S,|l.. so that terms can
be shown to converge to zero if 4, — 0 slowly enough.

The empirical process condition provides us with [see, e.g., Pollard (1990)]

Si(t) = So(t) = [T"(Fy,t)d(P} = Pf) + op (1/4n),

where the remainder holds uniformly in ¢.
Approximation condition. Finally, we need to show

JI'(Fy, t)dVn (P} = P ) =p N(0, o *(L(Fy,1))).

Notice that the left-hand side is a_sum of ii.d. random variables given by
1/VnXr_ XM(t), where X]t)=I"(F,,tXY;"). By Bickel and Freedman
(1981) we have that if, for h = h, > 0, X/(t) =, X,(¢) and Var(X(¢)) —
Var(X,(¢)), then this sum converges weakly to a normal distribution with
mean zero and variance equal to Var(X;(¢)). These two conditions are proved
by Lemma 4.7.

We also show the approximation condition for the case that we consider
the left- and right-hand side as a random element of a L2-space of functions
in ¢, which provides us with pointwise and L?-efficiency.

4. Proof of efficiency of SOR-MLE. Recall the assumptions made in
Section 2.1: In particular Fy(r) = 1 and hence Plffo(y d) lives on [0, 7]. In all
statements the width (of grid) - converges to zero for n — «. The problem is
to find a lower bound for the rate at which A should converge to zero.

4.1. Uniform consistency of F" for h, » 0. The starting point of the
analysis is (12). The indicators are a uniform Donsker class. This tells us that
sup, P} — Pl L. = Op(1/ Vn).

A real-valued function on [0, 7] € R? is said to be of bounded uniform
sectional variation if the variations of all sections [s — f(s, ¢) is a section of
the bivariate function f] and of the function itself is uniformly (in all
sections) bounded. The corresponding norm is denoted with |- [|5. In van der
Laan [(1996), Example 1.2)] it is proved that the class of functions with
uniform sectional variation smaller than M < o is a uniform Donsker class
(it is well known that the real-valued functions with variation smaller than
M < o form a uniform Donsker class, so this is a generalization of this
one-dimensional result). Another fact is that if f> &§ > 0, then |[1/fI} <
M||fI%, for some M < o, which does not depend on f [Gill (1994)]. We have
the following lemma:

LEMMA 4.1 (Uniform sectional variation of efficient influence curve). Let
Ep (1,0) = (uy, uy, 1] X [v;,%) be the vertical strips of w" and let E}! (0,1)
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be the horizontal strips. Suppose that the grid =" is so that FO(E,?;L,) > 6h,,
for certain § > 0. Let ri(h,) = 1/h%/% )

For all d €{0,1}? we have that, for some M < =, I"(F! t)-,d) € D[0, 7]
and

sup |I*(E",t)(-,d)I} < Mri(h) with probability tending to 1.
tel0, 7]

For the proof, see Section 6.

Consider an integral (F, dH,, where F, € D[0,7] and H, € D[0, 7] are
bivariate real-valued cadlag functions which are of bounded uniform sectional
variation. By integration by parts [see Gill (1992) or Lemma 1.3 in van der
Laan (1996)] we can bound it by C||H,ll..||F,ll;. Because I"(F", ¢)(-, d) gener-
ates a signed measure [see Lemma 1.2 in van der Laan (1996)], we can apply
this to (12) with F, = I"(F;,t)(,d) and H, = (P} — P; )-,d) and apply
Lemma 4.1 to F;. This proves the following lemma:

LEMMA 4.2 (Uniform consistency). Under the assumption of Lemma 4.1 we

have
rl(hn) 1
|F — Fyll. = Op| ———| = Op| —|.
- - 0y ( ps
So if h = 0 slower than n=1/3, then F! is uniformly consistent (also for h is

fixed).

_ 4.2, Empirical process condition. Define Z" = Vn (P - Plffo) and f' =
I"(F!" t) — I"(F,, t). We will show that [f" dZ" converges to zero uniformly
in ¢ with probability tending to 1. By using that ||F* — F,|.. = Op(r(h,)/ Vn)
(Lemma 4.2) we are able to show the following lemma:

LEMMA 4.3 (Sup-norm convergence of efficient influence curve). Under the
assumption of Lemma 4.1 we have, for all d € {1,0)?, with ry(h,) = 1/h3,

£ )l = Op(ri( ) ro(hy) /) = Op(1/y/nh3 ).

For the proof, see the Appendix.

