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Ruhr-Universität Bochum

A new test is proposed for the comparison of two regression curves f
and g. We prove an asymptotic normal law under fixed alternatives which
can be applied for power calculations, for constructing confidence regions
and for testing precise hypotheses of a weighted L2 distance between f and
g. In particular, the problem of nonequal sample sizes is treated, which
is related to a peculiar formula of the area between two step functions.
These results are extended in various directions, such as the comparison
of k regression functions or the optimal allocation of the sample sizes when
the total sample size is fixed. The proposed pivot statistic is not based on
a nonparametric estimator of the regression curves and therefore does not
require the specification of any smoothing parameter.

1. Introduction. The comparison of two (or more) regression curves is
a fundamental problem in applied regression analysis. Usually these curves
correspond to the means of a control (C) and a treatment (T) outcome where the
predictor variable is an adjustable parameter, such as time or concentration
of a drug ingredient. In many cases of practical interest, a prepost design is
appropriate to compare these treatments; that is, after rescaling the covariable
into the unit interval we end up with a sample of n independent pairs of
observations,

�Xi�Yi� = �f�ti� + εi� g�ti� + ηi�� i = 1� 
 
 
 � n�(1)

where the design points �ti�i=1�


�n are fixed, such that 0 ≤ t1 < · · · < tn ≤ 1�
and the regression functions f and g correspond to the expected response of
treatment and control, respectively. In this case it is common practice to base
any decision concerning f− g on the individual differences

Di = Xi −Yi� i = 1� 
 
 
 � n�

which turns the problem into a simple one-sample problem with independent
observations Di� i = 1� 
 
 
 � n. Hence we may apply any test for the null
hypothesis that a regression function (here f− g) vanishes in order to make
a decision about

H0
 f = g versus K0
 f �= g
(2)

Of course, under the assumption of a linear model, we end up with the classi-
cal analysis of covariance, provided the error distribution is normal [Hocking
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(1985)]. However, this method often has shortcomings, because the assump-
tion of a specified linear model or the normal assumption may be violated
and hence various authors started to deal with the nonparametric set-up (1).
In this model, various tests for the hypotheses in (2) were suggested during
the last decade, mostly motivated by assessing the goodness of fit of a specific
linear model. We refer to the work of Cox, Koh, Wahba and Yandell (1988), Eu-
bank and Spiegelmann (1990), Azzalini and Bowman or Härdle and Mammen
(1993) and the references given there.

In this paper we generalize the above set-up to the comparison of two (or
several) independent groups corresponding to C and T, typically with different
sample sizes m and n. Hence, a reduction to the individual differences Di is not
possible any more. Although this problem is rather important in many fields
where empirical methods are applied, the area of testing hypotheses as in (2)
under this assumption is relatively new. Härdle and Marron (1990) and King,
Hart and Wehrly (1991) compare two regression functions that have been
estimated using kernel estimators. Hall and Hart (1990) provide a bootstrap
test in that set-up; however, all these approaches require the assumption of
equal sample sizes n = m.

The aim of this paper is to provide a consistent test for the problem (2) in
the situation of two independent samples with possibly unequal sample sizes.
Our approach is based on measuring the discrepancy between f and g by a
weighted L2-distance M2 = M2�f�g� = ��f−g��2. This approach is somewhat
related to King, Hart and Wehrly’s work [(1991), page 240]. In fact, it turns
out that their test statistic, considered on page 245, is a special case of our
test in the case of equal sample sizes n = m. However, we will demonstrate
that the unequal sample case is much more difficult and leads to a rather
different variance of the pivot statistic compared to the equal sample case,
although asymptotic normality still holds true. For example, in the case of
both designs being asymptotically uniform, we find the curious result that
the variance depends additionally on the numerator and denominator r and
s of the reduced fraction of r/s = m/n. This phenomenon does not vanish
asymptotically as one might expect. In Section 2 an explicit expression of the
limiting variance will be given. For the case of nonuniform designs, we could
not find such an explicit expression; however, a central limit theorem can still
be proved, which allows for a practical performance of the corresponding test.

Particularly, we show asymptotic normality in all cases under the null hy-
pothesis H0 in (2) as well as under fixed alternatives ��f − g��2. This allows
the computation of confidence intervals for M2 as well as testing precise hy-
potheses

Hπ 
 M2 ≥ π versus Kπ 
 M2 ≤ π�

where π is the minimal distance between regression functions considered rel-
evant. These results are generalized to the comparison of more than two (in-
dependent) treatments.

The paper will be organized as follows. In Section 2 we define the test
statistic and present as the main result its asymptotic normality under fixed
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alternatives. The estimation of M2 in the unequal sample case is crucial for
our analysis. The proposed test does not depend on any choice of bandwidth
or other smoothing parameters and is very simple to perform because of the
asymptotic normal law and the fact that all statistics under consideration can
be represented as quadratic forms. Section 3 is devoted to additional gener-
alizations and remarks. In Sections 4.1 and 4.2 we report a small simulation
study on size and power of our test and a comparison with other procedures.
In Section 4.3 we present a data example and reanalyze briefly the rain data
discussed by Hall and Hart (1990). In order to improve readability for those
readers who are not interested in technical details, all proofs will be deferred
to the Appendix.

