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Many popular curve estimators based on smoothing have difficulties
caused by boundary effects. These effects are visually disturbing in practice
and can play a dominant role in theoretical analysis. Local polynomial
regression smoothers are known to correct boundary effects automatically.
Some analogs are implemented for density estimation and the resulting
estimators also achieve automatic boundary corrections. In both settings
of density and regression estimation, we investigate best weight functions
for local polynomial fitting at the endpoints and find a simple solution.
The solution is universal for general degree of local polynomial fitting and
general order of estimated derivative. Furthermore, such local polynomial
estimators are best among all linear estimators in a weak minimax sense,
and they are highly efficient even in the usual linear minimax sense.

1. Introduction. Nonparametric curve estimation methods make no as-
sumptions on the functional form of the curves of interest and hence allow
flexible modeling of the data. If the support of the true curve is bounded
then most nonparametric methods give estimates that are severely biased
in regions near the endpoints. This boundary problem affects the global per-
formance visually and also in terms of a slower rate of convergence in the
usual asymptotic analysis. It has been recognized as a serious problem and
many works are devoted to reducing the effects. Gasser and Müller (1979),
Gasser, Müller and Mammitzsch (1985), Granovsky and Müller (1991) and
Müller (1991) discuss boundary kernel methods. Rice (1984) suggests a linear
combination of two kernel estimators with different bandwidths to reduce the
bias. Schuster’s (1985) mirror image density estimator folds back the prob-
ability mass that extends beyond the support. The estimator introduced in
Hall and Wehrly (1991) is essentially a more sophisticated regression version
of Schuster’s approach. Djojosugito and Speckman (1992) approach boundary
bias reduction based on a finite-dimensional projection in a Hilbert space.
Boundary effects for smoothing splines are discussed in Rice and Rosenblatt
(1981). Eubank and Speckman (1991) also provide some boundary correction
methods.

The above methods provide effective boundary correction, but the more ef-
fective ones tend to be quite complicated. This discourages their widespread
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use (since implementation is a nontrivial exercise) and also entails difficult
analysis. A simpler and more direct approach to boundary correction [see Fan
and Gijbels (1992) and Hastie and Loader (1993) for insightful discussion]
is based on local polynomial fitting. The simplicity comes because boundary
adaption is “automatic” in the sense that no explicit correction is needed.

While local polynomial fitting is becoming widely accepted because of its
simplicity, an important question is how well they compare to other boundary
adjustment methods in terms of efficiency. One approach to this issue would
be careful analysis of all of the earlier proposals, with a detailed comparison
of their properties. But this would be a tedious task because:

1. there are so many proposals;
2. a number of them are quite complicated and thus difficult to work with,

both numerically and analytically.

This paper presents results which address the issue of how the boundary
adjustments that are implicit to the local polynomial smoother compare with
other boundary adjustments in a simple and clean way. We show in a minimax
sense that no linear estimator (which includes not only the proposals cited
above, but others that could be devised later) can have better asymptotic mean
squared error performance than that of the local polynomial smoother. This
avoids the need for detailed analysis of complicated methods, since it makes it
clear that they cannot be substantially better in terms of efficiency. The local
polynomial smoother is already the choice of many because of its simplicity,
and we show that there is no loss in terms of efficiency in this choice.

Given the good performance of local polynomial methods in regression, it
is natural to look for analogs in density estimation. In the density estimation
context, the data falls on the real line and there are neither design points
nor responses. Data binning produces a regression type context where local
polynomial fitting can be applied to the bin counts. The resulting estimators
of the density and its derivatives do attain automatic boundary corrections.
Lejeune and Sarda (1992) and Jones (1993) discuss another approach to local
polynomial density estimators: a polynomial is fitted to the empirical density
function by minimizing a locally weighted L2-distance. Our estimators are
approximate binned versions of those [see Cheng (1997) for details].

We also study best weight functions for the local polynomial fitting at the
boundary. We focus on solving the problem when estimating at the endpoints
since that is the most important case. The answer is surprisingly simple in
the sense that a particular weight function is the best for all cases of local
polynomial fitting, independent of the degree and the order of the derivative
being estimated. This is the key to showing that the optimal local polynomial
estimators are best among all linear estimators in a weak minimax sense. Also,
they are highly efficient even in a more conventional linear minimax sense.
We show that the above-mentioned properties hold in both density estimation
and regression settings.