Analysis of the uncensored term. Let us first analyze [f" I(d = (1,1)) dZ".
Recall that Z'"I(d = (1,1)) = Z,1(d = (1,1)) = Vn (P}, — P,,), where p,, =
foH,. We will assume that F, = F¢ + F¢, where F{ is absolutely continuous
w.r.t. the Lebesgue measure with continuous density which is bounded away
from zero and F¢ is purely discrete with finite support. Then we can
decompose P,; = P, + P{;, where p{, = f¢H, is purely discrete on the finite
number of support points of F¢, and Pf{, is absolutely continuous w.r.t.
Lebesgue measure with density bounded away from zero.

For Pl we have a corresponding decomposition P}, = P¢ + P}, where
P? only counts the number of observations coming from P{ . First consider
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the integral w.rt. Vo (P;? — P%). Let p% be the density of P{, w.r.t. the
counting measure, say u,, which lives on the support of P{. We have that
[Ipid — p4ldu, = Op(1/ Vn). Therefore, with Z, ; = Vn (PJ¢ — P{,) we have

[FLI(d = (1,1)) dZ,q =V [FL1(d = (1, D)(pif — pih) duy

< VallfhI(d = (L) [ pi = p%h)l dpy

1 0(1
\/nhn P\/;)

1
V nh® ’

Where the bound does not depend on ¢. Consequently, if nh® — «, then
IflId=Q,DdZ,; = op(1).

Cons1der now (£ I(d = (1,1)) dZ¢, where Z¢I(d = 1,1) = Vn (PI¢ — P{)).
For convenience, we denote Z; with Z, , again. We construct a lattice grid
% = (¢, t; ), with max1mal mesh a, < h ,on [0,7] = [0, 7,] X [0, 5], which
we force to be such that 7 c 7¢ Now

[O’T] = UAi,j(an)’ where AL j(an) = ((tz’ H—l] (J’ j+1]) N [O’T]

—‘/—Op

=OP

and the union is over all partition elements A, (a,), i =1,...,nya,), j =
1,...,ny(a,). The number of partition elements will be denoted by n(a,) and
it is clear that n(a,) = O(1/a?). Now we define an approximation of Z, as
follows:

Zi(t) =Z,(t;,t;) ifte€A, (a,).

So Z;» is constant on each A; /(a,) with value Z (¢, t)).
By using integration by parts it is clear that we have, for d = (1, 1) (the
integral is over y € [0, 7], fixed d),

[fi(y.d) dZ,(y, d)

= [fi(y,d)d(Z, - Z2)(y,d) + [fl(y,d) dZ2(y,d)

<ClIfLC, DIENZ, = Ze) (-, d) ke + 1FEC, AN ZE(-, )T
< Op(ri(h)I(Z, = Z3) (-5 )

+ op(%)llzgn(-,d)nf.

In order to show that [f'(y,d)dZ (y,d) =o0p(1), for a rate h, — 0, it
suffices to show that there exists a rate a, for which the last two terms
converge to zero in probability.
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For convenience we will neglect the d in our notation. Define

ulil,lj(an) = sup |Zn(s) - Zn(t)|
s,t€A; La,)
and
t,J

It other words, W, (a,) is a modulus of continuity of a bivariate empirical
process. First, we will bound the two terms in W"(a,,).
We have Z7 — Z,|l. < max; ; W"(a,). Therefore,

(13) P(IZ% — Z,ll. > &) < P(W,(a,) > &).

Furthermore we have

c
(14) 1Z30 < EW(a,) < —W(a,).
l,] n

Analysis of the modulus of continuity. For a rectangular R we define
Z,(R) as the measure of R assigned by the bivariate signed measure Z,.
Define W, p(a,) = supg. g/, |Z,(R). Einmahl’s (1987) inequality 6.4, for
W, r(a,), holds for an empirical process from a sample of a continuous
density which is bounded away from zero and infinity on [0, 7] and is given by

o} —c A2 A
(15) P(W, p(a,) > A) < —exp v for any A > 0,
: a a na,

n n

where ¥(x) > 1/(1 + 1/3x). Notice that W, (a,) is a bound on the measure
assigned by Z, to strips instead of rectangles. However, the strips are a union
of at most c/a, rectangles A; .(a,) and on each rectangle, A, ;(a,) of these
strips, p§; is bounded away from zero and infinity and is continuous (here we
use the nesting of 77"» in %), and hence for the modulus of continuity on the
sets A, ;(a,) the discontinuities on 7, play no role. Consequently, (15) can be
applied to each rectangle A; ;(a,) in the strips. So the bound (15) implies the
following bound for W, (a,):

P(W,(a,) > A)

IA

ZP(W, x(a,) > A)

n

C
) exp

—c, A2 A

na

IA

n

)) for any A > 0,

where ¥(x) > 1/(1 + 1/3x) and where the C is now different from the
preceding one.
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By using this inequality with A = a%57¢ it is trivial to see that if na, — «
at an arbitrarily small polynomial rate (n¢), then for each £ > 0 there exists
a sequence 6, — 0 and an &' > 0 so that

—_— > < —e -——.
(16) PLERE n a? Xp a

So W (a,)/a’® "¢ converges to zero in probability exponentially fast.
Assume na, — © at a polynomial rate. Applying (16) to (13) provides us

with
P ||Z3” - Zn“so C C 1
PR £ p exp - =0(1).
So [1Z% — Z |l. = 0p(a®®~#). This proves that r(h)IZ, — Z*):, .. =
op(ry(h,)al?~*), for any & > 0.
Furthermore, applying (16) to (14) provides us with
1Z&N5 = O(1/a2)op(ad® ) = op(a, *5+9).