2. The estimator: some asymptotic and finite sample theory. Con-
sider two independent samples of m and n observations:

X�t1� i��Y�t2� j� ∈ L2� i = 1� 
 
 
 �m� j = 1� 
 
 
 � n�

where (w.l.o.g.) the range of the (deterministic) regressor t is the unit interval
�0�1�. Let further t1� i < t1� i+1 �t2� j < t2� j+1�, i = 1� 
 
 
 �m−1 (j=1� 
 
 
 � n−1);
that is, we will not allow for repeated measurements, and define t1�0 = t2�0 
=
0� t1�m+1 = t2� n+1 
= 1. We assume that we may rewrite each random vari-
able as

Xi = X�t1� i� = f�t1�i� + ε�t1� i� = fi + εi� i = 1� 
 
 
 �m�

Yj = Y�t2� j� = g�t2�j� + η�t2� j� = gj + ηj� j = 1� 
 
 
 � n�

where the regression functions and random variables satisfy f�g ∈ L2�0�1�
and ε�η ∈ L2, such that

E�ε�t�� = E�η�t�� = 0� V�ε�t�� = σ2
ε �t�� V�η�t�� = σ2

η�t�

Throughout this paper, the mean functions f and g and variance functions σ2

ε

and σ2
η are required to be Hölder continuous of order γ > 1/2� that is,

�C1� f�g� σ2
ε � σ

2
η ∈ Hγ�0�1� for some γ > 1/2


For the ratio of the sample sizes we assume

�C2� m ≤ n such that lim
n�m→∞m/n → λ ∈ �0�1�


We use the following notation throughout a∨b = max�a� b�, a∧b = min�a� b�.
For the moment, we restrict our consideration to asymptotically uniform de-
signs (see Section 3 for the general case),

�C3�
max

i=0�


�m

∣∣∣∣#1� i −
1
m

∣∣∣∣ = o��m ∨ n�−1��

max
j=0�


�n

∣∣∣∣#2� j −
1
n

∣∣∣∣ = o��m ∨ n�−1��
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where #1� i = t1� i+1 − t1� i and #2� j = t2� j+1 − t2� j denote the differences of
successive locations of measurements. Observe that (C2) implies o�n−1� =
o�m−1� = o��m ∨ n�−1�.

2.1. Estimation of the L2 distance. As a measure of discrepancy between
f and g we propose

M2 = ��f− g��2 =
∫ 1

0
�f�t� − g�t��2 dt�

which allows us to rewrite the hypotheses in (2) as

H0
 M2 = 0 versus K0
 M2 �= 0


In the unequal sample case, the following decomposition of M2 is crucial for
the estimation of M2. Rewriting

M2�f�g� =
m∑
i=0

n∑
j=0

∫ 1

0
I�t1� i� t1� i+1��t�I�t2� j� t2� j+1��t� �f�t� − g�t��2 dt(3)

suggests estimating M2 as

M̂2 
=
m∑
i=0

n∑
j=0

λij
(
Xi+1 −Yj+1

)(
Xi −Yj

)
�

where X0 
= X1� Y0 
= Y1 and Xm+1 
= Xm� Yn+1 
= Yn, m�n ≥ 1. Here
the weights λij are defined by

λij 
=
∫ 1

0
I�t1� i� t1� i+1� �t� I�t2� j� t2� j+1� �t�dt

= (
t1� i+1 ∧ t2� j+1 − t1� i ∨ t2� j

)
I�t1� i+1∧t2� j+1>t1� i∨t2� j�


(4)

The estimator M̂2 can be motivated as follows. Each product of differences
Dij = �Xi+1 −Yj+1��Xi−Yj� has expectation �f�t1� i+1�−g�t2� j+1���f�t1� i�−
g�t2� j��, which has to be weighted with λij in order to approximate

I�t1� i� t1� i+1��t�I�t2� j� t2� j+1��t� �f�t� − g�t��2

in (3). Integration with respect to t yields M̂2.

Lemma 1. Under conditions (C1)–(C3) we have

E�M̂2 −M2� = o��n ∨m�−1/2�


In the next theorem we assume that the variances

σ2
ε �t� ≡ σ2

ε and σ2
η�t� ≡ σ2

η(5)

are constant but not necessarily equal. Further, we rewrite the ratio of the
sample sizes as

m/n = r/s ≤ 1 such that gcd�r� s� = 1�(6)
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where gcd�r� s� denotes the greatest common divisor of r and s
 If m = n we
abbreviate r = s = 1. If condition (6) holds, we define, for integers n ≥ m,

ι�r� s� = �r+ s�1 − r2 + 3rs
3rs2


(7)

Theorem 1. Under conditions (C1)–(C3) and (5) we have for m�n → ∞
such that

m/�n+m� ≡ κ ∈ �0�1/2��(8)

that

�n+m�1/2(M̂2 −M2) �⇒� � �0� ξ2��
where � �0� ξ2� denotes the centered normal distribution with variance ξ2

given by

ξ2�M2� = ξ2 = κ−1�σ4
ε + 4σ2

εM
2� + �1 − κ�−1(σ4

η + 4σ2
ηM

2)+ 2σ2
εσ

2
ηι�r� s�


In particular, if n/m = q ∈ N we have

ξ2 = �q+ 1��σ4
ε + 4σ2

εM
2� + �1 + q−1�(σ4

η + 4σ2
ηM

2)+ 2σ2
εσ

2
η�1 + q−1�

and if n = m this reduces to

ξ2 = 2�σ2
ε + σ2

η�2 + 8M2�σ2
ε + σ2

η�


Remark 1. Two remarks are appropriate when condition (C3) is restricted
to an equidistant design, that is,

t1� i = i/m� t2� j = j/n� i = 1� 
 
 
 �m� j = 1� 
 
 
 � n
(9)

On the one hand, it is shown in Lemma A1 and the proof of Theorem 1 (see
the Appendix) that in this case ξ2 is exactly the finite sample variance of
�n+m�1/2M̂2 if f ≡ g ≡ const. On the other hand, it follows from the proof of
Theorem 1 (see the Appendix) that assumption (8) in Theorem 1 can be relaxed
to sequences satisfying m ∧ n → ∞, such that m/�n +m� → κ ∈ �0�1/2�. In
this case one has to replace ι�r� s� in Theorem 1 by limm∧n→∞ ι�rm� sn� where
�rm� sn� defines a sequence of integers which fulfills �rm� sn� → �r� s�, such
that (6) holds.

Remark 2. The function ι occuring in the limiting variance ξ2 of Theo-
rem 1 deserves a more detailed discussion. Note that ξ2 does not depend
solely on the ratio of the standardized sample size κ, as one might expect
from various other two-sample limit theorems. Suprisingly, we find that the
numerator r and denominator s of the reduced fraction m/n determines the
asymptotic variance additionally. Note further that this phenomenon does not
vanish asymptotically.

