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NOTE ON CONVERGENCE RATES OF SEMIPARAMETRIC
ESTIMATORS OF DEPENDENCE INDEX

BY PETER HALL, HIRA L. KOUL AND BERWIN A. TURLACH

Australian National University

Considerable recent attention has been devoted to semiparametric
estimation of the dependence index, or the Hurst constant, using methods
based on information in either frequency or time domains. Convergence
rates of estimators in the frequency domain have been derived, and in the
present paper we obtain them for estimators in the time domain. It is
shown that the latter can have superior performance for moderate-range
time series, but are inferior in the context of long-range dependence.

� 41. Introduction. A discrete-time stationary stochastic process X isi
Ž .said to have dependence index u ) 0 if its autocovariance at lag i, g i s

Ž .cov X , X , is regularly varying at infinity with exponent u :j iqj

1.1 g i s iyu L i where L is slowly varying at infinity.Ž . Ž . Ž .

wWhen u - 1, this parameter is often called the self-similarity index. For the
theory of regular and slow variation, see, e.g., Bingham, Goldie and Teugels
Ž .1987 . It is not assumed that L is positive; the case where L is eventually

xnegative is permitted by our methods and theory. Alternative definitions of u
are available via Abelian]Tauberian theorems, which ask that the spectral

Ž .density f be regularly varying at the origin with exponent u y 1: f t s
uy1 Ž .t M t where M is slowly varying at the origin. The case where u F 1,

commonly termed long-range dependence, is of particular interest, not least
because there the rate of convergence of the sample mean depends critically

Ž .on u . A review article by Beran 1992 contains many examples of long-range
dependent processes, indicating their practical importance.

In order to circumvent parametric assumptions about L, considerable
recent interest has focussed on semiparametric estimation of u . Major contri-

Ž .butions in this direction have been made by Cheng and Robinson 1994 ,
Ž . Ž .Delgado and Robinson 1994 and Robinson 1994a, b, c . Approaches based

w Ž .xon the averaged periodogram Robinson 1994a and the approximate distri-
w Ž .xbution of the periodogram Robinson 1995a, b have been explored relatively

thoroughly, with consistency and upper bounds to convergence rates derived.
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wOn the other hand, techniques that operate in the time domain Delgado and
Ž . Ž .xRobinson 1994 , Robinson 1994c have received relatively little attention.

In this note we derive convergence rates for estimators defined by the latter
approach, showing that in the case of medium-range dependence they can be
superior to frequency-domain methods, but are inferior under conditions of
long-range dependence. These conclusions are supported by a simulation
study.

Estimation of u under parametric assumptions has been treated by Yajima
Ž . Ž . Ž .1985, 1988 , Fox and Taqqu 1986 and Dahlhaus 1989 . Whittle estimation
for a non-Gaussian, long-memory process has been considered by Giraitis and

Ž .Surgailis 1990 , in the case where the process is linear with white noise
innovations and square-summable coefficients. Related work on estimation
under conditions of long-range dependence includes that of Geweke and

Ž .Porter-Hudak 1983 .

2. Main theoretical results.

y12.1. Definition of estimators. Put X s n Ý X , the usual samplejF n j
mean. Define the sample autocovariances by

nyi
y1

g i s n y i X y X X y XŽ . Ž .ˆ Ý ž / ž /j iqj
js1

and the design points in the regression problem by x s log i. Consideri
< Ž . <regressing log g i on x for i in the range m q 1 F i F m q m , whereˆ i 1 1 2

m , m increase with n and are both of smaller size than n. In the sense of1 2
first-order asymptotic theory, it is optimal to select both m ’s to be of thej

Ž .same size, and so we assume that there exists m s m n with the properties

0 - lim inf log mrlog n F lim sup log mrlog n - 1,Ž . Ž .
nª` nª`2.1Ž .