Consequently, this tells us that for each & > 0 we have: If na, — « (at least
at a polynomial rate), then

ri(h,)ry(h,) )
\/;a]r.t.5+€ .

For the first term it suffices that a, converges to zero more quickly than A3.
Substituting this in the second term tells us that it suffices to let z, converge
to zero slower than n~!/18, This proves the following lemma:

(A7) [Fi(3,1,1) dZ,(y) = 0p(ri(R,)al* ") + o

LEMMA 4.4. Suppose that Fy = Fd + F¢, where F¢ is absolutely continu-
ous w.r.t. Lebesgue measure with continuous density which is bounded away
from zero on [0, 7] and F{ is purely discrete with finite support on [0, 7]. If h,,
converges to zero slower than n= /'8, then [f!,I(D = (1,1)) dZ" = 0,(1).

Analysis of the censored terms. We will now analyze the terms [£! I(D ;&
(1,1)) dZ}. Recall that Pz I(D # (1, 1)) is purely discrete on the grld ah
which contains O(1,/h2) pomts Let pF0 and pn be the densities of PF and
P! wrt. v,, respectively. So p’ 3" (v, v) = (vl,vj,O 0) is the fraction of
doubly censored observations which falls on (vl, v;) and s1m11arly for D = (1,0)
and D = (0, 1). It is clear that, for fixed A, we have || p/ — ||x, 0,(1/ \/—)
In the following result for 2, — 0 we do not make any assumptlons Under
weak assumptions, the rate would be O,(1/ y/ h%n), but this improvement is
not interesting because of the slow rate in Lemma 4.4.

LEMMA 4.5. We have that

hn
l por p01||L1(Vh) Op

i)

and we have the same rate result for p' and phy
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Proor. We give the proof for the first term; the others are dealt with
similarly. Because we are just dealing with a multinomial distribution on the
grid 7", we have that E(pm(uk,vl)) pt(u,,v,) and Var(pi(u,,v,) =
(l/n)pm(uk, v)1 — pl(u,,v,). 7" has O(h?) grid points (u,, v,) by defini-
tion of 7". Now, we have

(Z| Po1 P01 (uk,vl)|) -

7

E(|(pg1n —poi)(uy,v;) |)

Bl
~

- 3l

IA

\/pgl(uk > Uz)(l - p(ﬁ(”k > Uz))

IA

1
h?
Again, we will neglect the d in our notation, but the reader should

remember that we only integrate over the singly censored and doubly cen-
sored observations. Now we have

[ dzk = [fl(pk - pf,) dv,

< Vullfl el plt = p Ly,

1 1
=vynO 0
d h®n g nht
1
~ O\ hEn

This proves the following lemma:

LEMMA 4.6. If h, converges to zero slower than n~'/'3 then

JFEI(D = d)dZ} = 0p(1) ford < {(1,0),(0,1),(0,0)}.

Lemmas 4.4 and 4.6 prove the empirical process condition for a rate of A,
slower than n~'/'®. Recall that all the derived lower bounds are derived
without any knowledge about I(F,,t), except that it has a finite variance,
and therefore they only have a theoretical value. O

4.3. Approximation condition.

4.3.1. Pointwise convergence. Let t €[0,7] be fixed. Define V'(¢) =
JT"(F,, t)y) th(y) VI (¢) is a sum of ii.d. mean zero random variables
given by (1/\/IL Xh(t) where X}(t) = I"(F,,tXY;*). By Bickel and
Freedman (1981) we have that if, for h=h, > 0, X"(¢) =, X,(t) and
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Var(X}(t)) - Var(X;(¢)), then this sum converges weakly to a normal distri-
bution with mean zero and variance equal to Var(X,(¢)). We will prove these
two conditions:

_ LEmMmA 4.7.  Define the following real-valued random variables X h(t) =
I"Fy, tXY"), Y ~ P}flo, and X(¢) = I[(F,,¢tXY), Y ~ Py . We have for each
t €[0, 7] that for h, — 0,

E((X"(t) - X(t))’) > 0
and
E(X"(t)X"(s)) » E(X(¢t)X(s)) uniformlyins,t < [0,7].