Nonparametric minimax problems are interesting and challenging. Recent
advancements in this area can be found in, for example, Nussbaum (1985),
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Donoho and Liu (1991), Fan (1993), Donoho and Johnstone (1994), Fan and
Hall (1994), Brown and Low (1996), Efroimovich (1996), Brown, Low and Zhao
(1997) and references therein. Most articles focus either on the minimax risk
of estimating a whole function or on that of estimating a function at inte-
rior points. However, minimax problems at a boundary point have not been
studied as often, and the methods used here are different from that at an
interior point. In particular, we handle the “effective optimal kernel” through
a representation in terms of Legendre polynomials.

This article is organized as follows. In Section 2, asymptotic mean squared
errors of local polynomial estimators at boundary points are summarized for
both settings of regression and density estimation. Optimal weighting for lo-
cal polynomial fitting and weak minimax efficiency are discussed in Section
3. Section 4 investigates a general minimax problem and minimax optimal
kernels. Section 5 contains some concluding remarks. Proofs are in Section 6.

2. Mean squared errors at boundary points. In this section we briefly
discuss asymptotic mean squared errors of local polynomial estimators at
boundary points in regression and density estimation contexts.

2.1. Regression setting. Suppose �X1;Y1�; : : : ; �Xn;Yn� are an i.i.d. sam-
ple from a bivariate population �X;Y�. The regression function is

f�x� = E�Y�X = x�:
The local polynomial estimator of f�ν��x�; the νth derivative of f at x, obtained
from fitting a pth-degree local polynomial based on the nonnegative weight
function K and bandwidth h > 0; is

f̂�ν��x� =
n∑
i=1

WK
p+1; ν

(
Xi − x
h

)
Yi;(1)

where WK
p+1; ν�t� = ν!eT

νS
−1
n �1; ht; : : : ; hptp�TK�t�. Here, eν is a unit vector

whose �ν + 1�th element is 1 and

Sn = �Sn; i+j−2�1≤i; j≤p+1

with

Sn; l =
n∑
j=1

�Xj − x�lK
(
Xj − x
h

)
; l = 0;1; : : : ;2p:

Details of the above calculation can be found in Ruppert and Wand (1994) and
Fan et al. (1997).

Let gX�·� be the marginal density of X and let σ2�·� be the conditional
variance of Y given Xy that is, σ2�x� = Var�Y�X = x�: In addition, we assume
that the support of gX is �0;1�. Consider the boundary point x = 0. Denote
by Sj =

∫ +∞
0 tjK�t�dt; j = 0;1; : : : ;2p, and S = �Si+j−2�0≤i; j≤p+1: Put

K∗p+1; ν�t� = eTν S−1�1; t; : : : ; tp�TK�t�I�0;∞��t�;(2)



1694 M.-Y. CHENG, J. FAN AND J. S. MARRON

which is the equivalent kernel for estimating the νth derivative at the point
x = 0. The function K∗p+1; ν satisfies the following moment conditions:

∫ ∞
0
tqK∗p+1; ν�t�dt = eTν S−1Seq = δν; q for 0 ≤ ν; q ≤ p:(3)

Condition 1. (i) Functions gX�·�; f�p+1��·� and σ2�·� are bounded on �0;1�
and right continuous at 0.

(ii) The weight function K�·� has a bounded support.

Under Condition 1, if σ2�0� <∞ and gX�0� > 0, then the conditional mean

squared error of f̂�ν��0� is

E
[(
f̂�ν��0� − f�ν��0�

)2∣∣X1; : : : ;Xn

]

≈p
(
ν!f�p+1��0�
�p+ 1�!

∫
tp+1K∗p+1; ν�t�dt

)2

h2�p+1−ν�

+ ν!2σ2�0�
nh2ν+1gX�0�

∫
K∗p+1; ν�t�2 dt;

(4)

as n→ ∞; h→ 0 and nh2ν+1 → ∞: See Fan et al. (1997). Here “≈p” means
the random variables are asymptotically the same in probability.

2.2. Density estimation setting. There are several methods of adapting the
ideas of local polynomial fitting to the setting of density estimation. The fol-
lowing discusses one approach briefly and the details are referred to Cheng
(1997). Suppose that X1; : : : ;Xn are an i.i.d. sample from a population follow-
ing a density function f supported on �0;1�: For each sample size n, choose a
binwidth b > 0 (depending on n) and let tj = �j − 1

2�b; for j = 1; : : : ;G with
G = �1/b�. Define the bin count at tj as

cj =
n∑
i=1

I�tj−b/2; tj+b/2��Xi�:

The local polynomial estimator of f�ν��x�, denoted as f̂�ν��x�, based on the
weight function K and bandwidth h > 0 is defined as the �ν+ 1�th coefficient
of the local polynomial fit to the data ��tj; n−1b−1cj�; j = 1; : : : ;G�.