1 F m q 1 F m q m F n and m rm ª a1 1 2 j j

where 0 - a , a - `.1 2
Put

m qm1 2
y1x s m x and y s x y x .Ýn 2 i ni i n

ism q11

In this notation, our estimator of u is
m qm m qm1 2 1 2

2û s y y log g i y .Ž .ˆÝ Ýni ni½ 5 ž /ism q1 ism q11 1

Ž .This is essentially the estimator proposed by Robinson 1994c , the main
difference being that our theoretical analysis points to advantages of not
taking m s n y m y 1 as suggested by Robinson.2 1

Ž .An alternative proposal of Robinson 1994c is based on minimizing the
sum of squares

m qm1 2
2yug i y ci� 4Ž .Ý

ism q11
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with respect to both c and u . Eliminating c, one finds that the resulting
˜estimator u is a solution of the equation

˜ ˜ ˜ ˜yu y2u yu y2ug i i i log i y g i i log i i s 0,Ž . Ž .ˆ ˆ½ 5 ½ 5Ý Ý Ý Ýž / ž /
˜where each sum is over m q 1 F i F m q m . The convergence rate of u is1 1 2

ˆsimilar to that of u , but simpler to describe, and so we shall discuss it only
briefly.

� 42.2. Conditions on strength of dependence. We assume that X is ai
stationary Gaussian process, and ask that for all « ) 0 and some a , « ) 0,1

«ya < <2.2 L i rL m s 1 q O m uniformly in i y m F « m.Ž . Ž . Ž . Ž . 1

Ž .Condition 2.2 is an analogue for the autocovariance of a part of Robinson’s
Ž . Ž X. Ž .1994a assumption A , imposed on the spectral density. Condition 2.1 is

Ž X.the analogue of Robinson’s B . Results for certain non-Gaussian processes
ware available in a longer version of this paper Hall, Koul and Turlach

Ž .x1995 .
In Theorem 2.2, where we investigate the conciseness of bounds to conver-

Ž . Žgence rates, we strengthen 2.2 to: for some a ) 0 and for c / 0 either1
.positive or negative and y` - c - `,2

2.3 L i s c 1 q c iya q o iya as i ª `.Ž . Ž . Ž .Ž .1 2

2.3. Convergence rates. We devote most of our attention to the estimator
ˆ ˜u , treating u in Remark 2.4. Our first result, the main contribution of this
paper, describes upper bounds to convergence rates under mild regularity

Ž . Ž .y1conditions. Define b s b u ' 2u if u G 1r2 and b ' 1 if u - 1r2.

Ž . Ž . � 4THEOREM 2.1. Assume 1.1 and 2.1 , and that the process X is station-i
Ž by« .ary and Gaussian. Then, provided m ª ` so slowly that m s O n for

ˆ Ž .some « ) 0, the estimator u is weakly consistent for u . If in addition 2.2
holds, then a convergence rate is provided by the following result: for each
« ) 0,

¡ ya uy1r2 y1r2 2u y1m q m n q m n , if u ) 1,Ž .
« ya 1r2 y1r2 2u y1~û y u s O n m q m n q m n , if 1r2 - u F 1,Ž .2.4 Ž .Ž . p ¢ ya u yum q m n , if u F 1r2.Ž .

Observe that the condition on the rate of increase of m becomes more
stringent as u increases.

Ž .To show that the convergence rate implied by 2.4 is close to best possible
ˆfor u , and not just a crude upper bound, we shall describe the sizes and

Ž .origins of the terms in 2.4 with more precision, assuming more restrictive
conditions. This work will demonstrate that in many circumstances Theo-
rem 2.1 describes near-optimal bounds to performance. We need a little
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Ž . Ž .additional notation. Let a and a be as in 2.1 and c and c as in 2.3 and1 2 1 2
define

a qa a qa1 2 1 2y1 yam ' a log y dy, c ' yc log x y m x dx ,Ž .H H2 3 2
a a1 1

a qa a qa1 2 1 22 y1 uc ' log x y m dx , c ' c log x y m x dx ;Ž . Ž .H H4 5 1
a a1 1

¡ 2uy1m rn, if u ) 1,
m log m rn, if u s 1,Ž .

~mrn, if 1r2 - u - 1,j s j m, n 'Ž .1 1

m log nrm rn, if u s 1r2,� 4Ž .
2u¢ mrn , if u - 1r2;Ž .

¡ 2um rn, if u ) 1r2,
~m log n rn, if u s 1r2,Ž .j s j m , n 'Ž .2 2

2u¢ mrn , if u - 1r2;Ž .

¡ y1n , if u ) 1,
y1~j s j n ' n log n , if u s 1,Ž .3 3 ¢ yun , if u - 1.

Put c ' c rc and c ' c rc and let c ) 0 and c denote constants de-6 3 4 7 5 4 8 9
pending on g , a and a . In Section 2.4 we shall note that in general, each of1 2
these constants is nonzero.