Remark 3. In order to obtain confidence intervals or tests concerning ��f−
g��2, it remains to estimate the unknown variances σ2

ε � σ
2
η occuring in the
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limiting variance ξ2 in Theorem 1. To this end, standard estimators of the
variance in nonparametric regression can be utilized. For an overwiew and
comparsion of various estimators, see Carter and Eagleson (1992) and Buckley,
Eagleson and Silverman (1988) or Dette, Munk and Wagner (1997, 1998). A
very simple method was suggested by Rice (1984) which leads to an estimator
for σ2

ε and σ2
η as

σ̂2
ε 
= 1

2�m− 1�
m∑
i=2

�Xi −Xi−1�2� σ̂2
η 
= 1

2�n− 1�
n∑

j=2

�Yj −Yj−1�2


A similar estimator was suggested by Gasser, Sroka and Jennen–Steinmetz
(1986). Asymptotically more efficient estimators can be found in Hall and Mar-
ron (1990) or Hall, Kay and Titterington (1990), whereas Buckley, Eagleson
and Silverman (1988) in the normal case and Ullah and Zinde-Walsh (1992) in
the nonnormal case gave exact minimax estimators with respect to the MSE
for finite sample sizes.

Remark 4. It is worthwhile to mention that in the situation (1) the esti-
mator M̂2 is based on the differences Di = Xi−Yi
 More precisely, under the
assumption (1) we have m = n� t1� i = t2� i�i = 1� 
 
 
 �m� and

λij =
{
#1� i� if i = j�

0� if i �= j�

which gives

M̂2 = #1�0D
2
1 + #1�mD

2
m +

m−1∑
i=1

#1� iDi+1Di


In this case the result of Theorem 1 is also correct for dependent samples,
that is,

√
m�M̂2 −M2� ⇒� � �0� τ4 + 4M2τ2��

where τ2 = V�Di� = V�Xi −Yi�


Remark 5. Note, that our approach allows an immediate generalization
for a weighted L2 distance

M2 = ��f− g��2W =
∫ 1

0
�f�t� − g�t��2W�t�dt�

where W ∈ Hγ�0�1�, γ > 1/2, denotes a positive weighting function. Results
for general W are immediate extensions of the previous results.

3. Further applications and extensions.

3.1. Allocation of sample sizes. In the following we discuss briefly the
optimal allocation of sample sizes when the total sample size is fixed, say
N = m+n, in order to minimize the variance of the test statistic �n+m�1/2M̂2.
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Observe that even in the case σ2
ε = σ2

η = 1 and M2 = 0, the variance ξ2 is
not minimized when m = n as one might expect. Assume in the following an
equidistant design as in (9) and note that in this case the asymptotic variance
ξ2 of

√
m+ nM̂2 equals the finite sample variance if f ≡ g ≡ const. In order

to determine the optimal allocation of sample sizes n and m for a given total
sample size N = n+m which minimizes ξ2, the following proposition will be
helpful.

Proposition 1. The function ι�r� s� defined in (7) satisfies

ι�1�1� = 2�

ι�1� s� = 1 + s−1�

ι�r� r+ l� → 4/3 as r → ∞� ∀ l ∈ N�

ι�r� s� → 1 as s → ∞� ∀ r ∈ N


(10)

In particular, we obtain for sequences rn → r� sn → s, rn ≤ sn such that
rn/sn → λ,

lim
rn/sn→λ

ι�rn� sn� = 1 + 1
3�s−2κ−1 − λ2 + 2λ��

which reduces for irrational λ to

lim
rn/sn→λ

ι�rn� sn� = 1 − 1/3λ2 + 2/3λ


Proof. The first four identities follow directly from the definition of ι�r� s�
and the last two identities can be derived from (19) in the Appendix. ✷

Note that the second part of the preceding proposition refers to a pe-
culiar property of the variance of the statistic M̂2, denoted by γ�m�n� =
V�√n+mM̂2�
 More precisely, consider an equidistant design as in (9); then
it follows from Remark 1 that the assertion of Theorem 1 remains valid for
sequences �m�n� such that limm�n→∞m/�m + n� = κ = λ/�λ + 1� ∈ �0�1/2�

Now sequences �m�n� with the same limit κ may yield different asymptotic
variances. For example, we have

lim
m→∞γ�m�m� = 2�σ2

ε + σ2
η�2 + 8M2�σ2

ε + σ2
η�

�rm = sm = r = s = 1 in Proposition 1) and

lim
m→∞γ�m�m+ 1� = 2�σ2

ε + σ2
η�2 + 8M2�σ2

ε + σ2
η� − 4

3σ
2
εσ

2
η

�rm = m�sm = m + 1 in Proposition 1). On the other hand, whenever λ is
irrational, all sequences will yield the same asymptotic variance.

In the case σ2
ε = σ2

η = 1 and M2 = 0, the variance ξ2 simplifies to

ξ2 = κ−1 + �1 − κ�−1 + 2ι�r� s�
= 4 + 2

3s
−2 − 2

3r
2s−2 + 2

3�rs�−1 + 7
3rs

−1 + sr−1

(11)



2346 A. MUNK AND H. DETTE

If r� s → ∞� it can easily be seen that ξ2 attains its infimum in the set
��r� s��r ≤ s� ∪ ��1�1�� when r/s → 1. The statistical interpretation of this
observation is as follows. An efficient allocation of sample sizes �m�n� is ob-
tained when the sample sizes are nearly equal, such that m/n cannot be
reduced. This is obtained for n = m+ 1 if N is odd and for n = m+ 2 if N is
even. We find that

lim
r� s→∞ inf

r� s∈N� r<s
ξ2 = 6 2

3 


Suprisingly, when m = n we find that ξ2 = 8. Hence we obtain a relative
efficiency of

√
5/6 ≈ 0
912 compared to the asymptotically optimal alloca-

tion with variance 6 2
3 . We mention that similar results can be obtained for

arbitrary M2 under the assumption of homogeneous variances. In summary,
we find that in the class of equidistant designs in both groups, respectively,
asymptotically a nonsymmetric allocation is more efficient than the choice of
equal sample sizes. Note that the above results do, of course, also apply for
the case of asymptotically equidistant designs in the sense of (C3) because the
limting variance in Theorem 1 is still valid along subsequences of �m�n� s.t.
m/�m+ n� ≡ κ.

