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Asymptotic inference for estimators of («,, 8,) in the spatial autore-
gressive model Z,(n) = &, Z;_y (n) + B,Z; ;_1(n) — &, B, Z;_1 ;j_(n) +
&;; is obtained When a, and B, are near unit roots. When a, and B, are
reparameterlzed by a, =e®/"™ and B, =e?/", it is shown that if the
“one-step Gausstewton estimator” of A, + Ay B, is properly normal-
ized and embedded in the function space D([0, 1]%), the limiting distribu-
tion is a Gaussian process. The key idea in the proof relies on a maximal
inequality for a two-parameter martingale which may be of independent
interest. A simulation study illustrates the speed of convergence and
goodness-of-fit of these estimators for various sample sizes.

1. Introduction. Testing for the presence of a unit root in the order 1
time series model y, = By, ; + &, has received considerable attention. It is
well known that the sequence {,8} of least squares estimators of =1
satisfies the following asymptotic result: 2n(,8 - 1D -5 (W2() — 1 x
([¢W2(¢)dt)~!, where W denotes a one-parameter Brownian motion process
[White (1958)]. Bobkoski (1983), Phillips (1987), and Chan and Wei (1987)
have investigated the near unit root time series model y,(n) = B,v,_,(n) + &,
1<t <n, where g, = =e°/" ¢ an unknown constant, and proved that the
sequence {n( B — B,)} converges in distribution to a quotient of stochastic
integrals involving a standard Brownian motion process on [0, 1]. Cox and
Llatas (1991) proved similar results for M-estimators.

The doubly geometric model Z;; = aZ;, | ;+ BZ; ;.1 + afZ;_1 ;1 + &;
introduced by Martin (1979) is an analogue in the spatlal setting to the above
AR(1) time series. In a subsequent paper Martin (1990) indicated that these
models have wide practical applicability. The model has been used by Jain
[(1981), page 514] in the study of image processing and in agriculture field
trials by Martin (1990) and Cullis and Gleeson (1991). Tjostheim (1981)
indicated that one-quadrant finite autoregressive spatial models are useful in
studying digital filtering and system theory. In the stationary case when
la| < 1 and |B| < 1, asymptotic normality of the limiting distribution of
several estimators of («, 8) has been shown [e.g., Tjostheim (1978, 1983),
Basu (1990), Khalil (1991)]; a recent treatment of these and further results
can be found in Basu and Reinsel (1992, 1993). The normalizing sequence in
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each of these asymptotic results is of order n. Contrary to the AR(1) time
series case, the limiting distribution of the sequence of Gauss—Newton esti-
mators of (a, 8) has recently been shown to be a bivariate normal when
a = B = 1 [Bhattacharyya, Khalil and Richardson (1995)]. The normalizing
sequence in this case is of order n?/2.

Feasibility of the doubly geometric model being nearly nonstationary is
illustrated by Basu and Reinsel (1994). A numerical example is presented
showing that one of the best fits to wheat-yield data is obtained by using a
linear regression model with an error structure at site (i,j) of the form
N,;=2,,+ U, where Z,; = aZ,_, ;+BZ, ;. —afZ;,_, ;.1 + &; and U;; is
an additional independent error component. They indicate that the residual
values obtained from an ordinary least squares fit exhibit a trend behavior
which suggest that the data is nonstationary and, indeed, their estimated
value of B is 0.947 (a near unit root). Moreover, Cullis and Gleeson [(1991),
page 1450, (4)] include the above model with o« = 8 = 1 in the class of models
used to represent the error structure for the linear regression model in the
analyses of field data.

The purpose of this paper is to estimate the values of the parameters
(a,, B,) for the model

(1.1) Zij(n) = anZi,lyj(n) + BnZiyj,l(n) - «a, ,B,LZi,l,j,l(n) + &5,
1 < i, j < n, subject to the following assumptions.

(A1) a, =e*/" and B, = e?/", where ¢ and d are nonzero but unknown
constants.

(A.2) Zij(n) = 0 when either i < 0 or j < 0.

(A.3) {&,;} are ii.d., mean zero, variance o
moment.

