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A STUDY OF A CLASS OF WEIGHTED
BOOTSTRAPS FOR CENSORED DATA

BY LANCELOT F. JAMES

Johns Hopkins University

Edgeworth expansions are derived for a class of weighted bootstrap
methods for the Kaplan]Meier and Nelson]Aalen estimates using the
methods contained in the monograph by Barbe and Bertail. Von Mises
representations up to the third order are established for the weighted
bootstrap versions of these estimators. It is shown that there exists
weights which outperform Efron’s bootstrap method in terms of coverage
accuracy. Moreover, it is shown that this holds for a particular choice of
gamma weights which are very easy to use in practice. The general
weighting schemes are also useful in approximating the posterior distribu-
tion of a survival function with respect to mixtures of beta-neutral process
priors.

Ž .1. Introduction. Lo 1993a introduced the idea of a censored data
Ž .Bayesian bootstrap. This is the direct analogue to Rubin’s 1981 Bayesian

Ž .bootstrap BB in the complete data case and provides an alternative to
Ž .Efron’s 1981 bootstrap method for the Kaplan]Meier estimator. James

Ž .1993 studied a generalization of this idea to the case of arbitrary i.i.d.
weights. He proved the consistency result, under a general random censoring
model, for this class of weights using martingale techniques in the spirit of

Ž . Ž . wGill 1980 . From the work of Mason and Newton 1992 see also Praestgaard
Ž .xand Wellner 1993 it is perhaps not difficult to see that one may further

define the notion of a generalized exchangeably weighted Kaplan]Meier
bootstrap estimate; we will mention this briefly in the coming paragraphs.

Perhaps a more interesting question, and the main focus of this paper, is to
determine the proper choice of weights for a class of weighted bootstrapped
Kaplan]Meier estimators and related functionals. The recent work of Barbe

Ž .and Bertail 1995 involving Edgeworth expansions for a class of weighted
bootstrap versions of general von Mises differentiable functionals provides
the basis for this study. Prior to their work, most of the results on Edgeworth
expansions for the weighted bootstrap has been relegated to the case of the

Ž .sample mean. Related works include papers by Weng 1989 , Haeusler,
Ž . Ž . Ž .Mason and Newton 1992 , Lo 1993b , Hall and Mammen 1994 and Guillou

Ž .1995 . Their results indicated that one could indeed choose weights which
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are as accurate as the classical bootstrap in approximating the sampling
Ž . Ž .distribution of the sample mean. Weng 1989 and Lo 1933b also looked

explicitly at the case for approximating the posterior distribution of the
Ž .mean. Shao and Tu 1995 give a survey of weighted bootstrap methods in

other settings as well. However, it seems that Haeusler, in an unpublished
work, was the first to point out that in the case of the mean one could choose
weights which were superior to the ‘‘classical bootstrap’’ in terms of coverage
accuracy.

Ž .Barbe and Bertail’s 1995 recent monograph investigates the properties of
the weighted bootstrap for general von Mises functionals. Among other
things, they extend the results of Hauesler to the case of nonlinear function-

Ž . Ž .als T P . This, along with Mason and Newton 1991 and Praestgaard and
Ž .Wellner 1993 provides a basis for study of the weighted bootstrap. In

general their work compares the performance of the weighted bootstrap
against the bootstrap in the regular case using several different criteria. To
illustrate we present an excerpt from their monograph.

However, the choice of weights depends essentially on what one
considers to be important. Accuracy of the estimation of the
entire distribution of the statistic, accuracy of a confidence

Ž .interval related to coverage accuracy , accuracy in a large
deviation sense, accuracy for a finite sample size? Some of the

wcriteria may not be satisfied at the same time. Barbe and
Ž .xBertail 1995

Their results seem to indicate that the area where the weighted bootstrap
clearly performs better than the bootstrap is in terms of coverage accuracy.
The authors outline methods that must be tailored to each specific situation.
One needs to investigate individual functionals of interest to ascertain what
are the best choice of weights for that problem. The task involves an investi-
gation into some aspects of the underlying structure of the functional of
interest, independent of their work.

Here, we apply these techniques to the case of the Kaplan]Meier and
Nelson]Aalen estimators. We shall mainly concentrate on performance in
terms of coverage accuracy, although we also address accuracy in terms of
approximating the entire distribution. In order to use their framework one
needs to verify the validity of the third-order Edgeworth expansion of the
sampling distribution of the statistics of interest, in this case the
Nelson]Aalen and Kaplan]Meier estimators. We verify these in both of the
cases where the variance is assumed known and unknown. We also look at

ˆyL Ž t .the estimator e . To establish this and justify the analogous results for
the weighted bootstrap, one develops a third-order von Mises expansion for

Ž .the functional of interest T P , where P is the underlying distribution. We
compute the first three canonical gradients of the functionals associated with
the Kaplan]Meier and Nelson]Aalen estimators. These just correspond to

Ž .the first three Gateaux derivatives of the functional T P in the respective
cases, and yield the proper form of the expansions. The control of the
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remainder in the von Mises expansion which holds uniformly over the
weighted bootstrap empirical measures, P , and the usual empirical mea-w
sure, P , is facilitated by employing a distance proposed in Barbe and Bertailn
Ž .1995 . This allows for Frechet differentiability at a fixed point P for a wider
class of functionals than the Kolmogorov distance, while having many of the
nice features of the Kolmogorov distance. We do not, however, require the full
notion of Frechet differentiability since we only need it to hold at a suitable P
Ž .which we may perhaps choose to be continuous uniformly over a suitable
class of empirical measures, P , and P . That is, the expansions need to bew n

Ž . Ž . Ž . Ž .valid for particular functionals of the form T P y T P and T P y T P ,w n
with proper control on the remainder terms depending upon the underlying
structure of the functional in question and the choice of weights.

Once the von Mises expansions are established we are able to modify the
Ž . w Ž .xarguments used in Lai and Wang 1993 see also Gross and Lai 1996 to

obtain the validity of the Edgeworth expansions up to the third order. The
work involves a careful orchestration of ideas from martingale theory, Edge-
worth expansion, empirical process theory and other ideas, and is as much an
investigation about the underlying structure of the Kaplan]Meier estimator
as it is about the weighted bootstrap. Most importantly, we are able to
identify a class of weights which are very simple to use, familiar and superior

Ž .in terms of coverage accuracy to Efron’s 1981 censored data bootstrap. That
Ž y1 .is, we identify weights which in terms of coverage are accurate up to o n

Ž y1 .instead of O n in the classical bootstrap theory. In the case where the
variance is assumed known, a second-order expansion for the Kaplan]Meier

Ž .estimator and hazard estimator was done by M. N. Chang 1991 and a
third-order expansion for the Nelson]Aalen estimator was shown to be valid

Ž . Ž .by Lai and Wang 1993 . Lai and Wang 1993 also developed a second-order
expansion for the bootstrap analogue of the Nelson]Aalen estimator. Re-

Ž .cently, Chen and Lo 1996 examined the second-order properties of the
studentized version of the Kaplan]Meier, Nelson]Aalen, and moment esti-
mators, and their corresponding classical bootstrap statistics. Other related