For the proof, see Section 6. Lemma 4.7 has the following corollary:

COROLLARY 4.1. The empirical process [I"(F,, t)(y)dZ!(y) converges in

distribution to a normal distribution with mean zero and variance equal to
Varp (I°(F, t)).
0

4.3.2. Hilbert space convergence. For showing that V" converges weakly
as a process in (D[0, 71, || - |l.) we need to show at least that {I(F, t): ¢ € [0, 7]}
is a Pp-Donsker class. We have not been able to do this. Therefore we
concentrate on proving weak convergence as a process in a Hilbert space. We
use the following result, which can be found in Parthasarathy [(1967), page
153].

LEMMA 4.8. Let Z,, Z, be random processes in a Hilbert space # endowed
with the Borel sigma algebra %. Let ey, e,,... be an orthonormal basis of #.

If {e;, Z,) =p e;, Zy), for all j, and limy _,, sup, E(Z;?:NH(ej,Zn)z) =0,
then Z, =, Z, in 7.

Let V() = (1/Vn)L!_, X,(¢). First, we will prove the first condition of
Lemma 4.8 with Z, = V! and Z, = V,,, the optimal Gaussian process. We
have

(ej,Vnh> = <ej,Vnh -V +<e,V,).

J>n

First, we will show that (e;, V) — V,) = 0,(1). The fact that V, and V, are
sums of iid. random variables X! and X,, respectively, and the
Cauchy—-Schwarz inequality tell us that

Var((e;, V' = V,)) = Var({e;, X" — X))
< E((e;, X" - X))
< (ej,ej>E(Xh -X, X" -X).
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Assume now that .# = L%()) for a certain finite measure \. By Lemma 4.7 we
have Var(X":(t)) converges to Var(X(¢)) and E(X"(t) — X(¢))?) — 0, both
uniformly in ¢. Therefore,

E(X" - X, X" -X) < sup |E((X" - X)(s5)%)| [dA(s) >0,

s€[0, 7]

which proves the convergence of {e;, V! — V) to zero in probability. Further-
more, we have

eV = 7 £ [e(9)X,(5) a),

which is just a sum of i.i.d. mean zero random variables. By the CLT, to show

that this converges in distribution to (e s V,>, it suffices to have that

Var(fe(s)X,(s) d\(s)) < ». This follows immediately from the fact that

IE(X?(s))ll. < o. This proves the weak convergence of {e;, V') to {e;, V;).
We will now verify the tightness condition. We have

E( Y <ei,v,f>2)

i=N+1

> (e, V)

5
- §E( [ [ed()e )V (s)V(e) dACs) dA(e)
X[ fa@e(OETEVO) ds) dxe)
X[ el (BVV(0) + o(1) dA(s) de)
- 0(1)(i=§,+1(<ei,1>)2 + i=§‘+1<e”v°>2'

In the first, second and third equality we used Fubini’s theorem, then we use
the uniform convergence of E(V"(s)V"(¢)) to E(V,(s)V,(¢)) (by Lemma 4.7)
and finally we again apply Fubini’s theorem but now in the reversed order.
The last bound does not depend on n anymore. Because ||V, ||> = 7_ (V,, e;)’
and similarly for the function 1, it follows that if we take the limit for N — oo,
then both (tail) series convergence to zero.

Application of Lemma 4.8 provides us now with the following lemma.

LEMMA 4.9. Suppose the same assumption as in Lemma 4.7. If A is a finite
measure and h, — 0, then V! =, V, as random elements in L*()).

5. Results. We will summarize the necessary notation for the theorem.
Recall the reduced iid. data Y/ ~ Pg  , obtained by generating n ii.d.

12
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C, ~ G, and the 7"-interval censoring of the singly censored observations.
We defined E; ,(1,0) and Ef (0, 1) as the vertical and horizontal strips of 7"
starting at (u,,v,). We defined Z" = Vn (P — Pp’fm c,) as the empirical pro-
cess corresponding to the reduced data, I"(F,,t) as the efficient influence
function for estimating F,(¢) using the reduced data and I(F,,¢) as the
efficient influence function for estimating F(¢) using the original data.

We have proved all ingredients of the general efficiency proof of Section 3
in Section 4. Recalling Lemma 4.2 (uniform consistency) and that for fixed £,
we have that efficiency (among all estimators based on the reduced data)
under the assumptions as stated in Section 2.1 provides us with the following
theorem:

THEOREM 5.1. Let [0,7] C R, be a rectangle so that H(t) > 0, Sy(t —)
> 0 and Fy(7) = 1 (data reduced to [0, 7]).