(A4) {=@,} and {B,} are initial estimators satisfying @, — a, = Op(n_?’/ 2)
and B, — B, = 0,(n"%/?).

2 and each has a finite fourth

These results can be used to estimate the parameters («,, 8,) in the near
unit roots case where the normalizing sequence changes from order n to
order n3/2. Some preliminary notation is needed before the preliminary result
can be stated.

Let K == [0, 1]? denote the unit square and let ¢ € K. The four quadrants
of K which have ¢ as their origin are designated by Q,(> , =), @,(<, >),
Q;(<, <) and Q,(>, <). Define D, to be the set of all real-valued functions
f on K for which lim__,, f(s) exists when s belongs to a single quadrant and
lim, ,, f(s) = f(¢t) when s € Q,.

Following Bickel and Wichura (1971), there is a metric on D, which
induces Skorohod’s well-known topology when g =1 and makes D, sepa-
rable, complete and whose Borel o-field coincides with that generated by
the coordinate mappings. Convergence in D, will be relative to the above-
mentioned metric.

Let 6, denote the “one-step Gauss-Newton estimator” of (a, B) [Fuller
(1976), page 213]. An expression for #, in terms of the initial estimator 6,
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described in (A.4) is given by (§, — 6,)' = n"3(A,(1, )" !Xr, X7 ,G;,(6,)
[see (2.3), (2.5) and (2.7)]. Let 6 denote the embedding of 6, in D, X D, as
follows:

[nt{] [nty

]
(1.2) n®2(65(t) — 6,)' = (A,(1,1)) 'n 32 ¥ ¥ Gy(8,),

i=1 j=1
t = (¢,,t,) € K. Moreover, define
(1.3) g,(x) = (e”*—1—2yx)/4y*> where x € [0,1]

and y # 0. The principal result of this paper is now given.

THEOREM 1.1. Assume that model (1.1) and conditions (A.1)-(A.4) are
satisfied. Fix X = (A, Ay) € R? and let 6 denote the random element in
D, X D, as defined in (1.2). Then the sequence {n*/?(6} — 6,)\'} of random
elements in D, converges in distribution to a mean zero Gaussian process W
having

cov (W(s),W(t)) = M(s2 A t2)8e(51 A 1) " Az (sy A ty)8a(sy A ty) '

(g.(1))" (1))’
In particular,
n3/2(é _9)—%]\7(0 I wherel"=diag(L 1 )
n n =~ gc(]‘) gd(l)

REMARK 1.1. The maximal inequality given below is used to verify tight-
ness in D, of the sequence {n®%(6* — 6,)A'} given in Theorem 1.1. This
inequality is a modification of the one given by Walsh [(1986), Theorem 2.6]
which requires that the strong martingale vanish on the boundary. Moreover,
observe that for I' defined in Theorem 1.1, lim, ,_,, I' = diag(2,2), and this
agrees with the limiting distribution of {n3/ 2(5n — 6,)} for the case when
a = B = 1 [Bhattacharyya, Khalil and Richardson (1995)].

LEmMA 1.1 (Maximal inequality). Suppose thatJ ={(i,j):m <i < M and
n <j<N}cl Assume that {Z,,§,,t €J} is a square integrable, strong
martingale (see Section 2) and denote 7y = (E(ZEy)Y?. Fix A > 0. Then
there exist positive constants a and A (each independent of A\, M and N) for
which

At A\ V2
P{max|Z,| > A,t € J} < i‘“v (P{IZMNI > E})

TuN 3/2 A4
+A( )\) (P{IZMN|>E} .

A simulation study is given to asses the speed of convergence of {én - 6,} to
zero as well as the goodness-of-fit of the normalized sequence.
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2. Order properties and proof of maximal inequality. Throughout
the remainder of this paper, model (1.1) and conditions (A.1)-(A.4) are
assumed valid. For the sake of brevity, expressions such as Z,(n) are
denoted simply by Z;;,1 <1i,j <n. First, an explicit expression for the
Gauss—Newton estimator of («,, 8,) in model (1.1) is given. Denote 6, =
(a,, B,), 6, =(a,, B,), fia, b) aZ;_y; +bZ, ;. — abZ, 11 and
F,(a,b) = (¢f;(a, b)/da, 0fu(a b)/ab). Expandlng f”((? )about 6, in model
(1.1) gives