Ž . Ž .results are given in Burr 1994 and Babu 1991 . In an effort not to inundate
the reader with technical details, the main results are presented in Section 2.
Nevertheless, it is believed that the material in the other sections may be of
independent interest to the reader. In Section 1 a description of the model is
presented and some remarks on consistency are given. Section 2.1 gives a
brief discussion on the third-order Edgeworth expansions for the sampling
distribution of the functionals considered. In Section 2.2, coverage probabili-
ties associated with the weighted bootstraps are presented. In Section 2.3, an
easily generated class of weights is suggested which provides better coverage
accuracy than Efron’s classical bootstrap. This should be of particular inter-
est to the potential user. In Section 2.4, second-order Edgeworth expansions
are given for the weighted bootstrap; here one can identify weights which are
as accurate as the classical bootstrap in terms of approximating the entire
sampling distribution. One can also identify weights which are second-order
accurate in terms of approximating posterior quantities if one is able to
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obtain the corresponding expansions for the posterior distributions. The
Ž . Ž . Ž .works of Lo 1993a , James 1993 and Brunner and Lo 1996 show that

these bootstrap schemes are consistent methods in approximating the poste-
rior distribution of the survival function with respect to mixtures of beta-
neutral process priors. This suggests that the weighted bootstrap in this
setting is a viable alternative to the sampling schemes suggested in Doss
Ž . Ž .1994 and Damien, Laud and Smith 1996 . In Section 3, third-order von
Mises expansions are derived. Weights are identified which give the proper
rate for the remainder. These terms can then be ignored in the Edgeworth
expansions. In Section 4, validity of the third-order Edgeworth expansions for
the sampling distribution of the functionals considered is discussed. In Sec-
tion 5, canonical gradients associated with the functionals considered here

Ž1.Ž .are given. The first canonical gradient T x, P is just the influence function
Ž .associated with T P . Here we shall need also second- and third-order

canonical gradients. These play a crucial role at every level in obtaining the
main results in this paper. These appear throughout the presentation and we
ask the reader to refer to Section 5 for the explicit forms. In Section 6, explicit
forms of the third-order Edgeworth expansions of the sampling distributions
are given.

1.1. Preliminaries. Let T , T , . . . , T be i.i.d. survival times with continu-1 2 n
ous survival function S s 1 y F and C , C , . . . , C be independent censoring1 2 n

Ž .times with d.f. G c . In the censoring set-up, we observe only the pairi
Ž . Ž .Y s min T , C and d s I T F C , which denotes whether an observationi i i i i i

Ž . Ž . Ž .has been censored or not. Let y , d , y , d , . . . , y , d denote the ob-1 1 2 2 n n
Ž . Ž . Ž .served data points and t 1 - t 2 - ??? - t k be the k distinct death times.

Now define the death set and risk set as follows for j s 1, . . . , k:

1.1 D j s i : y s t j , d s 1� 4Ž . Ž . Ž .i i

and

1.2 R j s i : y G t j .� 4Ž . Ž . Ž .i

The Kaplan]Meier estimator is often expressed as

ˆ ˆ1.3 S t s 1 y DL s ,Ž . Ž . Ž .Ž .Ł
sFt

ˆwhere L is the well-known Nelson]Aalen estimate for the cumulative hazard
L. Alternatively, since

ˆdN s Ý 1Ž .t q g DŽ j.ˆ1.4 L t s s ,Ž . Ž . ÝH ˆ Ý 1Y s0 Ž . q g RŽ j.Ž .j : t j Ft

this indicates that the Kaplan]Meier estimator may be written as follows:

Ý 1q g DŽ j.ˆ1.5 S t s 1 y .Ž . Ž . Ł ž /Ý 1Ž .j : t j Ft q g RŽ j.



BOOTSTRAPS FOR CENSORED DATA 1599

Typically one uses the notation, d and r , where Ý 1sd and Ý 1 sj j q g DŽ j. j q g RŽ j.
w Ž .r . See Andersen, Borgan, Gill and Keiding 1993 and Fleming andj

Ž . xHarrington 1991 for more details. Now, one may express the bootstrap
version of these functionals in varying degrees of generality as follows. First,

Ž . Ž .Efron’s 1981 censored data bootstrap CDB ,

Ý 1q g D*Ž j.
1.6 K* t s 1 y ,Ž . Ž . Ł ž /Ý 1Ž .j : t j Ft q g R*Ž j.

where D* and R* are the death and risk sets for the resampled data points.
w xNow let Z , i s 1, . . . , n, be n i.i.d. nonnegative r.v.’s with E Z s m, andi

Ž . 2Var Z s s , and replace the 1’s in the above expression to obtain

Ý Zq g DŽ j. q
1.7 S* t s 1 y .Ž . Ž . Ł ž /Ý ZŽ .j : t j Ft q g RŽ j. q

Ž . Ž .Lo 1993a , using exp 1 Z ’s, defined a censored data Bayesian bootstrapi
Ž .CDBB which is the direct analog to Rubin’s bootstrap scheme in the

Ž .complete data situation. James 1993 , using the arbitrary nonnegative Z ’si
above, examined the first-order properties of the class of random weighted
bootstraps for the Kaplan]Meier censored data Bayesian bootstrap clones
Ž . Ž .CDBBC which may be thought of as the direct analogue to Lo’s 1991

Ž .Bayesian bootstrap clones BBC . Finally, let W , i s 1, . . . , n, be generali : n
n Ž .exchangeable weights, where Ý W s 1, as in Mason and Newton 1992js1 j : n

w Ž .xsee also Praestgaard and Wellner 1993 . One may define a generally
exchangeable weighted bootstrap scheme for the Kaplan]Meier estimator
and related functionals as follows:

Ý Wq g DŽ j. q : n
1.8 S t s 1 y .Ž . Ž . Łw ž /Ý WŽ .j : t j Ft q g RŽ j. q : n

The functionals K* and S* are special cases of S . The weighted bootstrapw
Ž . � 4cumulative hazard L t is defined analogously. Now let YY , n G 1 be aw n

sequence of distribution functions which may depend on the sample
Ž . Ž . � 4y , d , . . . , y , d . Then, define a triangular array Y : 1 F i F n, n G 11 1 n n i : n
of r.v.’s such that each row is an i.i.d. vector with distribution YY . Further, letn

w Ž .xnY s Y q ??? qY and define BBC-type weights see Lo 1991 ,n 1 : n n : n

Yi : n
1.9 W s .Ž . i : n nÝ Yjs1 j : n

If we choose Y s Z , then we have S*. The BBC-type weights will be thei : n i
main focus of discussion in the coming sections unless otherwise specified.
First, however, the question of whether S enjoys the same property ofw
consistency as K* and S* will be briefly addressed. That is, does the process

Ž .have the same conditional limiting distribution as the sampling distribution
w Ž .of the Kaplan]Meier estimator? See Breslow and Crowley 1974 ; see also

Ž . x Ž .Gill 1980 . That question was answered for K* by Akritas 1986 , using
Ž . Ž .martingale techniques a la Gill 1980 , and for S* by James 1993 , who`
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showed that S* also enjoys a martingale property which is induced by a
sigma-field generated by the weights. We present, for continuity, the follow-
ing result from that work. Let

S* tŽ .
U 'Z t s n y 1 ,Ž .n ž /Ŝ tŽ .

U ˆŽ . Ž . Ž . Ž . Ž . w xwhere Z t ' 0 if S t s 0. Define D K s s K s y K s y and let D 0, bn
Ž .be the space of cadlag right continuous with left-hand limits functions

� Ž .equipped with the uniform metric and projection sigma field. Let W s ;
4 Ž .s G 0 be a standard Brownian motion, and for any sub distribution K on

� Ž . 4the line, let t s sup t: K t - 1 F `.K

Ž .ASSUMPTION 1.1. There exist sub distribution functions F s 1 y S and0 0
w .H on 0, ` such that for each b - t ,0 H0

ˆi sup S t y S t ª 0Ž . Ž . Ž .0
0FtFb

and

Ŷ tŽ .
ii sup y 1 y H t ª 0.� 4Ž . Ž .0n0FtFb

Ž . Ž .Now we define the following increasing sigma fields, for t j y 1 F t F t j ,
Ž . Ž .j s 1, . . . , k q 1, where t 0 s 0 and t k q 1 s b. Let

FF s s Z : q g R 1 y R jŽ . Ž .� 4t q

OO s s order statistics generated by Z ’s: q g R j .Ž .� 4t q

Define

t ˆM* t s N* t y Y * s dL s ,Ž . Ž . Ž . Ž .H
0

Ž . n Ž . Ž . n Ž .where N* t s Ý Z I y F s, d s 1 and Y * s s Ý Z I y G s . Thenis1 i i i is1 i i
under Assumption 1.1, we have the theorem.