Ž . Ž . Ž . «THEOREM 2.2. Assume 1.1 , 2.1 and 2.3 , that j n ª 0 for some2
� 4« ) 0, and that the process X is stationary and Gaussian. If u s 1r2 or 1,i

Ž .strengthen 2.1 by asking as well that log mrlog n converges to a proper
limit, l say. Then for each C ) 0 there exist random variables S , S and S ,1 2 3

Ž . Ž .and nonrandom quantities t n and t n , such that1 2

2ˆ2.5 u y u s t n q t n X y EX q o j q S q S q SŽ . Ž . Ž . Ž . Ž .½ 51 2 p 3 1 2 3

Ž yC . Ž .with probability at least 1 y O n , E S s 0, and1

2.6 t n s c mya q o mya ,Ž . Ž . Ž .1 6

2.7 t n s c mu q o mu ,Ž . Ž . Ž .2 7

2.8 var S s c j q o j ,Ž . Ž .1 8 1 1

< <2.9 E S s O j and E S s c j q o j ,Ž . Ž . Ž . Ž .Ž .2 2 2 9 2 2

< < 3r22.10 E S s O j log n .Ž . Ž . Ž .3 2

Ž .When u s 1r2 or 1, the constant c depends on l as well as on g , a and a .8 1 2
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2Ž . Ž . Ž . Ž .Substituting results 2.6 ] 2.10 into 2.5 , and noting that X y EX is of
precise size j , we deduce an immediate corollary of Theorem 2.2:3

¡ ya uy1r2 y1r2 2u y1m q m n q m n , if u ) 1,Ž .
1r2ya 1r2 y1r2m q m n log nŽ .�

2 y14qm n , if u s 1,~û y u s O 1Ž .2.11Ž . p ya 1r2 y1r2 2u y1m q m n q m n , if 1r2 - u - 1,Ž .
1r2ya 1r2 y1r2m q m n log n , if u s 1r2,Ž .� 4¢ ya u yum q m n , if u - 1r2.Ž .

Ž .This result is directly comparable with 2.4 , the main difference being that
« Ž .the factor n in the latter formula may be dropped in 2.11 , because the

slowly varying function L is now assumed to be asymptotic to a constant. The
explicitly defined sources of the various contributions to the right-hand side

Ž .of 2.11 indicate that, under the more restrictive conditions of Theorem 2.2,
Ž . «the right-hand side of 2.4 cannot be improved beyond replacing n by 1.

2.4. Discussion.

Ž .REMARK 2.1 Optimal rates and values of m . In view of the very close
Ž . Ž .relationship between 2.4 and 2.11 it suffices to confine attention to the

latter; optimal m’s, and their associated convergence rates, differ only by a
factor of order n" «, for arbitrarily small « ) 0, in the more general context of
Theorem 2.1.

1 1 1Of the five cases u ) 1, u s 1, - u - 1, u s and u - , the second and2 2 2

fourth differ from their neighbors only in logarithmic factors. Therefore, we
shall treat only the first, third and fifth of these cases. There the optimal
rates, derived by minimizing over m, are respectively:

nya rŽaq2u . , if 0 - a F 1,when u ) 1: ½ ya rŽ2 aq2uy1.n , if a ) 1;

nya rŽaq2u . , if a F 2u y 1,1when - u - 1:2 ½ ya rŽ2 aq1.n , if a ) 2u y 1,
1 ya u rŽaqu .when u - : n .2

They are achieved with values of m that are of the following respective sizes:

n1rŽaq2u . , if 0 - a F 1,when u ) 1: ½ 1rŽ2 aq2uy1.n , if a ) 1;

n1rŽaq2u . , if a F 2u y 1,1when - u - 1:2 ½ 1rŽ2 aq1.n , if a ) 2u y 1,
1 u rŽaqu .when u - : n .2

The relationship to the parametric case may be seen by allowing a to
increase without bound. Then, the convergence rate tends to ny1r2 when
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u ) 1r2, and to nyu for u - 1r2. The optimal value of m converges to 1 as a
increases, and in fact if L is known up to a finite number of parameters and
u ) 1r2, then u may be estimated root-n consistently from a finite number of
Ž .g i ’s, for fixed values of i.ˆ

w Ž . Ž .xREMARK 2.2 Values of constants in 2.6 ] 2.9 . We discuss the constants
only in general terms here, since concise identification of their values in each