(2.1) Z;; = f,;(6,) + F,;(6,)(0, — 6,) + R;;(6,) + &,
where R, (0) Z; i, —@,XB, — B,). Define
(22 - ( £ n@m@) £ ne-n6)

Then 6, = §, + 6, is called the “one-step Gauss—Newton estimator” of 6,.
Substituting (2.1) into (2.2) and simplifying gives

n -1 n
(23) (én - gn), = ( Z E/J(on)sz(On)) Z Gz](en)’
i,j=1 i,Jj=1
where
Gii(8,) = F1;(8,)(Ri;(8,) + &)
Define
(2.4) Xij = Zij_BnZi,jq and Yij = Zij_ anziﬂj

and observe that
T 5)Fij(én) = (Zi—l,j - ani—l,j—l’ Zij-1— anZi—l,j—l)
= (Xi—l,j+ ( B _Bn)zi—l,j—l’ Y, i1t (a,— an)Zi—l,j—l)'
Moreover, it follows from (1.1) and (2.4) that
Xii=o, X, 1+ &5, Y, =BY, -1+ ¢
and thus by (A.1) and (A.2),
i J
= ) arlrk‘("kj and Y;; = Y Bl ey
k=1 I=1

The following order properties are straightforward but somewhat tedious to
verify.

LEmmA 2.1, Fix t = (¢),t,) € K and let g, be as defined in (1.3). Then:

[ntq] [nt,y]

@) n?y XX L= tyg (t)o? + Op(nfl/z),
11
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[ntz]
(i) n3 2 Z Y2, =t gty)a? + 0,(n"V/2),
[nt{] [nt,]
(iii) Z Z ZL 1j-1 Op(n4),
101
[ntq] [nty]
(iv) XX, Y i1 =0,n%,
11
[nt] [nty]
v) Z Z Xi—l,jZi—l,j—l = Op(nB)?
11
[nt] [ntsy]
(vi) Y XY 1Zi ;1= 0,0nd,
11
[nt1] [nty]
(Vli) Z Z Xi*l,jaij = Op(n3/2),
[nt,] [nt,y]
(viii) ? ) Y, j18;= Op(n3/2),
[nt] [ntsy]
(ix) Z Z Zi—l,j—lgij = Op(n2)7
11
(%) sup E(X}) = 0(n?),
1<i,j<n
(xi) sup E(Y) = 0(n?),
1<i,j<n
(xii) sup E(Z}) = 0(n*),
1<i,j<n
(xiii) sup E(X; , Y, ; 1)*=0 (n?,
1<i,j<n
(xiv) sup E(X; , ,Z; , ; =00,
1<i,j<n
(XV) sup E(Y i j— 1 i-1,j— 1) = O(nS),
1<i,j<n
(xvi) sup E( )} X; , ;)" =0(n%),
l<i<n j=1
(xvii) sup E( Y Y, ; 1¢,)" = O(n*).

l<i<n j=1

REMARK 2.1. Assume that model (1.1) and (A.1)-(A.3) are valid. Then
there exist initial estimators {Ez } and {E } satisfying (A.4). Indeed, define
T,,=2Z2;-2,;,and U, =Z,,— Z,_, ;. Recall from (2.4) that X;, =Z,, —
,BnZl i1 " and model (1. 1) can be written as X, =, X; ; ; + &; Tt follows
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that X;, =T,, — (B, — DZ; ;,_, and hence T}; = o, T, , ; + (B, — 1)YJ .+
&ip» where Yu is given in (2.4). Define @, := Zl = 1T Ty /X7 24T~ ; and
thus
a, —a,= (B, — 1) Z Ti—l,jYi,j—1+ Z Ti—1,j'9ij}/ Z Ti2—1,j'
i,j=1 i,j=1 i,j=1