w Ž .x � U Ž . w x4THEOREM 1.1 James 1993 . J1. Z t , FF k OO : t g 0, b is a rightn t t
continuous martingale with compensator

2
S* t yŽ .tU U² : ² :Z , Z t s n M*, M* ds ,Ž . Ž .Hn n ž /ˆ ˆS t y 1 y DL s Y * s0 Ž . Ž . Ž .

where

22d r Ý Z Ý Zj j q g RŽ j. q q g RŽ j. q² :M*, M* t s d 1 y yŽ . Ý j ½ 5ž / ž /r r y 1 r rj j j jŽ .j : t j Ft
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J2. Let r s mrs then

U w xLL rZ ? y, d ª LL W C ? in D 0, b ,� 4 � 4Ž . Ž . Ž .Ž .n 0

where

t y1
C t s S s 1 y H s y S ds .� 4Ž . Ž . Ž . Ž .H0 0 0 0

0

REMARK 1.1. The martingale property in statement J1 is induced by the
weights conditional on the data. The compensator above may be used as a
bootstrapped variance estimator. The statement in J2 shows that BBC weights
with finite second moments, subject to a scale factor modification r, are
equivalent in the first-order sense to Efron’s classical bootstrap scheme for
the Kaplan]Meier estimator under the general random censorship model.

Ž . w Ž .xGill 1994 see also van der Laan 1993 , under the more restrictive
Žassumption that the C ’s are i.i.d. which will be the case throughout the resti

.of this paper , showed that one can get a rather elegant and essentially
two-line proof of the consistency result for Efron’s K* using modern empirical

w Ž .xprocess techniques see Gine and Zinn 1990 and employing an identity by´
Ž .van der Laan 1993 for linear convex models applied to the Kaplan]Meier

and its ‘‘classical’’ bootstrap analogue. We show how one may get the consis-
Ž .tency result for S by mimicking those arguments. Let X s Y, d withw

Ž .distribution P hereafter denoted as P and define the following empiricalFG
measures:

n 1
1.10 P s dŽ . Ýn X inis1

and
n

1.11 P s W d ,Ž . Ýw i , n X i
is1

wŽ .where d is the Dirac measure. Now, similarly to van der Laan 1993 , pagex
x30 , define

˜ ˜ ˆI x s I S, G , t y , dŽ . Ž .Ž .1 w

ˆI y g ds, d s 1 y I y G s dL sŽ . Ž . Ž .tˆs yS t .Ž .H
Ŝ s 1 y G s y0 � 4Ž . Ž .w

1.12Ž .

Alternatively one may also define

˜ ˜ ˆI x s I S , G , t y , dŽ . Ž .Ž .2 w

I y g ds, d s 1 y I y G s dL sŽ . Ž . Ž .t ws S t ,Ž .Hw ˆS s 1 y G s y0 Ž . Ž .� 4w

1.13Ž .
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ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž . Ž .where 1 y G t y s Y t rS t and 1 y G t y s Y t rS t is itsw w w
ˆŽ . Ž Ž .. Ž . Ž Žweighted bootstrap analogue. Here Y t s P I y G t and Y t s P I y Gn w w

..t . We then have that

ˆ ˜1.14 S t y S t s P y P IŽ . Ž . Ž . Ž . Ž .w n w 1

˜Ž .with P I s 0 andn 1

ˆ ˜1.15 S t y S t s P y P yI ,Ž . Ž . Ž . Ž . Ž .w n w 2

˜Ž .with P I s 0. The idea is then to verify that a class of functions contain-w 2

˜ ˜ Ž .ing I or I where t is allowed to vary is Donsker. The consistency result is2 2
Ž .then obtained by applying the work of Praestgaard and Wellner 1993 in the

Ž .place of Gine and Zinn 1990 , that is, for weights which satisfy conditions´
Ž .A1]A5 in Praestgaard and Wellner 1993 . We shall assume these conditions

hold throughout our presentation.

2. Edgeworth expansions and the choice of weights. Define

2.1 H x , T P , T P s P n1r2 T P y T P rS P F xŽ . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž .n n n

and

2.2 K x , T P , T P s P n1r2 T P y T P rS P F x ,Ž . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž .n n n n

Ž . 2Ž . w Ž1.Ž .2 xwhere T P is the functional of interest and S P s E T X, P . ThusP
we may then write the sampling distributions associated with the Kaplan]

ˆyL Ž t .Meier, Nelson]Aalen and e as follows:

Ŝ t y S tŽ . Ž .
1r2ˆH x , S t , S t s P n F x ,Ž . Ž .Ž .n 1r2½ 5S t C tŽ . Ž .

Ŝ t y S tŽ . Ž .
1r2ˆK x , S t , S t s P n F x ,Ž . Ž .Ž .n 1r2½ 5ˆ ˆS t C tŽ . Ž .

2.3Ž .
L̂ t y L tŽ . Ž .

1r2ˆH x , L t , L t s P n F x ,Ž . Ž .Ž .n 1r2½ 5C tŽ .

L̂ t y L tŽ . Ž .
1r2ˆK x , L t , L t s P n F xŽ . Ž .Ž .n 1r2½ 5Ĉ tŽ .

and
ˆyL Ž t .e y S tŽ .ˆyL Ž t . 1r2H x , e , S t s P n F x .Ž .Ž .n 1r2½ 5S t C tŽ . Ž .

2Ž . 2Ž . Ž . Ž .Here S P s S t C t , for the Kaplan]Meier estimator, where C t s
t Ž Ž . Ž .. 2Ž . Ž . t Ž Ž . Ž ..H dL s rY s . For the Nelson]Aalen S P is just C t s H dL s rY s0 0ˆyL Ž t .and for e we use the same as that for the Kaplan]Meier estimator. We
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Ž . t Ž Ž . jy1Ž ..also define A t s H dL s rY s for j s 3, 4. The weighted bootstrapj 0
analogues may be defined simply as

2.4 H x , T P , T P sP* n1r2 T P yT P r s S P FxŽ . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž . Ž .n w n w n W , n n

and

2.5 K x , T P , T P sP* n1r2 T P yT P r s S P Fx ,Ž . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž . Ž .n w n w n W , n w

where P* denotes the conditional distribution with respect to the data and
2 Ž . Ž . Ž .s s var nW . Note that in 2.5 we are able to use S P as theW , n 1 : n w

Ž . Ž .analogue to S P because in the case of the functionals considered here S Pn
has an explicit functional form. In the case of the Kaplan]Meier estimator,

2Ž . 2 Ž . Ž . Ž . t Ž Ž . Ž ..we use S P s S t C t , where C t s H dL s rY s . We derivew w w w 0 w w
Ž . wthe form of the expansions using the work of Bertail 1992 see also Barbe

Ž .xand Bertail 1995 and justify these expansions by results contained in Lai
Ž .and Wang 1993 which we discuss in Section 4. We give exact forms of the

Edgeworth expansions for the sampling distributions of the statistics in
Section 6. We assume throughout the following conditions as in Lai and

Ž .Wang 1993 . That is,

2.6 F t ) 0 and 1 y H t y s E I ) 0.Ž . Ž . Ž . ŽY G t .1

ˆŽ . Ž Ž .PROPOSITION 2.1. Under 2.6 , the Edgeworth expansions for H x, S t ,n ˆyL Ž t .ˆ ˆ ˆŽ .. Ž Ž . Ž .. Ž Ž . Ž .. Ž Ž . Ž .. ŽS t , K x, S t , S t , H x, L t , L t , K x, L t , L t and H x, e ,n n n n
Ž .. Ž y1 .S t are valid up to o n and hold uniformly in x.p

2.1. Coverage probability. We now turn to the case of coverage probability
where it will be seen upon further reading that one may achieve better
coverage accuracy than one can obtain using the ‘‘classical bootstrap.’’ We
assume that the weights considered here are continuous and of the form

Ž .in 1.9 .
In the general setup, let g and z be the a th quantile of thea , w, n a , w, n

weighted bootstrap analogues in the case where the variance is assumed
known and the studentized case, respectively. That is,

2.7 P* n1r2 T P y T P r s S P F g s aŽ . Ž . Ž . Ž .� 4Ž . Ž .w n W , n n a , w , n

and

2.8 P* n1r2 T P y T P r s S P F z s a .Ž . Ž . Ž . Ž .� 4Ž . Ž .w n W , n w a , w , n

The idea is now to choose weights such that

2.9 H g , T P , T P s P n1r2 T P y T P rS P F gŽ . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž .a , w , n n n a , w , n

and

2.10 K z , T P , T P s P n1r2 T P y T P rS P F zŽ . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž .a , w , n n n n a , w , n

are as close to a as possible. In order to do this, one needs to derive the
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Cornish]Fisher expansions for the weighted distributions. These expansions
will be valid under the following conditions.