Ž .of the five cases addressed by 2.11 requires more space than can be justified.
Ž .The constant c appearing in 2.9 may be written as c s yc c , where9 9 10 11

c ) 0 and10

a qa1 2 2u2.12 c ' log x y m x dx .Ž . Ž .H11
a1

The values of c , c and c may sometimes be rendered equal to zero by3 5 11
Ž . Ž .judicious choice of a ' a , a , for a given value of a , u , although different1 2

a’s are required for c , c and c . In general, particularly since both a and u3 5 11
are unknown, the constants c , c and c would only vanish if a were3 5 11
estimated as a prelude to estimating u and a preliminary estimator of u were
obtained, and if this information were employed to select a and a .1 2

Therefore, in general we may suppose c , c and c are all nonzero, in3 5 11
Ž . Ž . Ž .which case c , c and c in 2.6 , 2.7 and 2.9 are nonzero. The constant c6 7 9 8

Ž .in 2.8 is strictly positive and finite. Therefore, each of the terms on the
Ž .right-hand side of 2.5 , except the remainder S , introduces a quantity whose3

Ž . Ž .size is accurately described by equations 2.6 ] 2.9 . These correspond to
Ž . Ž .successive terms on the right-hand sides of 2.4 and 2.11 . Therefore, the

convergence rates given in Remark 2.1 provide a good description of the
ˆoptimal performance of u in many settings.

Ž .REMARK 2.3 Size of m and m . In Section 2.1 we asserted that it is1 2
optimal to choose m and m to be of the same order. Asymptotic theory in1 2
the contrary case may be derived much as in Section 4. Without the assump-

2Ž .tion, contributions from bias and the X y EX and S terms are of larger2
Ž .order than expressed by, for example, 2.11 . These properties are apparent

Ž . Ž .from careful analysis of the constants appearing in 2.5 ] 2.10 . Indeed, if we
permit m rm to diverge to infinity, as could occur if we did not trim out very2
high lags, then the absolute values of the constants c and c diverge to q`.7 9

Ž . u yu Ž .In particular this means that in 2.11 , the term in m n for u - 1r2 and
2u y1 Ž .the term in m n for u ) 1r2 should be replaced by quantities of larger

< <order. Furthermore, if we allow m rm to converge to zero then c ª `, so1 6
ya Ž .that the m term in 2.11 should be replaced by one of larger order, for all

u . Since the bias term determines the optimal rate for each value of u ,
m rm should not converge to zero.1 2
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˜ ˜Ž .REMARK 2.4 The estimator u . The rate of convergence of the estimator u
ˆmay be derived similarly, and shown to be similar to that of u . Indeed, note

˜ 1yk u yku 2˜ � Ž .that, defining D s u y u , we have i s i 1 y kD log i q kD log i2
4q ??? , whence

g i iyu iy2 u log i y g i iyu log i iy2 uŽ . Ž .ˆ ˆ� 4 � 4Ž . Ž .Ý Ý Ý Ý
2 2yu y2u yu y2us D 2 g i i i log i y g i i log i iŽ . Ž . Ž . Ž .ˆ ˆ� 4 Ž .Ý Ý Ý Ý½ 5 ½ 5

yu y2uy g i i log i i log i q ??? ,Ž .ˆ� 4 Ž .Ý Ý

where each sum is over m q 1 F i F m q m , and ‘‘ ??? ’’ denotes terms in Dr
1 1 2

for r G 2. After dividing both sides by m4uq2, we may show that the left-hand
side may be decomposed into a sum of three terms, which to first order are

ya u 2Ž .constant multiples of m , m X y EX and S , plus a negligible remain-1
wder. Terms involving log n cancel, up to and including the order of the

aforementioned quantities, and there is no counterpart of S . The argument2
Ž . xfor expanding the left-hand side is similar to that which leads to 2.5 .

Similarly, the right-hand side is asymptotic to a constant multiple of D, since
Ž .2 < <terms in D log n and D log n cancel, up to and including the order of D .