Fixed grid efficiency. Suppose that we do not change the grid w", for
n — », and that for each grid point (u,,v,), F(E! (1,0) >0 and
F, 0h(E #0,1)) > 0. Then S} is a sup-norm-efficient estimator of S, for the data
Yii=1,2,...,

n (Fl = Fo)(t) = [T"(Fy,t) dZ}! + RI(¢),

where | R"||.. = 0p(1) and ffh(FO, t) dZ" converges weakly in (D[0, 71, %, |l - |I..)
to a Gaussian process N, with mean zero finite-dimensional distributions and
covariance structure given by

E(N,(s)N,(2)) = Epﬁo(fh(Fo’ s)fh(FO,t)).

Uniform consistency. Suppose that the grid w" is such that Fy(E}+(1,0)) >
8h, and Fy(E}+(0,1)) > 8h,, for some &> 0. Then, for any rate h, — 0,

1S} = Soll. = Op(1/y/nh3 ).

Efficiency. Suppose Fy, = F{ + F¢, where F¢ is purely discrete with finite
support and F§ is absolutely continuous w.r.t. Lebesgue measure with contin-
uous density uniformly bounded away from zero on [0, 7].

We have that, for h, — 0,

Epy (I'(Fy, ) (YT (Fy, t) (Y1) = Ep, (E(Fy $)(Y)I(Fy, £)(Y))

uniformly in s, t € [0, 7].

If h,, converges to zero, but slower than n=1/18 then we have that IIRZIIw =
op(1) and, for each t € [0, 7], V'(¢) = [I"(F,,t) dZ" converges in distribution
to the normal distribution Ny(t) with mean zero and variance

Var(Ny(t)) = Var(f(FO, t)).

Moreover, for any finite measure A, V" converges weakly as a process in L>(\)
to N,.
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This implies that F"(t) is an efficient estimator of F,(t), pointwise and as
an element in L*(A).

We see that if nh® — o, then F"» converges uniformly to F,. Therefore, we
think that n~!/3 can also be used as a lower bound for asymptotic efficiency,
though we did not prove this.

6. Technical lemmas. In formulas the score operator A evaluated at
observation Y” = (T, D)" is given by [recall that T for D # (1 1) lives on the
grid 7]

Al ()(T,D)"
=g(T)I(D = (1,1))
Fy(ds,,ds,)
" (uk,uk+1]'/;vl,w)g(81,82)FO((uk’uk+1]’[vl’w))

Fy(ds,,ds,)

I(D = (1,0))

o O F T ey P O
Fy(ds,, ds,) ~
R (e NI

Recall that (uy, vl) is a function of 7' and therefore it is natural to consider v !
as a function in Ty: v(T,) = v,, if T, € (v,,v,, ], and similarly for u,. In this
way all four terms can be consndered as functions on [0, 7], where the last
three are step functions on 7"

In formulas, I} is given by
Iﬁo,ah(g)(T) =g(T)H,(T)

AT
Wy, upqq17(

XGy((uy,*),{v})

o(dsy, ds,
[ s

up,®) Wy, v01] FO([ukaoc])a(Ul’UHl])
XGh({uk} ’ (vl’oo))

Fy(ds,, ds,) )
g(Sl, 52) Fo((up,upiq],[vr,))

Uy, *®

+le
0

Fy(ds,,ds,)
© T](fmk o 85 o([uK,oo),m,oc)))
XGy({ug), {vi})-

We will write down the singly censored term (second term above) of I Fo, Go'

L*(F,) —» L*(F,):

T 01(T1’d32)
j‘-) ([(vzﬁ)h( 1252) Fo (T, [ vy, )))HO(Tl’dUZ)-
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6.1. Proof of Lemma 4.1.

LEMMA 6.1. Let E} (1,0) = (uy, uy, 1] X [v;, ) be the vertical strips of m"
and let Ek ,(0,1) be the horizontal strips. Suppose that Hy(t) > 0 and
F (Ek ) > 8h , for certain & > 0. Then there exists an &> 0 so that for any
sequence h,, whzch converges to zero slower than 1/ Vn , we have

r}elilnFnh"(Ek 4(1,0)) = eh, with probability tending to 1.
Similarly, for E}'+(0,1).