W1. Valid third-order Edgeworth expansions for the sampling distribu-
tions of the original. See Section 4.

Ž . Ž .W2. Valid third-order von Mises expansions of T P y T P with re-w
Ž y1 . Žmainders of o n for the particular weights considered see Section 3 forp

.more details .
< Ž <W3. lim sup lim sup E exp itY - 1.nª` t ª` 1, n.

W4. Moment conditions to be specified below in Proposition 2.2.

REMARK 2.1. Since we consider only continuous only weights in this
section, condition W3 is automatically satisfied. For the studentized cases,

Ž . Ž Ž . Ž .. Ž .one also needs to be able to satisfy W2 for f Q s T Q y T P rS Q for
Ž .the appropriate measure Q about f P s 0. This requires knowledge of the

2Ž . Ž .form of the first two gradients of S P see Section 5 . Here ‘‘ f ’’ plays exactly
the role of ‘‘T ’’ throughout. In general this presents an added difficulty but for
the functionals considered here it follows directly from W2 and we omit the
details.

Let
t 2 2H dL s rY s y 3r2 C tŽ . Ž . Ž . Ž .Ž .0

V t sŽ .3 3r2C tŽ .
and

t 3 t 2 3H dL s rY s y 4H C s dL s rY s q 2C tŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .0 0
V t s .Ž .4 2C tŽ .

PROPOSITION 2.2. Let the moments of Y be such thati : n

s s 1 q gny1r2 ,Y , n
2.11Ž .

b s 1 q hny1r2
Y , n

2 Ž .where s s var Y and b denotes the skewness. We denote the kurtosisY , n 1, n Y , n
by K . As explained below, ‘‘h’’ and ‘‘g ’’ will serve as corrective factors whenY , n
determining coverage. The a th quantile of the standard normal distribution is
written as z . Under conditions W 1]W4 the coverage accuracy for the case ofa

the weights Y above are given for the Kaplan]Meier and Nelson]Aaleni : n
estimators as follows:

h
2ˆH g , S t , S t s a y V t f z z y 1Ž . Ž . Ž . Ž . Ž .Ž .žn a , w , n 3 a a6n

K y 1Ž .Y , n 3 y1q V t f z z y 3z q o n .Ž . Ž . Ž .Ž .4 a a a24n
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It is interesting to note that in this case the terms above only depend upon the
Ž .first gradient influence function :

h
2ˆK z , S t , S t s a y V t f z z y 1Ž . Ž . Ž . Ž . Ž .Ž .a , w , n 3 a a6n

g
2q V t f z 1r2 q 1r2 z y 1Ž . Ž . Ž . Ž .Ž .3 a an

K y 1Ž .Y , n 3 y1q V t f z z y 3z q o n ,Ž . Ž . Ž .Ž .4 a a a24n
h

2ˆH g , L t , L t s a q V t f z z y 1Ž . Ž . Ž . Ž . Ž .Ž .a , w , n 3 a a6n
3g

1r2 2q C t f z z y 1Ž . Ž . Ž .a a6n
K y 1Ž .Y , n 3 y1q V t f z z y 3z q o n ,Ž . Ž . Ž .Ž .4 a a a24n
h

2ˆK z , L t , L t s a q V t f z z y 1Ž . Ž . Ž . Ž . Ž .Ž .a , w , n 3 a a6n
2g A t q 1r2 C tŽ . Ž . Ž .3y f zŽ .a3r22n C tŽ .
23g A t y 1r2 C tŽ . Ž . Ž .3 2y f z z y 1Ž . Ž .a a3r26n C tŽ .

K y 1Ž .Y , n 3 y1q V t f z z y 3z q o n .Ž . Ž . Ž .Ž .4 a a a24n

2.2. Choice of weights. We can see from the above results concerning
Ž y1 .coverage probability that one can achieve greater accuracy, up to o n , by

choosing ‘‘h’’ and ‘‘g ’’ such that the ny1 terms in the above quantities are
cancelled. This implies that ‘‘h’’ and ‘‘g ’’ will depend upon the particular
a-level as well as the cumulants of the respective functionals in an obvious
way. The task then remains to generate appropriate weights which satisfy
the moment conditions mentioned previously. We propose a simple class of
weights which satisfy those conditions and may be generated quite easily
using the standard computational packages; for other choices of weights see

wŽ . xBarbe and Bertail 1995 , page 32 .
Let Y i s 1, . . . , n be i.i.d. gamma r.v.’s with parameters l and ni : n

w Ž .xdenoted G l, v . Now choose l and v such that

2y1r2l s 4r 1 q hn ,Ž .
2.12Ž .

2 22 y1r2 y1r2v s 4r 1 q gn 1 q hnŽ .Ž .
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and for further convenience we may choose ‘‘g ’’ to be zero. By choosing g to
be zero we erase the effect of the nonlinear terms in the expansion. This
implies that one can get coverage with error of rate smaller than ny1 by
choosing ‘‘h’’ which only depends upon the influence function in the following

Ž Ž1.Ž .3.general sense, provided that an expansion exists and E T X, P is
nonzero,

4Ž1. 37 E T X , P z y 3zŽ .Ž . a a
2.13 h a s y ;Ž . Ž . 1r2 23 28 z y 1Ž1. Ž1. aE T X , P E T X , PŽ . Ž .Ž . Ž .ž /

7 1 Ž .for general weights we replace y by y K y 1 . Here we approximatey, n8 4
9K by . In practice we must replace the unknown quantities in the abovey, n 2

Žexpression by suitable estimates this should not change the level of accu-
. Ž .racy . We denote h by h a , which indicates that one needs to generate

different weights for different a-levels. This amounts to consulting a normal
Ž .table and then generating n gamma weights, adjusting h a accordingly. In

the case of the functionals discussed in this paper, we may choose for the
Ž .Kaplan]Meier estimator whether studentized or not ,

ˆ 37 V t z y 3zŽ .4 a a
2.14 h a sŽ . Ž .S 2ˆ8 z y 1V tŽ . a3

Ž .and for the case of the Nelson]Aalen estimate whether studentized or not ,

2.15 h a s yh a .Ž . Ž . Ž .L S

Ž 3 . Ž 2 .However, we point out that for large values of the ratio z y 3z r z y 1a a a

Ž .relative to n, there may be large departures from 2.11 . An ad hoc method
Ž .may be to modify the estimators in 2.14 to further dampen the effect of

Ž 3 . Ž 2 .z y 3z r z y 1 , or one may try to find another choice of weights whicha a a

works well in the area where this ratio is large. Another option, in the
Ž 2 .nonstudentized case, is to use the variance estimator S suggested in Barben

Ž . 2Ž .and Bertail 1995 in place of the unknown S P . Here for the studentized
estimators, we find a more satisfactory result by choosing ‘‘g ’’ different from
zero. That is, for the studentized Kaplan]Meier estimator, we choose