We found numerically that this asymptotic result holds true even in the
finite sample case; that is, the variance is minimized for any N ≥ 3 when
m + 1 = n, for N odd, and when m = n + 2, for N even. Consider as an
example the case where N = 12. The optimal allocation is m = 5, n = 7
where ξ2 = 1656/245 ≈ 6
76, whereas for n = m = 6 we have ξ2 = 8, which
corresponds to a relative efficiency of 0
94. Particulary, when N is even, this
result is certainly somewhat suprising, because at a first glance one might
expect that n = m = N/2 would be the variance minimizing allocation in
this case. Hence the above results indicate that a good allocation of sample
sizes in order to minimize the variance is a strictly interlacing design with
approximately equally spaced locations of measurements.

In order to get more detailed insight into the effect of the sample sizes on
the exact variance of the pivot statistic, note that from (11) it follows that
the variance for the case n = m can be minimized by reducing one of the
sample sizes, as long as the design remains equidistant. For example, when
n = 10, we find from Table 1 that the variances are always smaller than for
the case where n = m = 10, as long as m ≥ 4. At first glance this might
be somewhat suprising. Recall, however, that we restricted our considerations
to equidistant designs. Hence, Table 1 indicates that the combination of two
equidistant designs is typically not very efficient.

Table 1

Variances ξ2 for sample sizes m = 1� 
 
 
 �10 where n = 10� σ2
ε = σ2

η = 1� M2 = 0

�m�n� (10,10) (9,10) (8,10) (7,10) (6,10) (5,10) (4,10) (3,10) (2,10) (1,10)

ξ2 8 6.685 6.750 6.751 6.898 7.500 7.420 8.002 9.600 14.300
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3.2. Nonconstant intrinsic variability. In many practical applications it
is more realistic to admit a dependency of the second moment of the errors
ε�η on the regression variable t. In this case Theorem 1 has an immediate
generalization. The proof follows the same pattern as in Theorem 1 (see the
Appendix) and is therefore omitted.

Theorem 2. Under assumptions (C1)–(C3) we have for sequences of m�n,
such that (8) holds that

�n+m�1/2(M̂2 −M2) �⇒� � �0� ξ̃2� as n�m → ∞�

where the asymptotic variance is given as

ξ̃2 = κ−1(��σ2
ε ��2 + 4���f− g�σε��2

)+ �1 − κ�−1(��σ2
η��2 + 4���f− g�ση��2

)
+ 2��σεση��2ι�r� s�


Note that in the case of nonconstant variances, a different estimation of
the limiting variance ξ̃2 is required. A simple estimator can be obtained by
modifying Rice’s (1984) idea of local residuals. This yields

1
4�m− 3�

m−2∑
i=2

�Xi −Xi−1�2�Xi+2 −Xi+1�2

as an estimator of ��σ2
ε ��2 and

1
4�n− 3�

n−2∑
j=2

�Yj −Yj−1�2�Yj+2 −Yj+1�2

as an estimator of ��σ2
η��2. Furthermore, ���f− g�σε��2 can be estimated by

1
2

m−3∑
i=0

n∑
j=0

λij�Xi+1 −Yj+1��Xi −Yj��Xi+3 −Xi+2�2�

���f− g�ση��2 by

1
2

m∑
i=0

n−3∑
j=0

λij�Xi+1 −Yj+1��Xi −Yj��Yj+3 −Yj+2�2

and finally ��σεση��2 by

1
4

m∑
i=0

n∑
j=0

λij�Xi+1 −Xi�2�Yj+1 −Yj�2


Plugging these estimators in ξ̃2 gives an estimator ξ̃2
m�n for the limiting vari-

ance in Theorem 2. A straightforward calculation (similar to that in the proof
of Lemma 1 in the Appendix) shows that E�ξ̃2

m�n� = ξ̃2 + o�n−γ�.



2348 A. MUNK AND H. DETTE

3.3. The k-sample problem. We now consider the problem of comparing
k ≥ 2 independent samples,

X�tj�ij�� ij = 1� 
 
 
 � nj� j = 1� 
 
 
 � k�

such that

X�tj� ij� 
= Xj� ij
= fj�tj� ij� + εj�tj� ij�� j = 1� 
 
 
 � k�

where f1� 
 
 
 � fk ∈ Hγ�0�1�, γ > 1/2, denote the regression functions and the
random errors satisfy E�εj�t�� = 0� 0 < σ2

j�t� 
= V�εj�t�� < ∞, such that
σ2
j ∈ Hγ�0�1�, j = 1� 
 
 
 � k. Finally, we may assume that

n1 ≤n2 ≤ · · · ≤nk such that
nj

nj+1
→λj ∈ �0�1� as nj→∞� j = 1� 
 
 
 � k− 1

and that the analogue to condition (C3) holds for any i = 1� 
 
 
 � k. Define

ni/nj= ri/rj≤1 such that gcd�rj� ri�=1� i < j� i� j = 1� 
 
 
 � k(12)

and consider, in analogy to the two-sample case, as a measure of discrepancy
between k regression functions f1� 
 
 
 � fk, the squared deviation of each in-
dividual regression function fj, j = 1� 
 
 
 � k from the mean f̄ = �1/k�∑fj,
that is,

M2
k = M2�f1� 
 
 
 � fk� 
= k

k∑
j=1

∫ 1

0

(
fj�t� − f̄�t�)2

dt

= ∑
i<j

��fi − fj��2


Now we estimate M2
k by means of estimating M2�fi� fj� = ��fi − fj��2 by

M̂2
ij = M̂2�fi� fj�� i < j�

exactly as in the two-sample case. Therefore, we obtain as a simple estimator
for M2

k,

M̂2
k 
= ∑

i<j

M̂2
ij

and the following result provides its asymptotic distribution under fixed al-
ternatives.