Expressing T, j in terms of X;_; ; and Z;_, ;_, it follows from Lemma 2.1
that n 3%r 21T oo gc(l) Continuing in this manner, one shows
that a - a = Op(n‘S/ 2) A similar result utilizing U;; holds when 8, :

n
i,j= 1 i,]— 1/211 1 j—1

Given s = (sy, 8y), t = (¢;,t,) in K for which s; <#; and s, < t,, define
the rectangle (s,t] = (sq,t;] X (sy,¢,]. If X is a random element in D,,
denote the increment of V' over the above rectangle by V(s,t] =V, -V, . —
V.., +V, and let A be the Lebesque measure on (K, ). Deﬁne T, =
{(k /n l /n) k,l are integers satisfying 0 < k,[ < n}. Following Bickel and
Wichura [(1971) page 1665], a sequence {V,} of random elements in D, is
tight provided there exist positive real numbers «;, a,, § and M such that if
(s, t] and (u,v] are disjoint rectangles having corner points in 7, and a

common edge:

(2.6) E(IV,(s, t]11V, (u, ]1*?] < M(A(s, ] A(u,0])* 272

LEMMA 2.2. The following sequences of random elements in D, are tight:

[nt1] [nty]
) { S F Ex }

b

[nt,] [nty]
(i) {n_?’ Z Z Yi,2j—1
1 1

[nt1] [nt,y]
(111) { o Z ZZL 1,j— 1}?

b

[nt{] [nty]
(iv) {n3 ) ZXifl,iji,jfl

[n¢q] [ntq

(v) {_7/222 1]1,1_]1}’

[nt] [nty
(Vl) {_7/22 ZYJ111J1}7

1

[nt] [nts]
(vii) {n3 IS Zil,jlgij}’

1 1
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Proor. Tightness will follow by verifying (2.6); only the proof of (ii) is
given here since it is similar to the other parts. Assume that (s, ¢] and (u, v]
are rectangles having corners in 7, and a common vertical edge connecting
points (¢, s5) = (uq, uy) and (¢4, ty) = (uq, vy).

Observe that

[nt,] [nty]

Vn(s’t] = Z Z Yi,zj—l

i=[ns]+1 j=[nsyl+1

and

[nv,] [nv,]

V.(u,v] = )y )y Yi’z,j’—l‘

i'=[nul+1 j'=[nuy]+1
Since s, = u, and ¢, = v,, it follows that

{nt4] [nv,] [nv,]

E[IV (s, IV, (u,v]l] = X Y Y E(YYP )

i=[ns1+1 i =[nu;l+1 j,j' =[nuy]+1

Hence, according to Lemma 2.1(xi) and Cauchy’s inequality,

—E[IV,(s, ]|V, (u,v]]]

M 2
< —q([nt,] = [ns: ([ no1] = [nu ])([nop ] = [nu,])

= MA(s, t]A(u,v]
since the corner points of both rectangles belong to 7. A similar argument
holds when the rectangles have a common horizontal edge. O

Since tightness and convergence of all finite-dimensional distributions
characterizes convergence in distribution in D,, the following results are
implied by the Lemmas 2.1 and 2.2.

COROLLARY 2.1. The following sequences converge in D,:

[nt1] [nty]
(i) n? Yy Y X7 —ata8.(t)o?,
11
[nt,] [nt,]
(ii) n=? ) Z Yi,zj—1 —at184(ty) 0%,
1
[nt{] [nt,]
(iii) nyz ZZl111_’30 when 7y >4,
[nt,] [ntz

(iv) n-? Z Z X; -1,j i,j—l —50,
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[ntz]

(V) 77/2 Z ZXL 1] i-1,j— 1_)30’
[ntq] [niy]
(Vl) 7/22 ZY_]I i—-1,j— 1_)’20?
[nt] [nts]
(vii) n3 Yy Y Zi 1 j-15;j ~20.
1 1

REMARK 2.2. Results given in Corollary 2.1(iii—vii) could be improved but
verifications are more technical and do not follow from Lemmas 2.1 and 2.2
and, moreover, are not needed here.