˜Arguing thus we may prove that the convergence rate of u to u is that of
ya u 2Ž . < <m q m X y EX q S to 0. Therefore, in those cases where S is not a1 2

1ˆ wdetermining factor of the rate of convergence of u e.g., when u - , or when2
1 ˆ ˜Ž .xu ) and a ) min 1, 2u y 1 , the rates of convergence of u and u to u are2

ˆ Židentical. However, when S determines the convergence rate of u e.g., when2
1 ˜Ž ..u ) and a - min 1, 2u y 1 , the rate of convergence of u is superior.2

Ž .REMARK 2.5 Comparison with spectral estimators . Bounds on the rate of
Ž .convergence of Robinson’s 1994a averaged periodogram estimator may be

Ž . Ž .deduced from Robinson 1994b . Robinson’s 1995b periodogram-based esti-
Ž .mator, which may be expected to be superior to that of Robinson 1994a , has

a known convergence rate which, when u is close to 0, is superior to that of
1ˆ ˜ ˆ ˜both u and u . When u ) , the rates for u and u are superior, although by2

only a logarithmic factor, and so the relative performance will in practice
depend on matters such as the spread of the limiting distributions.

Ž .REMARK 2.6 Asymptotic distributions . In the context of Theorem 2.2 the
ˆasymptotic distribution of u may be deduced from that for X, S or S , as1 2

follows. Except at the boundaries between the different regimes represented
Ž .by 2.11 , exactly one of X, S and S will make a first-order contribution to1 2

ˆthe expansion of u y u ; which one may be determined from information given
in the theorem about their respective sizes. For example, when u - 1r2 we

2ˆ Ž . Ž . Ž .may write u y u s t n q t n X y EX q negligible terms. Then, under1 2
ˆ� 4 Žour assumption that X is Gaussian, the limiting distribution of u suitablyi

.normalized is chi-squared with one degree of freedom. Exact formulas for S1
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and S are given in Section 4. They enable the limiting distribution to be2
determined when one or other of those variables dominates, using results of

Ž .Taqqu 1975 .

3. Numerical study. We are aware of at least five different approaches
to estimating u , using information in the time or frequency domains. And for
each estimator type there are several variants, depending for example on how

Ž .one estimates g in the time domain . The theoretical analysis reported in
ˆ ˜Section 2 indicates that time domain estimators such as u and u perform

similarly; and that they are inferior to frequency domain estimators in the
case of very long-range dependence, but can be superior in conditions of
medium-range dependence. In the present section we summarize the conclu-
sions of a brief simulation study which verifies this conclusion in the case of

ˆthe time domain estimator u and the frequency domain estimator suggested
Ž .by Robinson 1994a . We shall explore three different variants of the former,

� 4and consider the case where X is a stationary Gaussian processes withi
autocovariance

yur223.1 g i ' 1 q i , y` - i - `.Ž . Ž . Ž .
This autocovariance was chosen in preference to the one considered by

Ž . Ž .Robinson 1994a because it is well defined for all u ) 0. It satisfies 2.3 with
1c s 1, c s y u and a s 2.1 2 2

We simulated extensively for parameter settings in the ranges u s
Ž .0.1 0.2 0.9, 1.0, 1.5, 2.0 and n s 64, 128 and 256 and summarize the results

ˆin this section. Since a s 2, the optimal convergence rate of u , in the form
stated in Section 2, is

ny2rŽ3q2u . , if u ) 1,
2r5y1n log n , if u s 1r2 or 1,Ž .

y2r5n , if 1r2 - u - 1,
y2 u rŽ2qu .n , if 0 - u - 1r2,

and is achieved with

¡ 1rŽ3q2u .n , if u - 1,
1r5nrlog n , if u s 1r2 or 1,Ž .~m s const. 1r5n , if 1r2 - u - 1,¢ u rŽ2qu .n , if 0 - u - 1r2.

We constructed the estimator g using three methods}the approach de-ˆ
scribed in Section 2; a slightly modified form in which the divisor n y i was

w Ž . Ž . Ž y1 . Ž .xreplaced by n thus, g i is effectively replaced by g i ' 1 y in g i andˆ ˜ ˆ
1 Ž .a jackknifed version in which g was replaced by 2g y g q g , where gˆ ˜ ˜ ˜ ˜1 2 12

and g are covariance estimates based on the first and second halves,˜2
respectively, of the observed time series.
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TABLE 1
ŽValues of mean squared error approximated by numerical simulation
.over 5000 independent samples for different values of the smoothing

Ž . Ž . Ž .pair m , m , in the case n, u s 128, 1.01 2

m2

m 12 13 14 15 161

0 0.04083 0.03870 0.03781 0.03813 0.03876
1 0.09896 0.09554 0.09433 0.09349 0.09382
2 0.21617 0.20674 0.19862 0.19318 0.18969