Theorem 3. Let N = ∑k
j=1 nj and consider sequences of nj → ∞, such

that nj/N ≡ κj� j = 1� 
 
 
 � k. Assume that σ2
j�t� = σ2

j �j = 1� 
 
 
 � k�; then we
have, under the assumptions stated above,

√
N

(
M̂2

k −M2
k

) �⇒� � �0� ξ2
k� as N → ∞�
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where the asymptotic variance is given by

ξ2
k = �k− 1�2

k∑
i=1

κ−1
i σ4

i + 4k2
k∑
i=1

κ−1
i σ2

i

∫ 1

0
�fi�t� − f̄�t��2 dt

+ 2
∑
i<j

σ2
i σ

2
jι�ri� rj�


Note that in the case of nonconstant variance functions, an analogous result
to Theorem 2 holds also in the k-sample case, which is omitted for the sake
of brevity.

3.4. The case of nonuniform designs. In this section we investigate the
case when condition (C3), of an asymptotically uniformly distributed design
in the treatment groups, fails. To simplify the notation we restrict discussion
again to the case of two treatment groups, that is, k = 2� with homoscedastic
variances σ2

ε and σ2
η, respectively. We use the notation of Section 3.3 and

assume that both designs are generated by a regular density in the sense of
Sacks and Ylvisaker (1970); that is,

∫ tk� jk

tk� jk−1

hk�t� =
1
nk

� jk = 1� 
 
 
 � nk� k = 1�2(13)

for possibly different design densities h1� h2� fullfilling the condition

inf
t∈�0�1�

hk�t� > 0� k = 1�2�(14)

s.t. h1� h2 ∈ Hγ�0�1�; γ > 1
2 
 The corresponding cdf ’s are denoted as Hk;

k = 1�2
 Let us first consider the simplest case, where H = H1 = H2 and the
design points in both groups are equal (i.e., n = n1 = n2), which is covered by
the next theorem.

Theorem 4. Under assumptions (13) and (14) in the case of equal design
points t1� i = t2� i� i = 1� 
 
 
 � n and equal design densities h we have that

√
2n

(
M̂2 −M2) �⇒� � �0� ξ2��(15)

where

ξ2 = 2
(
σ2
ε + σ2

η

)2
∫ 1

0

1
h�t� dt+ 8

(
σ2
ε + σ2

η

) ∫ 1

0

(
f1�t� − f2�t�
h ◦H−1�t�

)2

dt�

which reduces under H0
 f1 = f2 to

ξ2 = 2
(
σ2
ε + σ2

η

)2
∫ 1

0

1
h�t� dt
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As we have seen in Theorem 1, unequal sample sizes cause significant com-
plication even for uniform designs in both groups. From the proof of Theorem 1
we find that this difficulty arises from the weighting factor

ψn1� n2
= �n1 + n2�

n1� n2∑
i� j=0

λ2
ij�

occuring in the variance of III and IV in the decomposition of M̂2. For arbitrary
designs it seems to be impossible to find an explicit limiting expression for
the term ψn1� n2

or a characterization of those subsequences of �n1� n2� such
that an analoguous result to Lemma A1 holds. Note that for such a result, it
is necessary that ψn1� n2

be uniformly bounded, which can in fact be shown.
However, for practical purposes, the knowledge of such a limiting expression is
not important, because ψn1� n2

can be computed explicitly for finite sample sizes
without much effort. Furthermore, the remaining expressions in the variance
of

√
n+m�M̂2 −M2� converge, as the following theorem shows.

Theorem 5. Under the above assumptions, the random variable√
n1 + n2�M̂2 −M2�

is asymptotically normally distributed with expectation 0, s.t.

V
[√

n1 + n2�M̂2 −M2�]− 2�n1 + n2�
∑
i� j

λ2
ijσ

2
εσ

2
η

= κ−1
(
σ4
ε

∫
L2

1�s�ds+ 4σ2
εM

2
1

)

+ �1 − κ�−1
(
σ4
η

∫
L2

2�s�ds+ 4σ2
ηM

2
2

)
+ o�1��

where

Lk�s� =
{
d

dt
H−1

i �t�
∣∣∣
t=s

}
� k = 1�2�

and

M2
k =

∫ 1

0
�f1�s� − f2�s��2L2

k�s�ds
denote the weighted distance between f1 and f2 with respect to the weighting
function L2

k, k = 1�2, respectively.

The proof follows by a careful inspection of the proof of Theorem 1 together
with the arguments in the proof of Theorem 4 and will therefore be omitted.
Theorem 5 can now be utilized to perform a test for the hypothesis H0
 f = g.
Observe that under H0 we have M2

1 = M2
2 = 0 and therefore it remains to

estimate

2�n1 + n2�
n1� n2∑
i� j=0

λ2
ijσ

2
εσ

2
η + κ−1σ4

ε

∫ 1

0
L2

1�s�ds+ �1 − κ�−1σ4
η

∫ 1

0
L2

2�s�ds
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To this end, use the estimators suggested in Section 3.2 for σ2
ε and σ2

η. If the

limiting design density is not known, a good approximation of
∫ 1

0 L
2
k�s�ds can

be obtained by nk
∑nk

ik=1 #
2
k� ik

, (#k� ik = tk� ik − tk� ik−1, k = 1�2), which corre-

sponds to the exact expressions occuring in the variance of M̂2. See Section 4
for some simulation results of this method.

Remark 6. We mention that it can be shown that the assumption (13) can
be weakened to

max
ik=1�


�nk

∣∣∣∣
∫ tk� ik+1

tk� ik

hk�s�ds−
1
nk

∣∣∣∣ = o��n1 ∨ n2�−1�� k = 1�2

without changing the limit law in Theorems 4 and 5. Furthermore, similar
expressions as in Theorem 2, when the variances are not homoscedastic, and
as in Theorem 3 for the k-sample case can be derived.