Condition 2. (i) The lth derivative of K is bounded on its support, l =
0;1; : : : ; p:

(ii) The density function f and its first p+ 1 derivatives are bounded.

Proof of the following theorem can be found in Cheng (1994).
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Theorem 1. Suppose that Condition 2 holds. Then

E
(
f̂�ν��0�

)
= f�ν��x� + ν!f

�p+1��0�
�p+ 1�!

(∫
tp+1K∗p+1; ν�t�dt

)
hp+1−ν

+ o�hp+1−ν�;
(5)

and

Var
(
f̂�ν��0�

)
= ν!

2f�0�
nh2ν+1

∫
K∗p+1; ν�t�2 dt+ o

(
1

nh2ν+1

)
;(6)

as n→∞, h→ 0, nh2ν+1 →∞ and b/h→ 0:

Following Fan and Gijbels (1992) and Ruppert and Wand (1994), the lo-
cal polynomial fitting also adapts automatically to boundary regions for the
density estimation setting.

Remark 1. Lejenue and Sarda (1992) and Jones (1993) proposed fitting
local polynomials to the empirical density function. The resulting estimator
of f�ν��0� is a kernel estimator with the kernel K∗p+1; ν. All the results for the
density estimation setting given in this article apply to that estimator as well.

3. Optimal weight function and weak minimaxity. Local polynomial
estimators are intuitive and achieve boundary corrections automatically. An
interesting question is what would be an optimal weighting scheme at the
boundary regions. The most important case is when x = 0 and it is the situ-
ation considered here. We will discuss the problem in the regression setting.
The optimal weight function is closely related to the weak minimax prob-
lem defined in (15). For simplicity, we omit asymptotically negligible terms
throughout this article.

3.1. Optimal boundary weighting scheme. For any nonnegative weight
function K, minimizing the right-hand side of (4) with respect to h; we obtain
the best asymptotic mean squared error

γp+1; ν
(
Tp+1; ν�K�

)2/�2p+3��f�p+1��0��2s
(
σ2�0�
gX�0�n

)r
;

where

Tp+1; ν�K� ≡
∣∣∣∣
∫
tp+1K∗p+1; ν�t�dt

∣∣∣∣
2ν+1(∫

K∗p+1; ν�t�2 dt
)p+1−ν

;(7)

γp+1; ν = ν!2r−rs−s�p+ 1�!−2s(8)

and

r = 2�p+ 1− ν�
2p+ 3

; s = 2ν + 1
2p+ 3

:
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Note that the asymptotically optimal mean squared error depends on the
weight functionK only through the quantityTp+1; ν�K�:Next, we find the best
weight function for the local polynomial at the left boundary point; that is,

min
K≥0

K Lipschitz continuous

Tp+1; ν�K�;(9)

where by Lipschitz continuity we mean that there exists a constant C such
that �K�x� −K�y�� ≤ C�x − y�. The solution turns out to be the triangular
weight function K0�t� = �1− t�I�0;1��t� for all p and ν:

Theorem 2. For any p and ν, the triangular weight function K0�t� =
�1− t�I�0;1��t� minimizes Tp+1; ν�K� among all nonnegative and Lipschitz con-
tinuous functions. Furthermore, with γp+1; ν defined by (8),

Tp+1; ν�K0� =
(
θp+1; ν

γp+1; ν

)�2p+3�/2
;(10)

where

θp+1; ν =
(

2p+ 3
2ν + 1

)( �p+ ν + 2�!
�p− ν + 1�!ν!

)2( r

2�p+ ν + 2�

)r( �p+ 1�!
�2p+ 3�!

)2s

:(11)

Let the resulting equivalent kernel [see (2)] of K0 be

K
opt
p+1; ν�t� ≡ ν!eTν S−1�1; t; : : : ; tp�TK0�t� =

p+1∑
j=0

λjt
jI�0;1��t�:(12)

The coefficients λj in Kopt
p+1; ν and the �p+ 1�th moment and L2-norm [hence

the value of Tp+1; ν�K0�] can be computed explicitly. In the Appendix we will
show that

λj =
�−1�j+ν�p+ j+ 1�!�p+ ν + 2�!

j!2ν!�p− ν�!�p− j+ 1�!�j+ ν + 1� ;

j = 0;1; : : : ; p+ 1;
∫
tp+1K

opt
p+1; ν�t�dt =

�−1�ν+p�p+ ν + 2�!�p+ 1�!2
ν!�2p+ 3�!�p− ν + 1�!