The estimator g is sometimes recommended because of relatively low˜
variance, but this advantage was not clearly apparent in our analysis. In fact,
g and g had practically the same performance with g being slightly better.ˆ ˜ ˜

Surprisingly, the expected advantage of the jackknifed estimator, lower
bias at the expense of higher variance, was only noticeable for small values of
u . For larger u ’s the estimators g and g showed better performance. Forˆ ˜

Žexample, the biases and mean squared errors when tuning parameters were
.chosen so that the latter were at their minima were reduced by 18.2% and

ˆŽ . Ž .22.8%, respectively, for n, u s 256, 0.1 , by biasing u on the jackknifed
Ž . Ž .form of g rather than g or g itself. On the other side, for n, u s 256, 0.9˜ ˆ ˜

we observe an increase of bias and mean square of the same magnitude.
For the sake of definiteness, the results reported below are based on g . All˜

reported mean squared errors for g are divided by four to make them directly˜
Ž .comparable with the mean squared error achieved by Robinson’s 1994a

estimator.
ˆŽ .As a rule, Robinson’s 1994a estimator performed better than u for

ˆu - 1r2, whereas u was superior for u ) 1r2. Robinson’s estimator is appro-
priate only for u - 1, and its performance deteriorates as the boundary u s 1
is approached from below. For this reason we do not provide details of its
performance for u G 1. Unexpectedly, there was a tendency for the perfor-
mance of Robinson’s estimator to decline with increasing sample size, for
given settings of the smoothing parameters. We were unable to find the cause
of this problem.

Table 1 presents mean squared errors as functions of the smoothing
parameters m and m in the case n s 128 and u s 1.0. This gives an idea of1 2
the values at which optimality was achieved in general settings. Table 2

ˆpresents minimum mean squared errors of both u and the estimator of
Ž .Robinson 1994a , as functions of sample size. These results indicate the

trends noted above.

w4. Outline proofs of Theorems 2.1 and 2.2. In the case of Theo-
Ž . xrem 2.1 we derive only the convergence rate 2.4 . We may suppose without
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TABLE 2
ŽValues of minimum mean squared error multiplied by 100 approximated by numerical simula-

.tion over 5000 independent samples as a function of sample size, for the estimator introduced by
ˆŽ .Robinson 1994a and for u , respectively*

u s 0.1 u s 0.3

n 64 128 256 64 128 256
Robinson’s 0.065 0.0378 0.0274 0.86 0.4 0.279

g 5.304 2.167 0.915 2.064 1.409 0.409˜

u s 0.5 u s 0.7

n 64 128 256 64 128 256
Robinson’s 1.68 1.116 0.834 3.317 2.52 1.69

g 1.306 1.392 0.518 2.892 2.043 1.075˜

u s 0.9 u s 1.0

n 64 128 256 64 128 256
Robinson’s 5.85 4.6 3.172

g 4.178 3.209 1.995 5.110 3.781 2.582˜

u s 1.5 u s 2.0

n 64 128 256 64 128 256
g 12.646 8.794 6.643 26.126 18.86 14.13˜

1*In the case of Robinson’s estimator, we took his tuning parameter q to equal in each case, and2

optimized over his smoothing parameter m.

Ž .loss of generality that E X s 0. Define

¡ y1n , if u ) 1r2,
y1~j s j n ' n log n , if u s 1r2,Ž .4 4 ¢ y2 un , if u - 1r2.

In this notation, it may be shown by direct calculation of moments that for
any integer k G 1,

2 knyi
2 k y1 2 k kE g i y g i s O E n X X y g i q E X s O j .� 4Ž . Ž . Ž . Ž .� 4ˆ Ž .Ý j iqj 4ž /js1

Hence, from Markov’s inequality we have that for each C ) 0 there exists
C ) 0 such that1

yC C1 1 w xP n - g i - n for all i g m q 1, m q mŽ .� 4ˆ 1 1 24.1Ž .
s 1 y O nyC .Ž .