Given the sequence {(w,, ,En)} of initial estimators {(«,, 8,)} described in
(A.4), define the following random elements in D,:
[nt,] [nt,y]

— 2
B,(t)=n"% ) Y (Xi—l,j + (:Bn - Bn)Zifl,jfl) )
1 1
[nt1] [nty]
Cn(t) = n73 Z Z Xzfl,j + (Bn - Bn)thl 171)
1 1
><(Yvi,J 1 + (an - an)szl ‘]*1)’
[nt,] [nt,y]

_ _ 2
D,(t)=n"? Z Z( i - 1+(an_an)Zi—1,j—1)?
where ¢ = (¢,,t,) € K and n > 1. Moreover, denote

B.(t) C,(t)
A=\ (1) Do)

A(t) = o® diag(t,8,(t,),t,84(¢3))-

LEMMA 2.3. Let A,(t) and A(t) be considered as random elements in D
equipped with the product metric. Then A, (t) =4 A(t) in Dj.

l and
(2.7)

PrOOF. Since the entries of A(¢) are constant random elements of the
separable metric space D,, it suffices to show each component sequence
converges in D, [Billingsley (1968), Theorem 4.4]. Let us show that B,(¢) =4
t,g(t)o® in D,. Recall that n Y™ ¥l"2IX? > t,g.(t)0” in D,
according to Corollary 2.1G). Also

[nt{] [nty]

(B, = /_3n)’f3 21: 21: Xi 1,21,

[nt] [ntsy]

=n1/2(Bn_Bn) e Z ZXL 1] i—1,j— 1_>30
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in D, by (A.4) and Corollary 2.1(v). Likewise,
( B, — En)2n_32[1ntl] YZ o 50

in D, by Corollary 2.1(iii) and (A.4) and thus B, (t) >vt,g.(¢,)0? in D,.
Verification of the remaining entries are shown similarly. O

The notation I will always be used to denote the set of all ordered pairs of
positive integers. Let s = (sy,s,) and ¢ = (¢, ¢,) be members of I. Define
s <t tomean s; < ¢; and s, < ¢, (product ordering); whereas, s < ¢ denotes
s; <t; and sy <t?,. Moreover, given the underlying probability space
(Q, &, P) and sub-o-field F,, let Z, denote an integrable, F,measurable
random variable, where ¢ belongs to the product set J cI. Assume that
F. &, €& when s <t Then {Z,, F,,t € J} [see Walsh (1986)] is called a
strong martingale, provided, for each s = (s, s,) and ¢t = (¢, ¢,) in oJ,

(1) E(Z,|%,) =2, whens <t
and
(ii) E(Z(s,t]13%) =0 whens < ¢,

where Z(s,t1=2,, —Z,, —Z,,, +Z,,, and ¥} denotes the smallest o-
field containing each ¥, ; with either i <s; or j <s,.
Following Walsh (1986), * may be described as “everything which is not

in the future of s.”

LEMMA 2.4. Fix a positive integer n and define J = {(t,,t,) € I:¢,,t, < n}.
Given constants A and B, denote U, = ¥j1, Y2 & for each t = (t,,t,) € J,
where &= (AX;_, ; + BY, ;_,)¢;;, and let ¥, be the smallest o-field making
each &;; measurable, for 1 <i <t, and 1 <j <t,. Then {U,,,,t €J} is a

strong martingale; that is, {U,(n), §,(n), t € J} is a strong martingale array.

PrOOF. (i) Let s = (sq, s5) < t = (¢4, t,) be elements in J. Note that

S1 ty 121 Sy 131 123
U=U+Y Y &+ X Y&+ 1 Y &
i=1j=sy+1 i=s +1j=1 i=s;+1 j=sy+1

=U+F+G+H
and thus E(F | &) =EGIF ) =EH|F,) =0since X; , ; = Lj_ya) g,
and Y, ; ; = LjZ{ B} ' 's;, are independent of ¢;;. Hence E(U, | ¥,) = U,.
(i) Assume s < ¢ and observe that U(s, t] = it ., X2 . §;. Therefore

E(U(s, t]| &%) = 0 since ¢, /s are independent random variables. O

Proor oF LEMMA 1.1. Define
(2.8) U,=2,,-2,,-2,;+2Z,, for each (7,j) € J.