ˆK y 1 V tŽ .Ž .y , n 4 32.16 h s 3g and g s z y 3z ,Ž . Ž .a aˆ12 V tŽ .3

which for the weights considered here results in choosing

ˆ7 V tŽ .4student 32.17 h a s z y 3z .Ž . Ž . Ž .S a aˆ8 V tŽ .3
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Similarly, for the studentized Nelson]Aalen estimator, we can choose h and
g such that

2ˆ7 V t A t y 1r2 C tŽ . Ž . Ž . Ž .4 3student 32.18 h a s z y 3z .Ž . Ž . Ž .L a a2ˆ8 A t q 1r2 C tŽ . Ž . Ž .V tŽ . 33

studentŽ .As a general guideline in the studentized cases, one should use h a ,S
studentŽ . 2 Ž . Ž .h a for z - 2 and h a , h a otherwise.L a S L

Further, it is known that the W defined by the Y in this section havei : n i : n
Ž Ž ..beta l, l n y 1 distributions; of course it may be a bit troublesome to

generate directly exchangeable weights of this type. However, upon closer
Žinspection, one may generate directly k corresponding to the number of

. Ž Ždistinct ‘‘death’’ times independent r.v.’s V distributed as beta ld , l r yj j j
..d , where d s Ý 1 and r s Ý 1 for j s 1, . . . , k, since in thisj j q g DŽ j. j q g RŽ j.

case,

2.19 LL L t sLL V .� 4Ž . Ž . Ýw j½ 5
Ž .j : t j Ft

'Ž Ž .. Ž .Ž Ž ..Ž Ž ..Then var n L t s nÝ d rr 1 y d rr 1r lr q 1 and may bew j : tŽ j.F t j j j j j
Ž .used to play the role of s S P ; an appropriate weighted studentizedW , n n

version is defined analogously. The fact that gamma weights used in the
framework of the survival models discussed here induce independent incre-

Ž .ment bootstrapped hazard processes was essentially pointed out by Lo 1993a
w Ž .xsee also Hjort 1990 .

REMARK 2.2. The statements above imply that the choice of the scale
Ž . Ž .parameter v in 2.12 in practice i.e., computationally is irrelevant provided

that one has incorporated the effect of ‘‘g ’’ into ‘‘h’’ and adjusts the entire
Ž .distribution by the scale factor s . This is analogous to Lo’s 1993b resultsW , n

in the case of the BBC approximations for the mean, which states that
second-order accuracy depends only upon the skewness of the weights and a

'rescaling of the distribution by multiplication of r s mrs . In this case r s l
Ž . 'and 1r s s nl q 1 r n y 1 .Ž . Ž .W , n

2.3. Weighted bootstrap expansions. In this section we give the second-
order results for the weighted bootstrap expansions. Of interest is which
choice of weights approximate the entire sampling distribution of the estima-
tors considered here as well as the bootstrap. We note that under this
criterion we only find weights that work as well as Efron’s classical scheme,
although there are some real advantages in choosing continuous weights. It
seems, however, that one can do better if one is interested in approximating
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posterior quantities. Here the results hold under slightly weaker conditions;
that is, we can replace W1 and W2 by W19 and W29.

W19. Valid second-order Edgeworth expansions for the sampling distribu-
tions of the original statistics.

Ž . Ž .W29. Valid second-order von Mises expansions of T P y T P .w
< Ž <W39. lim sup lim sup E exp itY - 1.nª` t ª` 1, n

� 4 4W49. Y : n G 1 is uniformly integrable under YY .i, n n

PROPOSITION 2.3. Under W19]W49 we have, with probability 1 uniformly
in x, the validity of the following weighted bootstrap expansions:

bY , ny1r2 2 y1r2ˆH x , S t , S t s F x q n V t x y 1 f x q o n ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .n w 36
bY , ny1r2 2ˆK x , S t , S t s F x q n V t x y 1 f xŽ . Ž . Ž . Ž . Ž . Ž .Ž .n w 36

sY , ny1r2 2 y1r2y n V t x f x q o n ,Ž . Ž . Ž .32
bY , ny1r2 2ˆH x , L t , L t s F x y n V t x y 1 f xŽ . Ž . Ž . Ž . Ž . Ž .Ž .n w 36

s C1r2 tŽ .Y , ny1r2 2 y1r2y n x y 1 f x q o n ,Ž . Ž . Ž .
2

2s A t q 1r2C tŽ . Ž .Y , n 3y1r2ˆK x , L t , L t s F x q n f xŽ . Ž . Ž . Ž .Ž .n w 3r22C tŽ .
bY , ny1r2 2yn V t x y 1 f xŽ . Ž . Ž .36

2s A t y 1r2C tŽ . Ž .Y , n 3y1r2 2qn x y 1 f xŽ . Ž .3r22C tŽ .
qo ny1r2 .Ž .

Furthermore, upon choosing weights with

2.20 s s 1 q O ny1r2Ž . Ž .Y , n p

and

2.21 b s 1 q O ny1r2 ,Ž . Ž .Y , n p

one achieves greater accuracy than the normal approximation and achieves
the same level of accuracy as one gets for the case of the classical bootstrap
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w Ž y1 .xthe order of accuracy being O n . That is, for the case of the functionalsp
Ž .considered here we have uniformly in x, a.s.

y12.22 sup H x , T P , T P y H x , T P , T P s O nŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n n n w p
x

and

y12.23 sup K x , T P , T P y K x , T P , T P s O n .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n n n w p
x

ŽREMARK 2.3. Curiously, in the case of the Kaplan]Meier estimator vari-
.ance known , one only needs to adjust the skewness, b , of the weightsY , n

wwhich is exactly what happens in the case of the mean see Hauesler, Mason
Ž . Ž .xand Newton 1992 , Lo 1993b . Nevertheless, if one is interested in approxi-

Ž . Ž .mating posterior quantities, as in Lo 1993a and Wells and Tiwari 1994 ,
Ž .then one may need to choose different weights. See Weng 1989 , and Lo

Ž .1993b for some ideas on the proper choice of weights. We point out that
these bootstraps are direct competitors with other simulation techniques for
evaluating posterior distributions such as those in Damien, Laud and Smith
Ž .1996 . One needs to develop appropriate expansions for the posterior distri-
butions in question and then if possible choose the moments for the weights
to match the terms in those expansions. We conjecture that at least for the
posterior distribution of the survival estimator with respect to Beta-neutral

w Ž . Ž .xpriors see, for instance, Lo 1993a , Hjort 1990 choosing weights with
Ž .skewness 2 q o 1 will give the best order of approximation. We note furtherp

that, although we have not explicitly shown the validity of a second-order
Edgeworth expansion for the classical bootstrap version of the functionals
considered here, this is easily obtained using the results in the thesis of

Ž . w Ž . Ž .xBertail 1992 see also Helmers 1991 , Chen and Lo 1996 .