Ž . Ž .� Ž .4 Ž . � Ž . Ž .4 Ž .Write g i s g i 1 q D i , where D i s g i y g i rg i . Definingˆ ˆ
m qm1 2

y1 2 y1s ' m y ª a c ,Ý2 ni 2 4
ism q11
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m qm1 2
y1 y1t n ' ys m y log L i rL m ,Ž . Ž . Ž .Ý1 2 ni

ism q11

m qm1 2
y1 1V ' y sm y log 1 q D i I D i F ,� 4Ž . Ž . Ž .� 4Ý1 2 ni 2

ism q11

m qm1 2
y1 1V ' y sm y log 1 q D i I D i ) ,� 4Ž . Ž . Ž .� 4Ý2 2 ni 2

ism q11

we have

ˆ4.2 u y u s t n q V q V .Ž . Ž .1 1 2

Let k s 2 or 3, and note that

m qm1 2
1y log 1 q D i I D i F� 4Ž . Ž .� 4Ý ni 2

ism q11

m qm ky11 2
jq1 j 1y1y y j y1 D i I D i FŽ . Ž . Ž .� 4Ý Ýni 2

ism q1 js11

m qm1 2
ky1 < <F 2k y D i ,Ž .Ý ni

ism q11

m qm ky11 2
jq1 j 1y1y j y1 D i I D i FŽ . Ž . Ž .� 4Ý Ýni 2

ism q1 js11

m qm1 2
kky1 < <F k y 1 2 y D i .Ž . Ž .Ý ni

ism q11

Therefore,

m qm1 2
1y log 1 q D i I D i F� 4Ž . Ž .� 4Ý ni 2

ism q11

m qm ky11 2
jq1 jy1y y j y1 D iŽ . Ž .Ý Ýni

ism q1 js11

m qm1 2
kky1 < <F k2 y D i .Ž .Ý ni

ism q11

Ž .In view of 4.1 there exists C ) 0, depending on C , such that with probabil-2 1
Ž yC .ity at least 1 y O n ,

m qm1 2
1y1< < < <V F C log n m y I D i ) .Ž . Ž .� 4Ý2 2 2 ni 2

ism q11
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< <Noting that sup sup y - `, and combining the resultsn m q1F iF m qm ni1 1 2
Ž .from 4.2 down, we deduce that

m qm ky11 2
y1 jq1 jy1û y u s t n y sm y j y1 D i q R ,Ž . Ž . Ž . Ž .Ý Ý1 2 ni ky1

ism q1 js11

where, defining
m qm1 2

21y1d ' m log n I D i ) q D iŽ . Ž . Ž .� 4Ý1 2 2
ism q11

and
m qm1 2

31y1d ' m log n I D i ) q D i ,Ž . Ž . Ž .� 4Ý2 2 2
ism q11

Ž yC .we have for a constant C ) 0 and with probability at least 1 y O n ,3
m qm1 2

kk y1< <4.3 R F C d F C 2 log n q 1 m D i .Ž . Ž .Ž . Ýky1 3 ky1 3 2
ism q11

Therefore, defining
m qm nyi1 2

y1 y1y1 y1S ' ys m y n y i g i X X y g i ,Ž . Ž . Ž .� 4Ý Ý1 2 ni j iqj
ism q1 js11

m qm1 2
21 y1 y1S ' y s m y D i ,Ž .Ý2 2 ni2

ism q11

m qm1 2
y12 y1 y1S ' X q o j t n and t n ' s m y g i ,Ž . Ž . Ž . Ž .½ 5 Ý4 p 3 2 2 2 ni

ism q11

we have

ˆ4.4 u s u q t n q S q S q R s u q t n q S q S q S q R .Ž . Ž . Ž .1 1 4 1 1 1 2 4 2

Ž . Ž .The first identity in 4.4 is used to derive 2.4 in Theorem 2.1, and the
Ž .second to prove Theorem 2.2. Note that S in 2.5 equals R .3 2

Ž .Under 2.2 ,
«ya4.5 t n s O m ,Ž . Ž . Ž .1

Ž . Ž . ya Ž ya . Ž .for all « ) 0, while under 2.3 , t n s c m q o m , which is 2.6 . Next1 1
Ž . Ž . Ž uq« .we determine the size of S , observing that under 2.2 , t n s O m and4 2

so
4.6 S s O muq«j ;Ž . Ž .4 p 3

Ž .and under 2.3 ,
m qm1 2

yu y1 y1m s m y g i ª c ,Ž .Ý2 ni 7
ism q11

Ž .from which follows 2.7 .