Then {U,, &,,t € J} is also a strong martingale with the property that
U, =0 and U,,=0 for m<i<M and n<j<N.
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It follows from Brown’s (1971) maximal inequality and Theorem 2.6 of Walsh
(1986) that, for y > 0,

C 1/2
(29) Plmaxlt;| > y,t € 7} < —(B(Ui)) " P{Url > 5]
Y

for some C,;. Moreover, since {Z,,,, Zyn}, (Z,,n,Zyn} and {Z, . Z, )} are
each ordinary martingales, it follows by (2.8) and Brown’s maximal inequality
that

Y Y Cotun Y \\Y?
(2.10) P{IUMNI > E} < P{IZMNl > ﬁ} e (P{IZMNI > E})
Substituting (2.10) into (2.9) gives
P{max|U,| > y,t € J}

< & (m(Ug)"?

(211) ” (P{IZMNI > %})1/2

1 Lo v 1/4
+WTM/N(P{|ZMN|>E}) .

Rewriting (2.8) as

Zij=Ziyy+ 2y —Zy, +U

ij

and noting that {Z,,,,Z
and {Z

m+1,n""’ZMn’ZMN}’ {Zmn’Zm,n+1’ ""ZmN’ZMN}
mn> Zyn) are ordinary martingales, one obtains

P{max|Z,| > A, ¢t € J}

(2.12) Corun 1/2

A
< 3 (P{|ZMN| > §}

Substituting (2.11) into (2.12) gives

A
+P{max|Ut|> Z,tEJ}.

Cstun A )2
P{max|Z,|> M\, t € J} < A P{IZMNI > @}

Cmifn A Ve
S P> 55

and thus the desired conclusion follows. O



NEAR UNIT ROOTS 1719

3. Proof of Theorem 1.1. Observe that

= _(an - an)(Bn - Bn)n73/2
[n¢,] [nt,y]

ZZ( 1]L1]1+(B_B)l1_]1)

[nt] [nts]
Z Z (Yi,j—lzi—l,j—l + (o, — an)ZiZ—l,j—l)) —50

1 1

in D according to Corollary 2.1 and (A.4). Likewise,

[ntl] [ntz] [ntl] [ntz] )

n_3/2((Bn - En) Z Z Zi—l,j—lgij,(an - an) Z E Zi—l,j—lsij
1 1 1 1
—50 in D2

by Corollary 2.1(vii) and (A.4). It follows from Lemma 2.3 that

A7Y(1,1) >y 072 diag((g.(1)) ', (84(1)) ') in R

and thus by (1.2), {n®*/2(6*(¢) — 6,)\'} converges in distribution in D, for all
A € R? when {n~ 3/22[’”1] Z[’”Z](aX 1; +bY, ; 1)e;;} does (and has the same
limit), where a = A, /0%g (1) and b = A,/02g,(1). It remains to show that
the latter sequence is tight in D, and its finite-dimensional distributions
converge to an appropriate multivariate normal.

Fix s = (s4, 85) and ¢ = (¢4, ¢,) € K. Let us consider that case when s; < ¢;
and t, <s,. Define W, (¢)=n"3/2L"alylrel & where &= (aX; ;+
bY; ;_1)e;;. Following Brown (1971) and McLeish (1974), a martmgale central
limit theorem is used to show that (W(s), W (2)) =5 0 2N(0,Y), where

a’sy8.(s1) + b%s184(sy)  a’tyg.(s;) + b%s,8,4(15)
aztzgc(31) + bZSlgd(tZ) aztzgc(t1) + bzt1gd(t2)

Y =

Observe that for u = (u, u,) € R?,

(u uz) [nsq] [nt,] u, [ns{] [nsyl
uIWn(s) + u2Wn(t) = Z Z fz] + 3/2 Z Z gl]
1 [nt]+1

[nt1] [nts]

Uy
+W Y X &

[ns;]+1 1
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define

(ul + uz) [nt,] u, [ns,] .

3/2 ) §it 33 ) & 1<i<[ns],
n =1 T j=lntyl41
V — J J ntgy
ni ° Uy [nts]

1,372 > &, [ns] +1<i<[nt]

j=1

and note that u,W,(s) + u,W (¢) = Z[*})V .. Denote the smallest o-field for
which each ¢,;,, 1 <k <i and all [ > 1, is measurable by §,; = &, and let
¥ ,, be the trival o-field, 1 <i <[nt;]. Then E(V,,; %, ;) =0 and thus
{(V,.,®:;,1 <i<l[nt;],n > 1} is a mean zero martingale difference array. It
can be verified that E(¢; ¢, |§,-;) =0 unless i =i’ and j =’ and, more-
over, V2= Y" E(V2 | ¥, ) >po?ulu’. Also s? = E(V?) > c?uXu’ and
thus V.2 /s2 —>.1.