(13)

and
∫
K

opt
p+1; ν�t�2 dt =

2�p+ ν + 2��p+ ν + 1�!2
�2ν + 1��2p+ 3�ν!2�p− ν�!2 :

From Theorem 1, it is easy to see that the problem of finding best boundary
weight functions for local polynomial density derivative estimation is the same
as (9).
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3.2. Weak minimaxity. Given a constant C; 0 < C <∞; the condition
∣∣∣∣f�z� −

p∑
j=0

f�j��0�
j!

zj
∣∣∣∣ ≤ C

�z�p+1

�p+ 1�! ; z ∈ �0;1�(14)

reflects the idea that “the �p + 1�th right derivative of f at zero is bounded
by C:” For a finite integer D; D ≥ 2; define a set of regression functions

CFp+1 = �f0; f1; : : : ; fD�;
where f0 and f1, satisfying (14), are special functions given in an earlier draft
of this paper [Cheng, Fan and Marron (1993)], f2 = Cxp+1/�p+ 1�! and fj is

any function on �0;1� such that �f�p+1�
j �0�� ≤ C; j = 3; : : : ;D. The linear

minimax risk when estimating f�ν��0� over the class CFp+1 is defined as

Rp+1; ν�n;CFp+1� = inf
f̂
�ν�
L �0� linear

sup
f∈CFp+1

E
[(
f̂
�ν�
L �0� − f�ν��0�

)2∣∣X1; : : : ;Xn

]
:(15)

We call Rp+1; ν�n;CFp+1� a weak linear minimax risk for estimating f�ν��0�:
It can be shown [see Cheng, Fan and Marron (1993)] that

Rp+1; ν�n;CFp+1� = γp+1; νC
2s
(
σ2�0�
ngX�0�

)r
�Tp+1; ν�K0��2/�2p+3�;(16)

and that the local polynomial fit of order p with the triangular weight function
K0 and bandwidth

h0 =
( �p− ν + 1��2p+ 3�!2σ2�0�
�p+ ν + 2��p+ 1�!2�2p+ 3�gX�0�C2n

)1/�2p+3�

achieves this asymptotic minimax risk. Thus, the weak linear minimax risk
is closely related to the optimal boundary weight function K0, and, in a weak
minimax sense, local polynomial fitting based on the triangular weight func-
tion provides the best possible boundary correction method.

4. Minimax optimal kernel and minimaxity. We discuss boundary lin-
ear minimax risks and the corresponding optimal kernels for a more general
class of regressions. Define the following class of regression functions:

Cp+1 = �regression functions f that satisfy (14)�:

Then the linear minimax risk for estimating f�ν��0� over the class Cp+1 is
given as

Rp+1; ν�n;Cp+1� = inf
f̂
�ν�
L �0� linear

sup
f∈Cp+1

E
[(
f̂
�ν�
L �0� − f�ν��0�

)2∣∣X1; : : : ;Xn

]
:(17)

In the following sections we discuss, for general values of p and ν; bounds and
values of the linear minimax risk and minimax optimal boundary kernels.
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4.1. Minimax optimal boundary kernels. In definition (17), the design den-
sity gX�·� is fixed and can be regarded as known. If gX�0� is known and
uniform around the point zero, a higher order kernel estimator of f�ν��0� is

f̂h�0� =
∑n
i=1Kp+1;0�Xi/h�Yi∑n
i=1Kp+1;0�Xi/h�

;

f̂
�ν�
h �0� =

ν!
nhν+1gX�0�

n∑
i=1

Kp+1; ν

(
Xi

h

)
�Yi − f̃�0�� for ν > 0;

where h > 0 and the boundary kernel Kp+1; ν satisfies
∫ ∞

0
tjKp+1; ν�t�dt = δν; q; q = 0;1; : : : ; p;

∫ ∞
0
tp+1Kp+1; ν�t�dt 6= 0:

(18)

Here f̃�0� is a kernel regression estimator defined as

f̃�0� = 1
nhgX�0�

n∑
i=1

K0

(
Xi

h

)
Yi;

for the given bandwidth h and the uniform kernel K0. It can be shown that,
as n→∞, h→ 0 and nh2ν+1 →∞,

sup
f∈Cp+1

E
[(
f̂
�ν�
h �0� − f�ν��0�

)2∣∣X1; : : : ;Xn

]

≤
(

ν!C
�p+ 1�!