ProOF. We use the notation E;, for both strips. First, by the EM
equations [see (7)], we have

(18) Fnh(Elsz,l) ZPlnl(Elg,l)a

where P} is the empirical distribution of the uncensored observations of
Y/ ~ Pg ;.. We have

(19) Py (Egn) = Hy(7)Fo(E}7) > 8,h, for some 5, > 0.
Furthermore {Iz» : h € (0,1], &, 1}, the collection of indicators of E} | over all

(u,,v) € =t and for all & € (0,1], is a uniform Donsker class. Consequently,
we have for any & > 0 and rate r(n) slower than Vn that

e
20 P Py —P)(E!")l > —| = 0.
(20) (Skugﬂ( 11 11)( k,l)l r(n)) -
Assume that there exists an ¢ < §; so that
(21) hmsupP(I}ennPn(Ek n) < shn) >8>0 forsome §> 0.

n—ow

We will prove that this leads to a contradiction if A, converges to zero
slower than 1/ Vn. The contradiction proves that, for each & < 8, and &,
slower than Vn ,

lim P(mmPu(Ek W)= eh, ) =1

n—w

which combined with (18) proves the lemma. So it remains to prove the
contradiction. We have by (19) and (21), respectively,

lim supP(supI(P — Py (Epn)l > 8.k, — shn)

n—ow

> P(%}?PH(EM) <eh,)>8>0.

However, we also have (20). These two contradict if &, converges to zero
slower than 1/Vn. O

To obtain a bound for the uniform sectional variation norm of the efficient
influence function, consider the equation I2(g)(x) = f(x), for certain fe&
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L*(F). We can write I}(g) = H,g + K!(g), where K!(g) is the sum of the
three terms corresponding to the censored observations. Then this equation is
equivalent to the following equation:

1
(22) 8(2) = 7y V() — Kb(@) ().

For the moment denote the right-hand side by Cp(g, f)x); that is, we
consider the equation g(x) = C(g, f)(x).

We know by Lemma 3.1 that, for each f, there exists a g’ € L*(F), Wthh
is unique in L?(F), with IIIh(g ) — fllr =0, that is, llg' — Ci(g’, Pllr =
Notice that if ||g, — gllr = 0, then for each x, Cj(g, — g, f)(x) = 0. So even
if g’ is only uniquely determined in LZ(F), then Cp(g’, f)x) is uniquely
determined for each x. Now, we can define g(x)= Ci(g’, f)Xx). Then
lg —g'llr =1IC(g’, f) — g'llr =0, so in this way we have found a solution g
of (22) which holds for each x instead of only in the L?(F) sense.

To summarize, we have g, = I, .(f) is given by g,(x) = C(gj, f)x),
where gh = I, %(f) in the L*(F) sense. Moreover, by the bounded invertibil-
ity of I} w.r.t. ‘the L2(F)- -norm, we have that IIghIIF < C|lfllr, where C < 1/6
does not depend on the width A.

Assume that |||l < 1. Now we can conclude that ||g,|l. < M|IKz(g;)l-
and |lg,lI5 < MIIK2(g,)II}, for certain M < o

Therefore it remains to bound the sup-norm and uniform sectional varia-
tion norm of K2(g) and find out how this bound depends on the width 4. It
suffices to do this for one of the singly censored terms of K}(g,). We take the

= (1, 0) term which is given by

Wy = [P [ s g

G,(u,,{v,}).
Ups Upy1]7 (0, ) F((uk’uk+1]»[vl’oo)) h( * : )

For convenience, we will often denote E, ,(1,0) by E, ,.

Supnorm. Recall that ||f|l.. < 1. By the Cauchy- Schwarz inequality and
lgullr < Clifllr, we have

f j’ g (S s ) F(dsl’dSZ)
(up, up 117 (v, ») B2 F((Uk7uk+1]a[vl’o°))
F(d81>d82)

= fIEk,l(SpSa)gh(SpSz)m
k,l

1
< ———llgllr
VF(E, ;)

C

= JF(E, )
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By Lemma 6.1 we can assume that F,*(E, ;) > eh,, for certain & > 0. This
proves, by replacing F (above) by F’:

LEMMA 6.2. There exists a C < « so that
C
sup ||I;:,1F;;( e £ —— with probability tending to 1.
Ifll=1 Vi
Uniform sectional variation norm over [0,7]. Notice that W is purely
discrete with jumps at the grid points (u,, v;). Therefore the uniform sec-

tional variation norm of W equals the sum of the absolute values of all jumps.
We have

W(Ty, {v)) = [

Up, U 1] (uy,

F(ds;,dsy)

(Uk’uk+1]’[vl’oo))

)gh(31’32)F( Gh(uk’{vl})‘

So
F(ds;,dssy)
AW(u,,v,) =AH,(u,,v $1,8y)) ————
(ug,v;) n(Up l)fEk,lgh( 15 82) F(Ek,l)

4 _.[Eky,gh(sl’ sg) F(dsy, ds,)
F(E, ;)
XHh(uk’ {Ul})

+ (fEkHYlgh(Sp s9)F(dsy,ds;) — fEkylgh(sl’ SZ)F(dspdSz))
F(E, )

(F(Eys1,1) — F(Ey )