Fix 8> 0. It must be shown that YI"{'E(V21 .;) >0 as n — .
Observe from Lemma 2.1(xvi) and (xvii) that

[nsy] 4
E(n'/?V,,)" < Cn™'E &
j=1
[ns,] 4 [nsy] 4
gDn_4 E Xi—l,jgij +E Z 1fiyj—l“?ij =O(1)
j=1 J=1

It follows that {nVnzi :1 <i < [nt;]} is uniformly integrable and thus Linde-
berg’s condition follows. This shows that (W (s), W (¢)) —5 0 2N(0, ¥).
Likewise, other cases can be justified and thus the finite-dimensional distri-
butions of {n~3/2(6* — 6,)\'} converge to a Gaussian process W(¢),t € K,
satisfying
A
cov(W(s), W(t)) = ———5 (85 At3)8.(51 A ty)
(8.(1))

2
2

+ [ —
(g4(1))
In order to prove tightness of the sequence {W,(¢)} in D, consider, for
d > 0, rectangles of the form

R, =[k8,(k+1)8) x[15,(I+1)3)

and, for £ > 0, denote

Ar, = {supIWn(t) — W,(k8,18) > &,t € Rk,}.
t

(s1 At1)8a(sy Aty).

Given ¢ > 0 and n > 0, it suffices to show there exists a § > 0 such that

(3.1) limsup ), Y. P(A}) <n.
no ko<1l5<1



NEAR UNIT ROOTS 1721

Denote u, = [(nké8],[nldD u; = (n(k + DS, [n(l + DSD and let U, =
Lio1 Xi_1 &y where u = (i, ). It follows from Lemma 2.4 that {U, — U, ,
T Uy < U < uy} is a strong martingale and thus by Lemma 1.1, for ¢ > 0,
there exist positive constants a, and A, for which

AT, b,e 172
P(A}) > 5 pPiU, - U, |>
&

n Qg

7, \3/2 b e\
_) (P{|Uu -U,|>—= }) ,
b, e 1 0 a,

where 7, = (E(U,, — U, )>)"/? and b, = n®/2. Since 7,b, ' = O(1), it follows
that

(3.2)

+ A,

4

1
P(Ay) < M,(P{b; YU, ~ U, | > a;’s)) ",
for some M,. However, from the two-dimensional convergence in distribution
of {(W,},
b, (U, —U,,)=W,((k+1)8,(l +1)8) — W,(k5,15)

3.3 "
( ) _)QN(O’ P),

where
_MUADog(hF1)8) Mkt 1)dga((L+1)0)

(g.(1)) (g4(1))
 Midg(k8)  Mkbg(15)

(gc(l))2 (gd(l))z
A
) W((l +1)8g.((k +1)8) —15g,(k5))

2
2

b ((h + 1)0g,((1+1)8) — kogy(15)).
(84(1))
The law of the mean applied to R(x, y) = xg.(y) and s(x, y) = xg,(y) over K
shows that for some M; > 0, p < M,8§. It follows from (3.2) and (3.3) that

1/4
(34) limsup ¥ X P(A}) <M,572[2(1 - &(e/an/M;5))] ",

n o Rs<116<1
where ® denotes the standard normal distribution function. However, the
right-hand side of (3.4) approaches zero as § | 0 and thus (3.1) is valid. O

4. A simulation investigation. A simulation study was undertaken to
determine the speed of convergence of n*/%(&, — a,) and n%2(g, — B,) to
normality as given in Theorem 1.1. Fixing ¢, d and n values of «, and B,
were calculated using (A.1) and a sample of n2, N(0,4) deviates was drawn
using IMSL subroutines and recorded as &,;;,1 <1i,j < n. Since Z,; can be
expressed in terms of ¢,,,1 <k,l <n, and known parameters using (1.1),
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Remark 2.1 was utilized to find initial estimates @, and B,. Finally, &, and
B, were calculated using (2.1)-(2.3) and this single simulation was repeated
M = 1,000 times for fixed values of ¢, d and n.