3. Von Mises representations. One of the key ideas is to obtain a von
Ž . Ž .Mises representation of the functional of interest, say T P y T Q , which

holds uniformly, at a suitable fixed P, over the class of measures Q g PP
where PP is required to be a convex class of probability measures containing
the Dirac measures. We now establish the following third-order von Mises
representation for the Kaplan]Meier and cumulative hazard estimators. The

Ž y1 .aim is then to show that these representations are valid up to o n for thep
specific measures P , P , which correspond to the weighted bootstraps andw n
the usual empirical measure. To facilitate this, we employ a distance indexed

Ž .by a class of functions suggested by Barbe and Bertail 1995 which admits a
larger class of Frechet differentiable functionals than the usual Kolmogorov

Ž .norm. The idea is similar to Dudley 1990 . Define, for the functionals
considered here,

Ž1.HH s T x , P k 1 I ; t F t , C g DD ,Ž .Ž .½ 5T � x g C4
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Ž1.Ž . Ž .where T x, P we suppress the dependence on t is the influence function
Ž .corresponding to T P and DD is a sufficiently rich class of V]C subsets of

q � 4R = 0, 1 , and define the distance

d Q, P s sup hd Q y P .Ž . Ž .HHH
hgHH

REMARK 3.1. In general, to get von Mises expansions valid to the third
order, it may be necessary to include T Ž2. and T Ž3. in HH as well. The notionT

Ž .of using another pseudo metric instead of the Kolmogorov distance to gain
the Frechet differentiability of a wider class of statistical functionals has
been recently discussed in numerous articles by Dudley and others. We cite

Ž . Ž . Ž .Dudley 1992 , 1994 and Arcones and Gine 1992 as further references.´

For the sake of ease of notation, we define, whenever they exist, for any
Q / P the following:

dQ s, dŽ .˜ � 4L t s I s F t , d s 1 ,Ž . H Q AŽ .s3.1Ž .
˜ ˜S t s 1 y DL s ,Ž . Ž .Ž .Ł

sFt

� Ž . � 44 w Ž .xwhere A s x s y, d 9 : y G s, d 9 g 0, 1 see Pons and Turckheim 1991 .s

Ž .PROPOSITION 3.1. Choose t such that P A ) h ) 0; then for all Q sucht

Ž .that Q A ) h and t - t we have the following:t

L̂ t y L tŽ . Ž .

s T Ž1. x , L t d Q y P xŽ . Ž . Ž .Ž .H
1 Ž2.q T x , y , L t d Q y P y d Q y P xŽ . Ž . Ž . Ž . Ž .Ž .H2

1 Ž3.q T x , y , z , L t d Q y P y d Q y P z d Q y P xŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H6

3qO d Q, PŽ .Ž .HHL

and

˜ Ž1.S t y S t s T x , K P t d Q y P xŽ . Ž . Ž . Ž . Ž . Ž .Ž .H
1 Ž2.q T x , y , K P t d Q y P y d Q y P xŽ . Ž . Ž . Ž . Ž . Ž .Ž .H2

1 Ž3.q T x , y , z , K P t d Q y P y d Q y P zŽ . Ž . Ž . Ž . Ž . Ž .Ž .H6

3
= d Q y P x q O d Q, PŽ . Ž . Ž .Ž .HHP
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Ž1.Ž . Ž1.Ž Ž ..where HH , HH are defined as HH with T x, P replaced by T x, L t andL P T
Ž1.Ž Ž .Ž ..T x, K P t , respectively. It is sufficient to use HH throughout.L

Ž̃ . Ž .PROOF. We show how one may obtain the result for S t y S t ; the
Ž . Ž .arguments for L t y L t are straightforward. From the Duhamel equations

w Ž .xsee, for instance, Gill 1994 , we have

S̃ s y Y s 1Ž . Ž .t˜3.2 S t y S t s yS t dM s ,Ž . Ž . Ž . Ž . Ž .H ˜S s Y sŽ . Ž .Y s0 Ž .

˜Ž . Ž . Ž . Ž .where Y s s P A , Y s s Q A ands s

3.3 M t s M t d Q y P x .Ž . Ž . Ž . Ž . Ž .H x

Ž .M t is defined in Section 5. For further illustration, the arguments for thex
first order result are given. That is,

˜ Ž1.S t y S t s T x , K P t d Q y P x q o d Q, PŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H HH

1t
s yS t dM s q o d Q, P ,Ž . Ž . Ž .Ž .H HHY sŽ .0

3.4Ž .

which indicates that it is necessary to show that

˜dM s S s y Y s dM sŽ . Ž . Ž . Ž .t t
3.5 y s o d Q, P .Ž . Ž .Ž .H H HH˜Y s S s Y sŽ . Ž . Ž .Y s0 0 Ž .

˜Ž . Ž . Ž .From 3.2 one can expand S s y rS s and then combine terms on the l.h.s.
Ž .of 3.5 to get

˜ ˜syY s y Y s Y s S u y Y u dM u dM sŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .t
3.6 y .Ž . H H˜ ˜ ˜ Y u Y sŽ . Ž .Y s Y s S u Y u0 0Ž . Ž . Ž . Ž .

Notice that for constants K and K ,1 2

˜Y s y Y sŽ . Ž .
3.7 F K d Q, PŽ . Ž .1 HHỸ sŽ .

and

˜syY s S u y Y u dM uŽ . Ž . Ž . Ž .
3.8 F K d Q, P ,Ž . Ž .H 2 HH˜ ˜ Y uŽ .Y s S u Y u0Ž . Ž . Ž .
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which gives the desired result. The arguments for the third-order result are
Ž̃ . Ž .similar and upon applying the Duhamel equation recursively on S s y rS s

and gathering terms, one arrives at the following:

dM sŽ .t 3
3.9 V s F KO d Q, P ,Ž . Ž . Ž .Ž .H HHPY sŽ .0

where

3 2˜ ˜ syY s y Y s Y s y Y s dM uŽ . Ž . Ž . Ž . Ž .Ž . Ž .
V s s yŽ . H2 ˜ ˜ Y uŽ .Y s Y s Y s Y s 0Ž . Ž . Ž . Ž .

˜ ˜sy uyS u y Y u dM v Y u y Y u dM uŽ . Ž . Ž . Ž . Ž . Ž .Ž .
q 1 y y yH H˜ Y v Y u Y uŽ . Ž . Ž .S u Y u0 0Ž . Ž .

˜ ˜syY s y Y s S u y Y u dM uŽ . Ž . Ž . Ž . Ž .Ž .
y 1 y .H˜ ˜ Y uŽ .Y s S u Y u0Ž . Ž . Ž .

wFurthermore, since HH and HH are Donsker classes see, for instance, PollardL P

Ž .x Ž .1990 and by the result of Praestgaard and Wellner 1993 we have that for
Q s P , or P ; that is, for weights which satisfy conditions A1]A5 in Praest-n w

Ž . Ž . Ž y1r2 .gaard and Wellner 1993 , that d Q, P s O n . This implies that theseHH p
Ž y1 .expansions are valid up to o n for the classical bootstrap, the Bayesianp

bootstrap and the weights considered in Section 2, among many others. I

REMARK 3.2. Sufficient almost sure results for remainders of general von
wŽ . xMises functionals were obtained by Barbe and Bertail 1995 , Theorem 2.1

Ž .under a weaker than Donsker condition on the class of functions. That
Ž . Ž y1r2Ž .1r2 . Ž .is, we have d Q, P s O n log n a.s. P and d P , P sHH p HH w n

Ž y1r2Ž .1r2 .O n log n a.s. P. This is attractive, since in general one may not bew
able to verify a Donsker class condition on HH where, for instance, one mayT
need to include T Ž2. and T Ž3.. Their Theorem 2.1 gives us the almost sure
results in Section 2. Further, if one is interested in LIL-type results, one may

Ž .perhaps use the work of Arcones and Gine 1995 .´

4. Validity of expansions. We now proceed to show how one may verify
Ž .the necessary technical conditions as outlined in Lai and Wang 1993 to

obtain the validity of the third-order Edgeworth expansions of the sampling
distributions. There they show that the Edgeworth expansion for the case of

Ž .the cumulative hazard assuming a known variance is valid up to the third
order. Their arguments involve an eigenvalue-type condition similar to but

Ž .more general than that in Bickel, Gotze and van Zwet 1986 . We believe the¨
Ž .results of Gotze 1979, 1984 would be of use here as well. As in Lai and¨
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Ž . Ž . Ž . Ž . Ž . vŽ .Wang 1993 , let g z s H h s dM s where h s s L s . Now define thev v z v
operators,

W s T Ž2. x , z , K P g z dP z ,Ž . Ž . Ž .Ž .Hv v

S s f Ž2. x , z , L t g z dP z ,Ž . Ž . Ž .Ž .Hv v

U s f Ž2. x , z , K P g z dP z ,Ž . Ž . Ž .Ž .Hv v

where

T Ž2. x , z , L t T Ž1. z , L t SŽ1. x , C tŽ . Ž . Ž .Ž . Ž . Ž .
Ž2.f x , z , L t s yŽ .Ž . 1r2 3r2C t 2C tŽ . Ž .