)2(∫ ∞
0

∣∣tp+1Kp+1; ν�t�
∣∣dt

)2

h2�p+1−ν�

+ ν!2σ2�0�
nh2ν+1gX�0�

∫ ∞
0
Kp+1; ν�t�2 dt:

(19)

Minimizing (19) with respect to h; we obtain

sup
f∈Cp+1

E
[(
f̂
�ν�
h �0� − f�ν��0�

)2∣∣X1; : : : ;Xn

]
≤ ξp+1; ν�Qp+1; ν�Kp+1; ν��2/�2p+3�;

where

Qp+1; ν�Kp+1; ν� =
(∫ ∞

0

∣∣tp+1Kp+1; ν�t�
∣∣dt

)2ν+1(∫ ∞
0
Kp+1; ν�t�2 dt

)p+1−ν
(20)

and

ξp+1; ν = γp+1; νC
2s
(
σ2�0�
ngX�0�

)r
:

Then, since kernel estimators are linear, for any boundary kernel Kp+1; ν sat-
isfying (18),

Rp+1; ν�n;Cp+1� ≤ ξp+1; ν�Qp+1; ν�Kp+1; ν��2/�2p+3�:
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Therefore, if Kp+1; ν minimizes Qp+1; ν�Kp+1; ν� among all Kp+1; ν satisfying
(18), then we have an upper bound for the linear minimax risk

Rp+1; ν�n;Cp+1� ≤ ξp+1; ν

(
Qp+1; ν

(
Kp+1; ν

))2/�2p+3�
:(21)

Such a kernel is called a minimax optimal boundary kernel.
For any nonnegative integer p and ν = 0;1; : : : ; p; define a boundary kernel

Kp+1; ν as

Kp+1; ν�t� =
( p∑
j=0

cjt
j − θtp+1

)

+
−
( p∑
j=0

cjt
j + θtp+1

)

−
;(22)

where cj; j = 0; : : : ; p, and θ are determined by
∫ ∞

0
tjKp+1; ν�t�dt = δj; ν; j = 0; : : : ; p;

∫ ∞
0
tp+1Kp+1; ν�t�dt = θ 6= 0:

(23)

The following theorem on the minimax optimal boundary kernels is a direct
generalization of Theorem 1 in Sacks and Ylvisaker (1981), so we omit its
proof.

Theorem 3. For any nonnegative integer p and ν = 0;1; : : : ; p; any mini-
max optimal boundary kernel is determined by (22) and (23).

Therefore, minimax optimal boundary kernels are defined implicitly and
have no closed forms. Figure 1 shows, for some values of p and ν; a numerical
approximation of the rescale of Kp+1; ν whose support is the interval �0;1�.

4.2. Minimax risks. More about the linear minimax risk is investigated
in this section. First, combining (16), (21) and the fact that CFp+1 ⊆ Cp+1,
we have the following asymptotic upper and lower bounds for the value of
Rp+1; ν�n;Cp+1�:

Theorem 4. For any nonnegative integer p and ν = 0;1; : : : ; p; asymptot-
ically,

ξp+1; ν

(
Qp+1; ν

(
Kp+1; ν

))2/�2p+3�
≥ Rp+1; ν�n;Cp+1�

≥ ξp+1; ν
(
Tp+1; ν�K0�

)2/�2p+3�
:

We conjecture the first inequality in Theorem 4 is indeed an equality:

Rp+1; ν�n;Cp+1� = ξp+1; ν

(
Qp+1; ν

(
Kp+1; ν

))2/�2p+3�
�1+ o�1��:(24)

Note that the minimax optimal kernels Kp+1; ν are defined implicitly. Hence
the upper bounds given in Theorem 4 have no explicit formulae. However,
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Fig. 1. The optimal minimax kernel Kp+1; ν defined in (22) and (23) is rescaled to �0;1�
and plotted by the solid line. The quantity Qp+1; ν�Kp+1; ν� is denoted as Qp+1; ν : Note that
Qp+1; ν�c−�ν+1�Kp+1; ν�·/c�� = Qp+1; ν�Kp+1; ν�·�� for any c > 0: Upper left, p = 0; ν = 0y up-
per right, p = 1; ν = 0y lower left, p = 2, ν = 0y lower right, p = 1; ν = 1:
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since �ν!�−1K
opt
p+1; ν satisfies (18) and Kp+1; ν is a minimax optimal kernel, we

have the following corollary.

Corollary 5. For any nonnegative integer p and ν = 0;1; : : : ; p; asymp-
totically,

ξp+1; ν

(
Qp+1; ν

(
1
ν!
K

opt
p+1; ν

))2/�2p+3�
≥ Rp+1; ν�n;Cp+1�

≥ ξp+1; ν
(
Tp+1; ν�K0�

)2/�2p+3�
:

Note that explicit expressions for the asymptotic upper and lower bounds
in Corollary 5 are available from (10) and (13). The upper bound in Corollary
5 can be obtained via the local polynomial fitting with the triangular kernel
K0 = �1 − t�I�0;1��t�. In the most common case where p = 1 and ν = 0,

K
opt
2;0�t� = 6�1− 3t+ 2t2�I�0;1��t� and Corollary 5 gives

2:2441 ≈ 3 · 151/5

26/5
≥
(
ngX�0�√
Cσ2�0�

)4/5

R2;0�n;C2�

≥ 3 · 15−1/5 ≈ 1:7454:

5. Concluding remarks. On the issue of boundary corrections, we ex-
plored the possibility of extending local polynomial fitting regression tech-
niques to the density estimation setting. Various optimization problems were
investigated and connections among them were discussed.