LONG-RANGE DEPENDENCE 1737

Ž .Our next step is to derive the variance of S . We shall prove only 2.8 ,1
under the more stringent conditions of Theorem 2.2, it being a little simpler
to show that under the assumptions of Theorem 2.1,

4.7 var S s O j n«Ž . Ž .1 1

for all « ) 0. Put
nyi nyi1 2

g i , i ' g j y j q i g j y j y i�Ž . Ž . Ž .Ý Ý1 2 1 2 1 1 2 2
j s1 j s11 2

qg j y j g j y j q i y i ,4Ž . Ž .1 2 1 2 1 2

in which notation,
m qm m qm1 2 1 2

y2 y2var S ss m y yÝ Ý1 2 ni ni1 2
i sm q1 i sm q11 1 2 1

y1
= nyi nyi g i g i g i , i .� 4Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 2

Ž .Given « ) 0, let MM denote the class of pairs i , i such that m q 1 F i F1 2 1 j
< <m q m and i y i ) « m. By approximating series by integrals, one may1 2 1 2

Ž . Ž .derive the following two results. a There exists a constant C s C g ) 04 4
Ž . Ž . Ž .such that, uniformly in i , i g MM, g i , i ; nC h i , i where1 2 1 2 4 1 2

yu yu¡ < <i y i q 1 q i q i , if u ) 1,Ž .Ž .1 2 1 2

y1< < < <i y i q 1 log i y i q 1Ž . Ž .1 2 1 2

y1q i q i log i q i , if u s 1,Ž . Ž .1 2 1 2~h i , i 'Ž .1 2 1y2u 1y2u< <i y i q 1 q i q i , if 1r2 - u - 1,Ž .Ž .1 2 1 2

< <log nr i y i q 1 q log nr i q i , if u s 1r2,� 4� 4 Ž .Ž .1 2 1 2¢ 1y2un , if u - 1r2.

Ž . Ž .Here and below the relation a ; b means that a rb ª 1 as n ª `. bn n n n
There exist constants 0 - C - C - `, not depending on n, such that5 6

Ž . Ž . Ž .C g i , i F h i , i F C g i , i for all m q 1 F i , i F m q m . Argu-5 1 2 1 2 6 1 2 1 1 2 1 2
ing thus,

m qm m qm1 2 1 2
y2 uvar S ; sa mn y y i i g i , i ; C C j ,Ž . Ž . Ž .Ý Ý1 2 ni ni 1 2 1 2 4 7 11 2

i sm q1 i sm q11 1 2 1

Žwhere C ) 0 depends only on a , a and u and, in the special cases u s 1r27 1 2
. Ž .and 1, on l . This proves 2.8 , with c s C C .8 4 7

Ž .Next we show that 2.9 holds under the conditions of Theorem 2.2; it may
similarly be proved that under the assumptions of Theorem 2.1,

m qm1 2
2 «4.8 E D i s O j n .Ž . Ž . Ž .Ý 2½ 5

ism q11
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Note that, uniformly in m q 1 F i F m q m ,1 1 2

2 y2 2u y2E D i s 1 q o 1 c i n g i , i� 4Ž . Ž . Ž .� 4 1

1r21r22u y1 4 4q O i n g i , i EX q E X ,Ž . Ž . Ž .½ 5
2 4Ž . Ž .and g i, i ; C n j , where C ) 0 depends on g . Furthermore, E X is of8 4 8

y2 Ž .smaller order than this bound multiplied by n . Result 2.9 follows on
combining these results. The constant c there is, in view of the definition of9

1 y2 y1 Ž .S , given by c s y c c C c , where c is defined at 2.12 .2 9 1 4 8 11 112
Ž . Ž . Ž . Ž .Theorem 2.1 follows from 4.3 , the first identity in 4.4 , and 4.5 ] 4.8 . To

Ž .complete the proof of Theorem 2.2 we must derive 2.10 , for which it is
sufficient to prove that

4.9 E d s O m3uj 3r2 log n .Ž . Ž . Ž .2 4

Ž .By 4.3 ,
m qm1 2 3r44y1E d F 8 log n q 1 m E D i ,Ž . Ž . Ž .� 4Ý2 2
ism q14.10 1Ž .

4 4u y4 8E D i s O i n a i q E X ,Ž . Ž . Ž .� 4
where

4nyi
4 2a i ' E X X y g i s O n j ,Ž . Ž .� 4 Ž .Ý j iqj 4

js1

4 8Ž .uniformly in m q 1 F i F m q m for all « ) 0. Similarly, n E X is of1 1 2
smaller order than this. Therefore,

m qm1 2 3r44y1 3u 3r2m E D i s O m j log n .Ž .� 4 Ž .Ý2 4
ism q11

Ž . Ž .Results 4.9 follows from this result and 4.10 .
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