T Ž1. x , L t SŽ1. z , C tŽ . Ž .Ž . Ž .
y ,3r22C tŽ .
T Ž2. x , z , K P T Ž1. z , K P SŽ1. x , S2C tŽ . Ž . Ž .Ž . Ž . Ž .Ž2.f x , z , K P s yŽ .Ž . 1r2 3 3r2S t C t 2S t C tŽ . Ž . Ž . Ž .

T Ž1. x , K P SŽ1. z , S2 t C tŽ . Ž . Ž .Ž . Ž .
y .3 3r22S t C tŽ . Ž .

REMARK. The second canonical gradients associated with the functional
Ž . Ž2.Ž Ž .. Ž2.Ž Ž .Ž ..f Q evaluated at P are f x, z, L t and f x, z, K P t in the case of

the cumulative hazard and survival function, respectively. The first canonical
2Ž . Ž1.gradient is of S P denoted by S . See Section 5 for more details.

In order to verify the third-order Edgeworth expansions in the case of the
Ž .Kaplan]Meier estimator standardized by the true variance , the ‘‘studen-

tized’’ cumulative hazard, and the ‘‘studentized’’ Kaplan]Meier estimator,
one needs now to show the linear independence of the vectors W , S , U , forv v v

Ž .v s 1, . . . , k which works for any k G 1 , in the respective cases. We do not
ˆyL Ž t .explicitly treat the case of e here, but note that the required result

follows easily from arguments similar to those below. We first show that the
condition is satisfied for the Kaplan]Meier estimator. Let us suppose that
Ýk a W s 0 a.s., then we have thatvs1 v v

kŶ s y Y sŽ . Ž .t x
a h s dL sŽ . Ž .ÝH v vY sŽ .0 vs1

ksy dM sŽ .t xs a h u dL uŽ . Ž .ÝH H v v Y sŽ .0 0 vs1

k
tŽ1.y T x , L t a h s dL s a.s.Ž . Ž . Ž .Ž . ÝH v v

0 vs1
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Ž . Ž .Note the similarity between this and equation 2.11 in Lai and Wang 1993 .
It follows that we may use the remainder of their argument to obtain the
desired result. That is, compute the conditional expectations under a filtra-
tion FF , for any g - t, and then proceed to take variances on both sides of theg

resulting expressions. Using standard martingale results for counting process
models, one can easily calculate these. The argument is then finished off by
using the absolute continuity of L. For the case of the studentized version of
the hazard Ýk a S s 0 a.s. impliesvs1 v v

k
t ˆ2C t Y s y Y s Y s a h s dL sŽ . Ž . Ž . Ž . Ž . Ž .� 4 ÝH x v v

0 vs1

ksy dM sŽ .t xy2C t a h u dL uŽ . Ž . Ž .ÝH H v v Y sŽ .0 0 vs1

k
tŽ1.s S x , C t a h s dL sŽ . Ž . Ž .Ž . ÝH v v

0 vs1
k1tŽ1.qT x , L t a h s dL sŽ . Ž . Ž .Ž . ÝH v vY sŽ .0 vs1

ksytŽ1.qT s, L t a h u dL u dC s a.s.Ž . Ž . Ž . Ž .Ž . ÝH H v v
0 0 vs1

Now arguing along similar lines as above, again using the absolute continuity
of L, one can obtain the required result although the resulting expressions
will be a bit more complicated. The linear independence of the vectors U canv
be shown using similar arguments as well. These expansions are valid

Ž .essentially because under 2.6 the kernels are bounded, and they contain an
absolutely continuous part.

5. Canonical gradients. In this section we present the first three
canonical gradients for the cumulative hazard and product integral represen-
tation of the survival function as well as the first two gradients of their
asymptotic variances. The canonical gradients are simply the Gateaux
derivatives of the above-mentioned functionals with the first canonical gradi-
ent being the influence function. They are perhaps the keystone to all the
work in this paper and play a role at every level. We derive these results
based on the functionals evaluated at P s P rather than, as is the case ofFG

Ž .Reid 1981 , where the influence curve is computed by taking derivatives with
Ž . Ž . t� Ž .respect to the two sub survival functions. Let M t s H dN s yx 0 x

ˆ ˆŽ . Ž .4 Ž . Ž . Ž . Ž .Y s dL s where N t s I y F t, d s 1 and Y t s I y G t . The canoni-x x x
Ž1. Ž2. Ž3. Ž .cal gradients T , T , T for L t are given first below:

tŽ1.T x , L t s 1rY s dM s ,Ž . Ž . Ž .Ž . H x
0
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tŽ2. 2ˆT x , y , L t s Y s y Y s rY s dM sŽ . Ž . Ž . Ž . Ž .Ž . ½ 5H y x
0

t 2ˆq Y s y Y s rY s dM s ,Ž . Ž . Ž . Ž .� 4H x y
0

tŽ3. 3ˆ ˆT x , y , z , L t s 2 Y s y Y s Y s y Y s rY s dM sŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . � 4½ 5H y z x
0

t 3ˆ ˆq2 Y s y Y s Y s y Y s rY s dM sŽ . Ž . Ž . Ž . Ž . Ž .� 4 � 4H x x y
0

t 3ˆ ˆq2 Y s y Y s Y s y Y s rY s dM sŽ . Ž . Ž . Ž . Ž . Ž .� 4½ 5H y x x
0

Ž . Ž Ž .. Ž . Ž .and for S t s Ł 1 y DL s s K P suppressing the dependence on t ,sF t

T Ž1. x , K P s yS t T Ž1. x , L t ,Ž . Ž . Ž .Ž . Ž .

T Ž2. x , y , K P s yS t T Ž2. x , y , L t y T Ž1. x , L t T Ž1. y , L tŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .½
q DT Ž1. x , L s DT Ž1. y , L sŽ . Ž .Ž . Ž .Ý 5

sFt
and

T Ž3. x , y , z , K PŽ .Ž .

s yS t T Ž3. x , y , z , L t q T Ž1. x , L t T Ž1. y , L t T Ž1. z , L tŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .½
Ž1. Ž2.y T x , L t T y , z , L tŽ . Ž .Ž . Ž .

qT Ž1. y , L t T Ž2. x , z , L tŽ . Ž .Ž . Ž .
Ž1. Ž2.qT z , L t T x , y , L tŽ . Ž .Ž . Ž .

qT Ž1. x , L t DT Ž1. y , L s DT Ž1. z , L sŽ . Ž . Ž .Ž . Ž . Ž .Ý
sFt

qT Ž1. y , L t DT Ž1. x , L s DT Ž1. z , L sŽ . Ž . Ž .Ž . Ž . Ž .Ý
sFt

qT Ž1. z , L t DT Ž1. x , L s DT Ž1. y , L sŽ . Ž . Ž .Ž . Ž . Ž .Ý
sFt

q DT Ž1. x , L s DT Ž2. y , z , L sŽ . Ž .Ž . ŽÝ
sFt

q DT Ž1. y , L s DT Ž2. x , z , L sŽ . Ž .Ž . Ž .Ý
sFt

q DT Ž1. z , L s DT Ž2. x , y , L sŽ . Ž .Ž . Ž .Ý
sFt

y2 DT Ž1. x , L s DT Ž1. y , L s DT Ž1. z , L s ,Ž . Ž . Ž .Ž . Ž . Ž .Ý 5
sFt

Ž . Ž . Ž .where DU s s U s y U s y .
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REMARK 5.1. The T Ž1., T Ž2., T Ž3. corresponding to the functional eyL Ž t . is
Ž .the same as for K P except for the omission of the D terms above. This gives

ˆylŽ t .Ž̂ .a better idea of the difference between the two estimators S t and e ,
which becomes apparent in their respective Edgeworth expansions.