For local polynomial estimation, a best weighting scheme, minimizing
Tp+1; ν�K� over all nonnegative Lipschitz continuous functions K; is simply
the triangular weight function and, even more surprisingly, this statement
holds for general p and ν. We also showed that best local polynomial estima-
tors are 100% efficient in a weak linear minimax sense. Explicit formulae for
the weak linear minimax risks, equivalent kernels of the triangular weight
scheme, its norm and moments are available.

More general linear minimax risks are also investigated. They associate
with problems of minimizing Qp+1; ν�Kp+1; ν� among all boundary kernels
Kp+1; ν: The solutions, and hence the linear minimax risk, are implicitly de-
fined and can only be approximated numerically. Fortunately, we can combine
weak and general linear minimax results and obtain explicit upper and lower
bounds.

In minimax senses, kernel estimators with minimax optimal kernels are
better than local polynomial estimators yielding weak minimax efficiency. How
much is the gain of going from weak minimax to general minimax optimal ker-
nels? Consider the most important case of p = 1 and ν = 0: The minimax opti-
mal kernel after being rescaled to �0;1� is approximately �−12:31t2−19:44t+
7:128�+ − �12:31t2 − 19:44t− 7:128�− and Q2;0�K2;0� ≈ 3:7646: A best linear
estimator, in a weak minimax sense, of f�0� is the local linear estimator with
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Table 1

Minimax efficiencies Rp+1; ν and the ratio rp+1; ν . �In each cell; the first
value is Rp+1; ν and the second value is rp+1; ν�

n 5 0 n 5 1 n 5 2

p = 0 1 1
p = 1 0.9464 0.8217 0.9740 0.9707
p = 2 0.8583 0.7399 0.6922 0.4937 0.6582 0.6834

weight K0: Its relative efficiency, to the minimax optimal kernel estimator, is
(
Q2;0�K2;0�
Q2;0�Kopt

2;0�

)2/5

≈ 3:76462/5

�6/5��15/2�1/5 ≈ 0:9464:

More generally, let Rp+1; ν be the ratio of (24) to the upper bound in Corollary
5, and let rp+1; ν be the ratio of the lower bound in Theorem 4 to the upper
bound in Theorem 4. Table 1 shows a few values of the ratios.

As noted above, the best local polynomial estimators are preferable to the
minimax optimal kernel estimators for the following reasons. First, local poly-
nomial fitting is far more intuitive than estimators based on minimax optimal
kernels which have funny forms. Second, local polynomial estimators with best
weight function attain weak minimax efficiencies. Third, a best weight func-
tion is the simple triangular function and it holds for any p and ν: Finally, best
local polynomial estimators are highly efficient in the usual minimax sense.

6. Proofs.

Proof of Theorem 2. Let B�K� =
∫
tp+1K∗p+1; ν�t�dt and V�K� =∫

K∗p+1; ν�t�2 dt: Then, with Kc�·� = c−1K�·/c�, we have

B�Kc� = cp+1−νB�K� and Tp+1; ν�Kc� = Tp+1; ν�K�:
Therefore, minimizing Tp+1; ν�K� among all nonnegative and Lipschitz-
continuous K is equivalent to

minV�K�(25)

subject to B�K� = B�K0�; K ≥ 0 and Lipschitz continuous.
We first of all show that the solution to (25) exists. Suppose that �Kn� is a

sequence of functions satisfying the side conditions of (25) such that

lim
n→∞

V�Kn� = inf V�K�:

Then, by the weak topology of L2�0;∞�; there exists a subsequence �nj� such
that

lim
j→∞

Knj
=K0 in L2�0;∞�;
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for someK0 ∈ L2�0;∞�: By using the same argument as establishing a similar
relationship between almost sure convergence and convergence in probability,
there exists a further subsequence that converges to K0 almost everywhere.
By the Lipschitz continuity of the function Knj

, K0 is Lipschitz continuous (if
necessary redefine the values of K0 on a set with measure zero). Clearly K0

satisfies the side conditions of (25) and is a solution to (25).
Next, we determine the solution K0: Let K0

p+1; ν be the equivalent kernel
(2) induced by K0: Denote the support of K0 as A: Let P0 be a polynomial of
order �p+ 1� on A which minimizes