4. Example and simulation results.

4.1. Simulation of the level and power. A test based on Theorem 1 or 2
rejects the hypothesis H0
 f = g if

√
n+mM̂2 > ξ̂m�nu1−α�(16)

where u1−α denotes the �1 − α� quantile of the standard normal distribution
and ξ̂2

m�n (or ξ̃2
m�n) is an estimator of the variances ξ2 or ξ̃2 as described in

Remark 3 or Section 3.2. In order to investigate the finite sample behavior
of this test, we performed a small simulation study for the case of constant
variances σ2

ε and σ2
η. Three different set-ups were considered in this study:

�A� f�z� = z+ 1� g�z� = z+ 1 �M2 = 0��
�B� f�z� = z� g�z� = z+ 1 �M2 = 1��
�C� f�z� = 1/�z+ 1�� g�z� = z+ 1 �M2 = 5/6�
and the variances σ2

ε � σ
2
η were chosen from the set �0
25�0
5�
 For both sam-

ples we chose an equidistant design with a total sample sizes N = n +m =
50�100�200
 We considered three different partitions of the total sample size
which correspond approximately to m/n = 1�1/2�1/3, that is,

n+m �m�n� �m�n� �m�n�
50 �25�25� �17�33� �13�37�
100 �50�50� �34�66� �25�75�
200 �100�100� �67�133� �50�150�


The errors were assumed to be normal and 5000 simulations were carried
out for each scenario. The results are displayed in Tables 2–4 and show the
simulated level of the pivot statistic

√
n+m�M̂2−M2�/ξ̂m�n for the 70%, 80%,
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Table 2

Simulated level for the regression functions f�z� = z+ 1� g�z� = z+ 1� M2 = 0

m
 n � 1 m
 n ≈≈≈ 1/2 m
 n ≈≈≈ 1/3

m � n �2
� �2

� 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95

0.25 0.25 0.708 0.808 0.909 0.961 0.717 0.811 0.905 0.957 0.752 0.840 0.933 0.970
50 0.25 0.50 0.727 0.821 0.917 0.962 0.710 0.808 0.908 0.956 0.737 0.829 0.923 0.962

0.50 0.25 0.713 0.808 0.907 0.956 0.684 0.792 0.909 0.958 0.744 0.837 0.927 0.972

0.25 0.25 0.716 0.814 0.914 0.962 0.714 0.800 0.905 0.957 0.741 0.837 0.926 0.968
100 0.25 0.50 0.704 0.797 0.902 0.956 0.701 0.805 0.903 0.957 0.728 0.823 0.919 0.962

0.50 0.25 0.713 0.817 0.915 0.963 0.692 0.799 0.908 0.956 0.718 0.818 0.918 0.966

0.25 0.25 0.697 0.804 0.908 0.955 0.687 0.790 0.898 0.951 0.716 0.811 0.916 0.956
200 0.25 0.50 0.713 0.801 0.904 0.957 0.694 0.793 0.899 0.953 0.717 0.810 0.911 0.963

0.50 0.25 0.709 0.801 0.909 0.961 0.696 0.794 0.904 0.958 0.710 0.813 0.908 0.957

90% and 95% quantile. The actual level was estimated by counting the num-
ber of outcomes larger than the corresponding normal quantiles and dividing
by 5000. Simulations for the lower quantiles show similar results and are sup-
pressed for the sake of brevity. Table 2 shows that the normal approximation
can be used for moderate sample sizes �n+m ≥ 50�. Moreover, Tables 3 and
4 show that performance of the approximation is independent of the specific
alternative M2 ≥ 0
 This suggests approximating the power of the test in
(16) by

P�f�g�
 ��f−g��2=M2

{√
n+mM̂2 > ξ̂m�nu1−α

}

∼ 1 −5

(
u1−αξ�0� −

√
n+mM2

ξ�M2�
)
�

(17)

where ξ2�M� is defined in Theorem 1. In order to get an impression of the qual-
ity of the approximation (17) we consider a numerical example. For the case

Table 3

Simulated level for the regression functions f�z� = z� g�z� = z+ 1� M2 = 1

m
 n � 1 m
 n ≈≈≈ 1/2 m
 n ≈≈≈ 1/3

m � n �2
� �2

� 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95

0.25 0.25 0.709 0.804 0.903 0.956 0.695 0.795 0.899 0.950 0.732 0.831 0.920 0.958
50 0.25 0.50 0.710 0.799 0.899 0.951 0.702 0.800 0.902 0.951 0.726 0.818 0.908 0.951

0.50 0.25 0.698 0.797 0.900 0.953 0.694 0.790 0.894 0.948 0.739 0.827 0.917 0.963

0.25 0.25 0.697 0.792 0.899 0.951 0.715 0.806 0.904 0.955 0.728 0.818 0.913 0.960
100 0.25 0.50 0.707 0.806 0.910 0.961 0.692 0.789 0.902 0.947 0.722 0.817 0.910 0.954

0.50 0.25 0.703 0.797 0.902 0.956 0.699 0.802 0.903 0.950 0.727 0.819 0.919 0.966

0.25 0.25 0.704 0.806 0.908 0.958 0.694 0.799 0.903 0.953 0.724 0.811 0.910 0.956
200 0.25 0.50 0.709 0.810 0.909 0.955 0.699 0.803 0.904 0.955 0.712 0.812 0.909 0.955

0.50 0.25 0.700 0.800 0.905 0.956 0.698 0.794 0.898 0.951 0.721 0.809 0.909 0.957
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Table 4

Simulated level for the regression functions f�z� = 1/�z+ 1�� g�z� = z+ 1� M2 = 5/6

m
 n � 1 m
 n ≈≈≈ 1/2 m
 n ≈≈≈ 1/3

m � n �2
� �2

� 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95

0.25 0.25 0.711 0.808 0.913 0.959 0.703 0.796 0.906 0.954 0.709 0.812 0.914 0.957
50 0.25 0.50 0.717 0.809 0.909 0.959 0.698 0.801 0.907 0.953 0.712 0.809 0.903 0.949

0.50 0.25 0.714 0.809 0.904 0.952 0.693 0.794 0.897 0.949 0.720 0.812 0.912 0.960

0.25 0.25 0.712 0.804 0.903 0.952 0.719 0.812 0.911 0.960 0.712 0.808 0.907 0.956
100 0.25 0.50 0.712 0.809 0.913 0.960 0.700 0.796 0.901 0.950 0.711 0.807 0.906 0.950

0.50 0.25 0.711 0.796 0.908 0.958 0.697 0.804 0.904 0.953 0.707 0.808 0.910 0.958