2Ž . Ž1. Ž2.The first two canonical gradients for S P , denoted by S and S , are
2Ž . Ž . 2Ž . Ž .now given in the particular cases where S P represents C t and S t C t

which are used in the ‘‘studentized’’ expansions:

ˆ1 Y s y Y sŽ . Ž .� 4t tŽ1.S x , C t s dM s q dC s ,Ž . Ž . Ž .Ž . H Hx2 Y sY s Ž .Ž .0 0

Ŷ s y Y sŽ . Ž .½ 5t yŽ2.S x , y , C t s y 2 dN s y dN s� 4Ž . Ž . Ž .Ž . H x3Y sŽ .0

Ŷ s y Y sŽ . Ž .� 4t xy2 dN s y dN sŽ . Ž .� 4H y3Y sŽ .0

ˆ ˆY s y Y s Y s y Y sŽ . Ž . Ž . Ž .� 4 ½ 5t x y
q6 dC s ,Ž .H 2Y sŽ .0

and

SŽ1. x , S2 t C t s 2S t T Ž1. x , K P C t q S2 t SŽ1. x , C tŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .
SŽ2. x , y , S2 t C t s 2S t T Ž2. x , y , K P C tŽ . Ž . Ž . Ž . Ž .Ž .Ž .

q2T Ž1. x , K P T Ž1. y , K P C tŽ . Ž . Ž .Ž . Ž .
q2S t T Ž1. x , K P SŽ1. y , C tŽ . Ž . Ž .Ž . Ž .
q2S t T Ž1. y , K P SŽ1. x , C tŽ . Ž . Ž .Ž . Ž .
qS2 t SŽ2. x , y , C t .Ž . Ž .Ž .

REMARK 5.2. As mentioned previously, for the studentized version of the
statistics considered here, one needs to obtain the first three canonical

Ž . Ž Ž . Ž .. Ž . Ž1. Ž2. Ž3.gradients for f Q s T Q y T P rS Q evaluated at P, say f , f , f .
These are constructed based on T Ž1., T Ž2., T Ž3. and SŽ1., SŽ2.. We omit the
details.

6. Edgeworth expansions for the sampling distributions. Here we
give the explicit form of the Edgeworth expansions for the sampling dis-
tribution of the statistics considered. For some brevity, we give the general
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form of the expansion below and then explicitly the cumulant terms in the
respective cases:

K P K PŽ . Ž .1, 1 1, 3y1r2 2H x , T P , T P s F x y n q x y 1 f xŽ . Ž . Ž . Ž . Ž .Ž .n n ž /2 6

K P K PŽ . Ž .2, 2 2, 4y1 3y n x q x y 3 xŽ .ž 2 24

K PŽ .2, 6 5 3q x y 10 x q 15x f xŽ . Ž ./72

q o ny1 .Ž .

Ž Ž . Ž .. Ž .The expansion for K x, T P , T P has the same form with the K Pn n i, j
X Ž . Ž . X Ž .replaced by K P . The cumulants K P and K P are calculated basedi, j i, j i, j

upon expectations involving the canonical gradients. Detailed expressions for
Ž .these are given in Barbe and Bertail 1995 in the general setting. The

cumulants associated with the Kaplan]Meier estimator in the nonstuden-
tized case are

K P s 0,Ž .1, 1

2 y3r2K P s y A t y 3r2 C t C t ,Ž . Ž . Ž . Ž . Ž .1, 3 3

2 y1K P s C t q 3r2 C t q A t C t ,Ž . Ž . Ž . Ž . Ž . Ž .2, 2 3

3A t q 22C t q 20HC s dA sŽ . Ž . Ž . Ž .4 3
K P sŽ .2, 4 2C tŽ .

324HC s dL sŽ . Ž .
q y 3,2C tŽ .

K P s K 2 P ,Ž . Ž .2, 6 1, 3

Ž . tŽ Ž . Ž .. Ž . tŽ Ž . jy1Ž ..where C t s H dL s rY s and A t s H dL s rY s for j s 3, 4. The0 j 0
ˆŽ Ž . Ž ..cumulants for H x, L t , L t are,n

K P s 0,Ž .1, 1

2 y3r2K P s A t q 3r2 C t C t ,Ž . Ž . Ž . Ž . Ž .1, 3 3

y1K P s C t q A t C t ,Ž . Ž . Ž . Ž .2, 2 3

3A t q 2C t y 4HC s dA sŽ . Ž . Ž . Ž .4 3
K P sŽ .2, 4 2C tŽ .

324HC s dL s q 12C t A tŽ . Ž . Ž . Ž .3q y 3,2C tŽ .
K P s K 2 PŽ . Ž .2, 6 1, 3



L. F. JAMES1618

ˆyL Ž t .Ž Ž ..and for H x, e , S tn

K P s C1r2 t ,Ž . Ž .1, 1

2 y3r2K P s y A t y 3r2 C t C t ,Ž . Ž . Ž . Ž . Ž .1, 3 3

2 y1K P s C t q 1r4 C t C t ,Ž . Ž . Ž . Ž . Ž .2, 2

3A t q 9C t y 4HC s dA sŽ . Ž . Ž . Ž .4 3
K P sŽ .2, 4 2C tŽ .

324HC s dL s y 2C t A tŽ . Ž . Ž . Ž .3q y 3,2C tŽ .
K P s K 2 P .Ž . Ž .2, 6 1, 3

In the studentized case, the calculations for the cumulants are a bit more
2Ž .tedious since they now involve the canonical gradients for S P as well.

ˆŽ Ž .Here we just give the explicit form for the first two cumulants. K x, S t ,n
Ž ..S t has cumulants

X 2 y3r2K P s A t y 3r2 C t C t ,Ž . Ž . Ž . Ž . Ž .1, 1 3

X 2 y3r2K P s 2 A t y 3r2 C t C t ,Ž . Ž . Ž . Ž . Ž .1, 3 3

˜Ž Ž . Ž ..and K x, L t , L t has cumulantsn
X 2 y3r2K P s y A t q 1r2 C t C t ,Ž . Ž . Ž . Ž . Ž .1, 1 3

K X P s y2 A t Cy3r2 t .Ž . Ž . Ž .1, 3 3

7. Concluding remarks. This work is a detailed adaptation of the
Ž .methods of Barbe and Bertail 1995 to a complex situation. It blends and

hopefully highlights some ideas from empirical process theory, martingale
theory and the theory of functional derivatives which may be of independent
interest. It is hoped the reader has been given an idea of how to apply these
techniques to other situations and also that indeed the classical bootstrap
may not always be the best choice. It is believed that the utilization of these
weighted bootstrap methods from a practical viewpoint will not simply come
about by the technical measures of accuracy illustrated here alone. Section
2.2 was written mostly with the potential user in mind. One will find that the
choice of gamma weights in this setting is easy to implement in standard
packages such as Splus. The fact that the weights are continuous does away
with ties which occur with the classical bootstrap and results in slightly
faster running times. Some preliminary simulations have been conducted,
but it is felt that such a study should be done on a larger scale. In this setting
there is the potentially interesting question of approximating a binomial type
distribution by a continuous one analogous to the case of continuity correc-
tions for normal approximations to binomial distributions. It is not claimed
that the choice of gamma weights is optimal in a global sense; it will be
interesting to compare its performance to that of other weights, and this work
gives a more precise guideline to the choice of possible schemes. Nevertheless,
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the ease of use of gamma type weights, and its performance under the two
criteria considered here, point to a very formidable competitor to the classical
scheme rather than just a mathematically interesting doppelganger. It is¨
hoped that this work has also reminded the reader that bootstrap methods
are viable alternatives to other techniques used to approximate posterior
quantities.
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