∫
A

(
K0
p+1; ν�t� −

p+1∑
j=0

θjt
j

)2

dt

among all �θ0; θ1; : : : ; θp+1�. Write

K0
p+1; ν�·� = P0�·� + r0�·�:(26)

Then
∫
A
tqr0�t�dt = 0; q = 0;1; : : : ; p+ 1:(27)

Let

K∗η�t� =
(
K0
p+1; ν�t� − ηr0�t�

)
IA�t�:

Then, by the definition of K0
p+1; ν; when η is small enough, K∗η has at most p

roots in A:
We now show that K∗η is an equivalent kernel (2) induced by some nonneg-

ative Lipschitz continuous weight function. Let τ1; : : : ; τd, d ≤ p, be the roots
of K∗η in A: Put

P�t� = �−1�κ
d∏
j=1

�t− τj�; Kη�t� =K∗η�t�/P�t�;

where κ = 0 or 1 so that Kη is nonnegative. Then

K∗η�t� = P�t�Kη�t�IA�t�:
Write the equivalent kernel (2) of Kη as Q�t�Kη�t�IA�t� with Q�t� a polyno-
mial of order p: Thus, by (3) and (27),

0 =
∫
A
�K∗η�t� −Q�t�Kη�t���P�t� −Q�t��dt

=
∫
A
Kη�t��P�t� −Q�t��2 dt:

This implies that P�t� = Q�t� for all t ∈ A and hence K∗η is induced by
the nonnegative Lipschitz continuous kernel Kη: Note that, by (27), Kη also
satisfies the constraint B�Kη� = B�K0�: From

V�K0� ≤ V�Kη�;
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or, by (26), equivalently
∫
A
�P0�t� + r0�t��2 dt ≤

∫
A
�P0�t� + �1− η�r0�t��2 dt;

and (27), we obtain that
∫
A
r0�t�2 dt ≤ 0:

Thus, we conclude that K0
p+1; ν�t� = P0�t�, a polynomial of degree p+ 1 in A:

Hence K0 is a linear function in A. Lipschitz continuity of K0 requires that
A = �0; c� for some positive constant c and K0�t� = �1− t/c�I�0; c��t�: The side
condition B�K0� = B�K0� implies c = 1; namely, K0 =K0:

APPENDIX

Calculation of the function Kopt
p11;n; its norm and ( p 1 1)th moment.

The Legendre polynomials on the interval �−1;1� are defined as

Pn�x� =
dn

dxn
��1+ x��1− x��n; −1 ≤ x ≤ 1; n = 0;1;2; : : : :

The linear transformation y = �x+1�/2 of these polynomials yields an orthog-
onal system with respect to Lebesgue measure on �0;1�: Write

Qn�y� =
dn

dyn
�y�1− y��n ≡

n∑
j=0

qn;jy
j; 0 ≤ y ≤ 1; n = 0;1;2; : : : :

Then

�Qn�2 =
∫ 1

0
Q2
n�y�dy = �−1�n

∫ 1

0
yn�1− y�n d

2n

dy2n
�y�1− y��n dy

=
∫ 1

0
yn�1− y�n�2n�!dy = �2n�! n!2

�2n+ 1�! =
n!2

2n+ 1
:

(28)

Explicitly,

Qn�y� =
dn

dyn

n∑
j=0

(
n

j

)
�−y�jyn =

n∑
j=0

(
n

j

)
�−1�j �n+ j�!

j!
yj:

So,

qn;j =
(
n

j

)
�−1�j �n+ j�!

j!
; n = 0;1; : : : ; p+ 1; j = 0;1; : : : ; n:

Since Kopt
p+1; ν is a polynomial of order �p+ 1� [see (12)], we can write

K
opt
p+1; ν�x� =

p+1∑
i=0

aiQi�x�:
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The coefficients ai can be determined by the moment properties in (3). Denote

β =
∫ 1

0
xp+1K

opt
p+1; ν�x�dx:(29)

Then

ai�Qi�2 =
∫ 1

0
Qi�x�Kopt

p+1; ν�x�dx

=





0; if 0 ≤ i < ν;
ν!qi; ν; if ν ≤ i ≤ p;
ν!qp+1; ν + qp+1; p+1β; if i = p+ 1:

(30)