0.25 0.25 0.709 0.805 0.906 0.957 0.693 0.794 0.903 0.953 0.705 0.801 0.907 0.956
200 0.25 0.50 0.711 0.809 0.913 0.956 0.705 0.802 0.902 0.953 0.706 0.799 0.902 0.951

0.50 0.25 0.705 0.802 0.907 0.954 0.690 0.797 0.903 0.954 0.712 0.801 0.899 0.951

M2 = 1� σ2
ε = σ2

η = 1, α = 0
01 and sample sizes �m�n� = �25�25�, �17�33�,
�13�37� we find from (17) the approximations 0
547, 0
573 and 0
549. The sim-
ulated power in these cases (5000 simulations) was 0
557, 0
574 and 0
545,
respectively. Other simulations showed similar results and are suppressed for
the sake of brevity. As a rule of thumb, we recommend the approximation for
the power (17) whenever n�m ≥ 25. Observe that (17) provides a very simple
method to determine the required sample size in order to control the type II
error of the proposed test.

For an illustration of the small sample behavior of the proposed test we
also considered the sample size n +m = 30, where n = m = 15 (case a) and
m = 10, n = 20 (case b). Figure 1 shows, for example, a QQ-plot based on
1000 simulations for the regression functions f�z� = z + 1, g�z� = z, that
is, M2 = 1, where σ2

ε = σ2
η = 0
25. We observed that the distribution of the

statistic
√
m+ n�M̂2 −M2� is left skewed. However, the approximation of the

upper quantiles is still reasonable. For example, we observe in case b 0
681,
0
783, 0
893 and 0
947 as approximations for the 70%, 80%, 90% and 95%
probability. Other scenarios gave similar results and are omitted for the sake
of brevity.

Finally, the asymptotic results of Theorems 4 and 5 for different designs
were investigated for the case a (M2 = 0). Table 5 shows results for the design
densities h1�x� = 1 and h2�x� = �2x�−1/2. Here we observe a slight loss in the
accuracy of the normal approximation, especially in the case m
 n ≈ 1/3. We
mention that in this case condition (14) is not even fulfilled. However, the
simulations indicate that the limit law in Theorem 5 is still valid.

4.2. Comparison with other procedures. It might also be of interest to com-
pare the power of the test in (16) with the tests proposed by Delgado (1993) and
Hall and Hart (1990) which were developed for the case of equal sample sizes
and equal control variables, that is, t1� i = t2� i �i = 1� 
 
 
 �m = n�
 Because Del-
gado (1993) demonstrated a similar power behavior of his and Hall and Hart’s
(1990) test, we restrict our comparison to Delgado’s test. Roughly speaking,
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Fig. 1. QQ-plot based on 1000 simulations of the statistic
√
n+m�M̂2 −M2�/ξ̂m�n for the re-

gression functions f�z� = z + 1� g�z� = z� where n = m = 15 �case a� and m = 10� n = 20
�case b�. The horizontal line gives the quantiles of the standard normal distribution.

we found two situations which characterize the features of both tests. In the
case of a nearly linear difference between f and g, Delgado’s (1993) and Hall
and Hart’s (1990) tests are superior. When f−g is more wiggly, for example,
an oscilllating function, the test in (16) has larger power. In order to illus-
trate these findings, we displayed the simulation results for the scenario (b)
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Table 5

Simulated level for the regression functions f�z� = z + 1� g�z� = z + 1� M2 = 0 and different
design densities h1�x� = 1� h2�x� = �2x�−1/2

m
 n � 1 m
 n ≈≈≈ 1/2 m
 n ≈≈≈ 1/3

m � n �2
� �2

� 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95

0.25 0.25 0.715 0.789 0.885 0.934 0.702 0.784 0.893 0.929 0.709 0.790 0.881 0.927
50 0.25 0.50 0.709 0.793 0.881 0.932 0.706 0.788 0.889 0.934 0.707 0.792 0.878 0.928

0.50 0.25 0.706 0.787 0.879 0.938 0.707 0.789 0.887 0.932 0.711 0.796 0.871 0.925

0.25 0.25 0.710 0.793 0.884 0.936 0.708 0.789 0.891 0.932 0.717 0.796 0.888 0.929
100 0.25 0.50 0.700 0.793 0.872 0.931 0.721 0.806 0.889 0.938 0.707 0.789 0.881 0.931

0.50 0.25 0.700 0.786 0.875 0.932 0.712 0.790 0.889 0.934 0.705 0.789 0.883 0.931

0.25 0.25 0.708 0.792 0.889 0.944 0.715 0.796 0.883 0.941 0.712 0.790 0.884 0.931
200 0.25 0.50 0.711 0.806 0.892 0.951 0.709 0.796 0.891 0.944 0.714 0.794 0.892 0.939

0.50 0.25 0.706 0.790 0.882 0.942 0.697 0.784 0.881 0.938 0.698 0.786 0.876 0.934

�M2 = 1 ≡ f − g�, which corresponds to the case (iii) in Delgado (1993) and
the case of a more oscillating difference f�x� − g�x� = sin�2πx� (M2 = 1/2).
In accordance with Delgado’s (1993) Monte Carlo study, we considered three
choices for the distributions of the errors �εj� ηj�� namely,

�i� ��1��2��
�ii� ���1� −

√
2/π� ��2� −

√
2/π��

�iii� ���1� −
√

2/π�
√

2/π − ��2���

where �1 and �2 are independent standard normal variables. The results
are listed in Tables 6 and 7 and show that the superiority of one of the two
procedures depends sensitively on the specific alternative. If f − g ≡ 1� the
test of Delgado has more power, especially in the case of normally distributed
errors in both samples. On the other hand, for a more oscillating difference
f�x� − g�x� = sin�2πx�, the test (16) proposed in this paper yields a larger
power than Delgado’s (1993) test, particulary in the case (iii).