Three features of the convergence were examined: (1) the speed at which
a, — a, and B, — B, converge to zero (determined by finding the sample

average of M = 1,000 values), (2) the speed of convergence of the standard
errors of &, and B, to their respective asymptotic standard errors

(1/n%?/g.(1),1/n*%/g,(1)) as given in Theorem 1.1 and denoted by ASE
(determined by finding the sample standard deviation of M = 1,000 values)
and (3) the speed for which n®2(&, — «,, B, — B,) approaches a bivariate
normal with uncorrelated marginals (determined from a chi-square test).

The chi-square test was formed by dividing a univariate normal into the
following three segments: (—«, —1 standard deviation), (—1 standard devia-
tion, 1 standard deviation] and (1 standard deviation, =) having probability
0.3085375, 0.3829050 and 0.3085375, respectively. The cross product parti-
tions the plane into nine cells and n®/%(&, — «,) and n®/2( 8, — B,) indepen-
dent means that the joint probability of falling into one of the nine cells can
be obtained by multiplying the two marginal probabilities.

Simulations were undertaken for the four combinations of ¢ = 1, —1 and
d=1,—1 and for n = 5, 10, 40, 60, 80 and 100. The program was written in
FORTRAN using double precision whenever possible and run on a VAX
supermini computer. However, only the two combinations ¢ = —1, d = —1
and ¢ = —1, d = 1 are presented in Tables 1 and 2, respectively, since the
other simulations produced similar results. A replication size of M = 1,000
was deemed adequate by first examining the stability of the estimates, their
standard errors and the values of the associated chi-square goodness-of-fit
test for various replication sizes.

TABLE 1
Averages, standard errors and goodness-of-fit tests for &, and én, c=—1landd = -1
AVE(&, — a,) o, X8
n STD(&,,) ASE(&,) p-value

5 —0.0362 0.8187 34.4
0.1863 0.1679 0.000

10 —0.0144 0.9048 52.2
0.0648 0.0594 0.000

20 —0.0040 0.9512 22.6
0.0225 0.0210 0.004

40 —0.0009 0.9753 29.8
0.0076 0.0074 0.000

60 —0.0002 0.9835 12.0
0.0041 0.0040 0.149

80 —0.0003 0.9876 8.3
0.0027 0.0026 0.403

100 —0.0003 0.9900 11.7

0.0019 0.0019 0.165
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TABLE 2
Averages, standard errors and goodness-of-fit tests for &, and én, c=—-1landd =1
AVE(&, — a,) o, x2(8)

n STD(&,,) ASE(&,) p-value

5 —0.0448 0.8187 116.7
0.1893 0.1679 0.000

10 —0.0138 0.9048 40.6
0.0667 0.0594 0.000

20 —0.0043 0.9512 30.3
0.0218 0.0210 0.000

40 —0.0010 0.9753 22.3
0.0073 0.0074 0.004

60 —0.0004 0.9835 12.9
0.0042 0.0040 0.117

80 —0.0002 0.9876 9.7
0.0027 0.0026 0.289

100 —0.0002 0.9900 10.5
0.0019 0.0019 0.231

Listed in Tables 1 and 2 for selected values of n are the following: (1) the
second column shows the sample average and standard deviation of (&, — «,),
(2) column three gives the value of «, determined from (A.1) and the ASE of
&, as calculated from Theorem 1.1. Entries in column four are the values of
the chi-square goodness-of-fit test statistic and the corresponding p-values
for eight degrees of freedom. Only averages and standard deviations of &, are
given in the tables since &, and B, have the same asymptotic properties.

Both tables show that convergence of estimates &, — @, to zero occurs
quickly; indeed, @, is within about 1% of «, when n = 10 to 20. However,
n = 60 to 80 was needed before standard deviations of @, were near 1% of
the corresponding ASE. Similarly, convergence of n*%(&, — «,, 8, — B8,) to
the desired bivariate normal was rather slow and n = 60 was needed before
the p-values for our chi-square goodness-of-fit test exceeded 0.05.
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