Therefore, from (28) and (30),

1
ν!
K

opt
p+1; ν�x� =

p∑
i=0

qi; ν
�2i+ 1�
i!2

Qi�x�

+ �2p+ 3�
�p+ 1�!2

(
qp+1; ν +

qp+1; p+1

ν!
β

)
Qp+1�x�

=
p∑
i=0

qi; ν
�2i+ 1�
i!2

i∑
j=0

qi; jx
j

+ �2p+ 3�
�p+ 1�!2

(
qp+1; ν +

qp+1; p+1

ν!
β

)
Qp+1�x�

=
p∑
j=0

( p∑
i=j∨ν

qi; ν
�2i+ 1�
i!2

qi; j

)
xj

+ �2p+ 3�
�p+ 1�!2

(
qp+1; ν +

qp+1; p+1

ν!
β

)
Qp+1�x�:

(31)

Here,
p∑

i=j∨ν
qi; ν
�2i+ 1�
i!2

qi; j =
�−1�j+ν
j!2ν!2

p∑
i=j∨ν

�i+ ν�!�2i+ 1��j+ i�!
�i− ν�!�i− j�!

[
Note: �2i+1�= ��i+j+1��i+ ν+1�− �i−j��i− ν��

j+ ν+1

]

= �−1�j+ν
j!2ν!2�j+ ν + 1�

p∑
i=j∨ν+1

( �i+ ν + 1�!�j+ i+ 1�!
�i− ν�!�i− j�!

− �i+ ν�!�j+ i�!
�i− ν − 1�!�i− j− 1�!

)

+ �−1�j+ν
j!2ν!2

��j ∨ ν� + ν�!�2�j ∨ ν� + 1��j+ �j ∨ ν��!
��j ∨ ν� − ν�!��j ∨ ν� − j�!

= �−1�j+ν
j!2ν!2�j+ ν + 1�

�p+ ν + 1�!�j+ p+ 1�!
�p− ν�!�p− j�! :

(32)
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Also, since

Qi�1� =
di

dyi
�y�1− y��i

∣∣∣
y=1
= �−1�ii!

and Kopt
p+1; ν�1� = 0 [see (12)],

K
opt
p+1; ν�1� =

p+1∑
i=0

aiQi�1� =
p+1∑
i=0

ai�−1�ii! = 0:

This is the same as
p∑
i=ν

�2i+ 1�
i!2

ν!qi; ν�−1�ii!

+ �2p+ 3�
�p+ 1�!2 �ν!qp+1; ν + qp+1; p+1β��−1�p+1�p+ 1�! = 0:

(33)

The first term is
p∑
i=ν

�2i+ 1�
i!2

ν!
(
i

ν

)
�−1�ν �i+ ν�!

ν!
�−1�ii!

= �−1�ν
ν!

p∑
i=ν

�−1�i�i+ ν�!�2i+ 1�
�i− ν�!

�Note: �2i+ 1� = �i+ ν + 1� + �i− ν��

= �−1�ν
ν!

[ p∑
i=ν

�−1�i�i+ ν + 1�!
�i− ν�! +

p∑
i=ν+1

�−1�i�i+ ν�!
�i− ν − 1�!

]

= �−1�ν+p�p+ ν + 1�!
ν!�p− ν�! :

Thus (33) yields

β = �−1�ν+p�p+ ν + 2�!�p+ 1�!2
ν!�2p+ 3�!�p− ν + 1�! :(34)

Combining this with (31) and (32) we have

K
opt
p+1; ν�x� =

p+1∑
j=0

λjx
jI�0;1��x�;

where λj, j = 0;1; : : : ; p + 1, are given in (13). Since the polynomials �Qi�
are orthogonal,

∥∥Kopt
p+1; ν

∥∥2 =
p+1∑
i=0

a2
i�Qi�2

=
p∑
i=ν
ν!2q2

i; ν

2i+ 1
i!2

+ �2p+ 3�
�p+ 1�!2

(
ν!qp+1; ν + qp+1; p+1β

)2(35)
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=
p∑
i=ν

�2i+ 1��i+ ν�!2
ν!2�i− ν�!2 + �2p+ 3�

�p+ 1�!2
(
ν!qp+1; ν + qp+1; p+1β

)2

[
From (34) and noticing that �2i+1�= ��i+ ν+1�2−�i− ν�2�

2ν+1

]

= 1
ν!2�2ν + 1�

p∑
i=ν+1

{�i+ ν + 1�!2
�i− ν�!2 − �i+ ν�!2

�i− ν − 1�!2
}

+ �2ν�!
2�2ν + 1�
ν!2

+ �p+ ν + 1�!2
�2p+ 3�ν!2�p− ν�!2

= 2�p+ ν + 2��p+ ν + 1�!2
�2ν + 1��2p+ 3�ν!2�p− ν�!2 :
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