X H(uy,{v.})-

Now doing nothing more sophisticated than (we use Lemma 6.2 in the first
inequality and Lemma 6.1 in the second)

fEk,Lgh dF
F(E )

we obtain the following bound:

(23) <ligyll- < M/y/h, and F(E,,) > ¢h,,

M
AW (uy,v,)| < [AH,(uy, v,)l—=
Vha,
+ 7,372 (FH(Ey,) + Fl(Ey.q ) Hy(uy, Avy)l.
Consequently, we have, for the variation of W with F replaced by F,

1 C
LIAW (uy,v))l < W Y IAH, (uy,v))] + B3/2 Y FNE, ) Hy(uy, Av))l
k,l n okl 7kl

1 C 1



622 M. J. VAN DER LAAN

where the bounds hold with probability tending to 1. So we have proved the
following lemma:

LEMMA 6.3. There exists a C < « so that

C
(24) sup ||Ih_’1Fi1( Oy < 7372 with probability tending to 1.
FlE=1 n

Let g =1, }f( f). The uniform sectional variation of the uncensored term of
Api(g) is bounded by a constant times the uniform sectional variation of g
and the uniform sectional variation of the censored terms can be bounded as
above using (23) by C/h3/2. Therefore the uniform sectional variation of the
efficient influence curve is also bounded by the rate given in (24). This
completes the proof of Lemma 4.1 (the cadlag property follows also trivially).

O

6.2. Proof of Lemma 4.3. We will suppress the d in our notation. We have
IfA L. = 12 (ED, ) — T(Fy, )l
<I(8% — So)(8)] + LT (k) — ABL (o)l
We know that IIFnh — Fyll. = 0p(1 /(\/ %)). The rate will be determined by

the second term. Let g, =1 1.0(k,). We rewrite the second term as a sum of
two differences:

Ailz[i:,ln( Kt) _Agji:,lo("t)
(25) = (A}, —AD) L o(x,) + ALLL (L) = 1) I (k)
= (A}, — AQ)(&5,) + AL (LY — 1)(86,)-

We will consider the first term. It suffices to do the analysis for one of the
singly censored terms. We consider the d = (1,0) term. We have, by tele-
scoping,

(AZ _A}(;)(g(})lt)(ukavl’d)
fE(k,l)ggt anh _ fE(k,l)ggt dF,

Fnh(Ek,l) FO(Ek,l)
_ fE(k,l)g(’;td(Fnh - Fo) (Fnh - FO)(Ek,l)fE(k,l)ggt anh
Fo(Ek,z) Fnh(Ek,l)FO(Ek,l)

In the first term, we can apply integration by parts. So the first term is
bounded by

lgaIls

CIF} — Foll.——7—.
CUF(E,,)
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By Lemma 6.3 we have |gl,ll; = O(1//h3) and we have F (E, ) > 8h.
Therefore the first term is bounded by

0, ;_)op(L o(i) -0, 1 ,
\/nhi \/E h, \/nhi
The second term is bounded by
CIEY — Fyllllgly e = 0p| ——— .
! Fy(E,,) \/nhg

This proves that

(A, —AG)(86:)lk- = Op

1
\/ nhd |

Consider now the second term of (25). Because A’ only depends on G, we
have, for the term (I — I')(gk)

(11~ 1) (h) = ALT(A% — D) (b
Because A7 is just a conditional expectation, we have that || A27(g)ll.. < llg|l-.
0 0

Therefore, we also have that (1" — I')(gh)Il.. = O(1/ \/nhi ). Now, we apply
Lemma 6.2 which tells us that ||, },(g)ll. < 1/ /h,)lgll. This tells us that

1
IALL (L = I5) (g6 = Of = |-
\/nhn
This completes the proof of Lemma 4.3. O

6.3. Proof of Lemma 4.7. Lemma 4.7 will be proved as a corollary of the
next lemma.

LEMMA 6.4. Let C c L*(F,) be any compact set in L*(F,). Then we have
(26) supll(Iy — Ip)(&)llr, — O
geC

and

sup E(Al(g) — Ay(2))" >0 forh=h, - 0.
geC

ProOF. By the compactness of C and the continuity of I}: L*(F,) —
L*(F,), the supremum in (26) is attained by some g, € C. Let g, be a
sequence so that ||g, — g,llr, > 0 and |lg,ll. <, for £ =1,2,... . We have

||(I(§L - Io)(go)“Fo = ”(Iél - Io)(go —gi)llr, + ”(Igl - IO)(gk)”Fo;
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(I} — I,X(g, — gllr, < 2llgy — &1llr,, which converges to zero for & — .
Therefore it suffices now to show that (I} — I))(g,)ll, = 0, for each fixed k.
Now, we have

(Iél —1,)(&) =A3T(Ag —Ay)(gy) + (AgT _Ag)(AO(gk))'

The differences in the first term are comparable because all can be considered
as functions of (C,T') and thereby are defined on the same probability space.
First, we will consider the second term. It suffices to deal with one of the
singly censored terms. Let d = (1,0) and f, = A,(g,)I(D = d). We have

(AgT _Ag)(fk)(TpTz) = fOTsz(Tl,v)(Gh - Go)((Tpoo)adU)'

Let T = (T}, T,) be fixed and let T, be a point where H,(T,, AT,) = 0. By
definition of weak convergence of H,(T,, dv) to H(T;, dv) we have now that
if v - f,(T;,v) is bounded and continuous H,(T,, ) a.e., then (AT —
ADYf(T,,T,) — 0, for this T. The boundedness follows from [ £, |l. < llg,ll.. <
. We have that v — f,(T}, v) is given by

[ 81 (Ty,kvy) Foy (T, dvy)
F01(T1,(va°°))

This function is continuous at v if v — F,(T}, v) is continuous at v. Conse-
quently, we need that F,,(T,, dv) puts no mass at a point where H (T, dv)
puts mass. By our convention that if T'= C, then the observation is un-
censored, this is satisfied. This proves the pointwise convergence of f, =
(ALT — AT)(f,) to zero F-a.e. We need to show that [f? dF, — 0. However, we
also have | f,ll- < 2llg,ll. and therefore the dominated convergence theorem
provides us with [f}? dF, — 0.

Let us now consider the first term AﬁT(Aﬁ — A,Xg,). Because A% is a
conditional expectation, its second moment is bounded by the second moment
of (A§ — Ay)(g}). Therefore it suffices to show that Ex o((Af — A,)g,)?) — 0
for h — 0, where we consider A% and A, as functions in (7',C) via Y" and Y,

respectively. B
Recall how we constructed the data (T, D)": c 1) We have a nested
sequence of partitions 7" and we observed ii.d. C,,...,C, ~ G. (2) Now we

discretize C; such that C! ~ G,, where G, lives on 7", ThlS provides us with
data (T, D), ~ Py g, (3) Finally, we discretize (T, D), in order to obtain
= (T,D)" ~ PF .G,- Denote the sigma field generated by Y" with «*.
Because 7" is nested and the sigma field generated by 7" converges to the
Borel sigma field on [0, 7], we have that .&" 1 .&~, for h — 0, where . is the
sigma field generated by Y = (T, D)), Y ~ Pr, 6,
Consequently M, = Ex C(gk(T)IMh ) is a martmgale in n and it is well
known that if sup, E(M?) < =, then E(M, — M,)?) — 0. We have

sup E(E(gy(T)lo")’) < ligyll. < =
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and consequently we have [[((A? — A))(g,)ll FoxG, — 0. This also proves the
second statement in Lemma 6.4. O

COROLLARY 6.1. We make the same assumptions as in Lemma 6.4. For
each set C ¢ L*(F,) which is compact w.r.t. || - ll7,, we have, for h — 0,

(27) supll(Zy* — I, 5)(8)llr, = 0.
geC
This implies
sup [CALI;0(8), AbL b(81)ps — CAoLy H(8)s Aoly '(81))p, | = O
g,8.€C
Moreover, we have

B _ 2
sup E( LT b(g) ~ AyL; (&))" - 0.
gecC

Proor. We have
(L — 10" )(g) =L o(L I — I} " )(8)

= L, y(Iy = 1)) I; ' (8)-
First, notice that by the bounded L*-invertibility of I, (Lemma 3.1), I;'(C) is
compact in L?*(F,). Now, by the preceding lemma we have that
sup (I — I,)I5 ' (g)llF, — 0.
geC

Finally, we know by Lemma 3.1 that sup,||] ;f,%)” 7, < . This proves the first
statement. For the second statement notice that

(AGL; 5(8), ACTL, o(81))es, = (I3 5(8), 80w,

= I o(8) — 1, '(8), 80r, + {Is'(8), &1)r,-
The first term converges to zero by the Cauchy—Schwarz inequality and (27).
The second term equals (AyI; '(g), AgI; '(g,))p,.
It remains to prove the last statement. By the compactness of C and

continuity of AjI;' and A}, | it suffices to show the statement for a fixed
g € LA(F,). We have

AghI, () — Aoy (8) = (AL —Ag) Iy (8) + Al(Lio — I ')(8)-

The first term converges to zero by the second statement of Lemma 6.4.
For the second term we have

IAR(L S — Is 1) (&)lpe < (I — I ) (8)llm, = O by (27). o

Notice that C = {1(0,¢]: t € [0, 7]} C LZ(FO) is a compact set. Application of
the corollary to this set C provides us with Lemma 4.7. O
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