Table 6
Simulated power of Delgado’s �1993� test for the alternative f− g ≡ 1� f�x� − g�x� = sin�2πx� ∗

f � g
1 sin �2�x�

����� (i) (ii) (iii) (i) (ii) (iii)

m = 15 0.564 0.942 0.985 0.048 0.083 0.076
0.744 0.982 0.999 0.128 0.223 0.211

m = 30 0.867 0.999 0.999 0.064 0.245 0.216
0.952 1.000 1.000 0.193 0.513 0.481

∗First row: significance level α = 0
01; second row: α = 0
05.
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Table 7
Simulated power the test in �16� for the alternative f− g ≡ 1� f�x� − g�x� = sin�2πx� ∗

f � g
1 sin �2�x�

����� (i) (ii) (iii) (i) (ii) (iii)

m = 15 0.401 0.835 0.889 0.191 0.517 0.514
0.533 0.904 0.951 0.304 0.651 0.653

m = 30 0.561 0.976 0.993 0.272 0.748 0.729
0.704 0.989 0.998 0.432 0.854 0.838

∗First row: significance level α = 0
01; second row: α = 0
05.

4.3. Example. In this section we reanalyze an example which has been
discussed previously by Hall and Hart (1990). They compared the towns of
Coweeta and Lewiston, North Carolina, for the concentration of sulfate in
rain as a function of time in a 261-week period between 1979 and 1983. These
data were obtained as a part of the National Acid Deposition Project where
measurements were taken weekly. After adjusting the acid concentration to
covariate “amount of rainfall” Hall and Hart (1990) reduced this data set to a
problem with equal sample sizes by means of dropping those weeks where no
data were available at both towns simultaneously. After dropping the missing
values, 189 of 261 weeks finally remained in the study, a loss of about 28%
of the data. We refer to Hall and Hart (1990), page 1045 for an illustrative
scatterplot of the adjusted data together with kernel regression estimates. In
summary, these authors found that there is strong evidence of a difference
between the two curves.

In Lewiston there were m = 215 weeks of data and in Coweeta n = 220
weeks. In fact, the observations were taken rather equidistantly over the pe-
riod of 261 weeks, hence approximation (C3) by a uniform design is reasonable.
For the application of the test (16) we divided the covariable by 261 in order
to adjust to a �0�1�-range. Observe that this leaves the pivot statistic invari-
ant when we adjust the variance estimator ξ̂2

m�n correspondingly. We compute
�r� s� = �43�44� and hence ι�r� s� = 1
33351. Note that this value is very well
approximated by (10) in Proposition 1. Assuming constant variances of the
logarithms of the acid concentration in each town, we computed σ̂2

η = 0
3476
and σ̂2

ε = 0
6516. Finally, M̂2 = 0
2224 and Tm�n = √
n+mM̂2/ξ̂m�n = 3
5558,

that is, we observe a P-value < 2·10−4. Note that Hall and Hart’s [(1990), Sec-
tion 3.4] analysis gives a similar result. With a bootstrap method developed
in this paper, these authors obtained a P-value < 1
5 · 10−4, which gives even
more evidence against the equality of both regression curves. However, they
reduced this data set by dropping missing values, that is, their anaylsis was
restricted to those weeks where both measurements of the log concentration
were available. In this case m = n = 189, that is, ι�1�1� = 2. For illustrative
purposes, let us finally compare this outcome with our test restricted to this
situation. We obtain σ̂2

ε = 0
6072, σ̂2
η = 0
3538 and M̂2 = 0
12275. Hence
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T189�189 = 1
756, which gives a P-value of about 0
04. In summary, there is
certainly evidence against equality of f and g. Observe, nevertheless, that
this test would not reject at a 1% error rate. This difference from the above
analysis utilizing the full data set can be explained by the fact that the dis-
tance M2 is estimated much larger in the first case (M̂2 = 0
2224) than in the
second case (M̂2 = 0
1227), whereas the standard deviations ξ̂m�n are nearly
found to be the same (1
3045 in the first case and 1
3590 in the second case).
Comparing this with Hall and Hart’s (1990) result, we see that in the case
of equal sample sizes, their bootstrap test provides stronger evidence against
equality of the regression curves, indicating a higher power in this situation.

APPENDIX

Proofs.

Proof of Lemma 1. Recall that f�g are Hölder continous of order γ >
1/2. Taking into account that #�λij
 λij �= 0� i = 1� 
 
 
 �m� j = 1� 
 
 
 � n� ≤
n+m [where λij was defined in (4)] we estimate∣∣M2 −EM̂2

∣∣
≤ C�f�g�

∫ 1

0

∑
i� j

I�t1� i� t1� i+1��t�I�t2� j� t2� j+1��t�
{�t1� i− t�γ + �t2� j− t�γ}dt

+ o��n ∨m�−γ�
= o��n ∨m�−γ��

where C�f�g� denotes a generic constant depending only on f and g. ✷

Lemma A1. Consider sequences of m�n, such that (8) and (6) hold. If we
assume an asymptotic equidistant design, that is, condition (C3) holds, then

lim
n�m→∞�n+m�

m�n∑
i� j=0

λ2
ij = ι�r� s��

where λij was defined in (4). If the case of an equidistant design t1� i = i/m,
t2� j = j/n, it holds that

�n+m�
m�n∑
i� j=0

λ2
ij = ι�r� s�


Proof. Throughout this paper, let for x�y ∈ Z, xmody be defined as the
smallest nonnegative integer (possibly 0) such that x − �xmody� is divisible
by y. We first consider the case of an equidistant design. We have r/m = s/n
and hence it is sufficient to restrict to the case i/m�j/n ∈ �0� r/m� because

�n+m�
m�n∑
i� j=0

λ2
ij = �n+m�n/s

r� s∑
i� j=0

λ2
ij
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Fig. 2. The function
∑m�n

i� j=0 λ
2
ij for m = 6� n = 10� r = 3� s = 5


For the following derivation it is helpful to look at Figure 2. For any x ∈ R,
define �x� to be the largest integer less than or equal to x (possibly 0). We
have

r� s∑
i� j=0

λ2
ij = 2

r∑
i=1

(
i

m
− 1
n

[
is

r

])2

+ s− r+ 1
n2

= 2n−2
r−1∑
i=1

(
i
s

r
−

[
i
s

r

])2

+ s− r+ 1
n2

= 2n−2
r−1∑
i=1

( �is�mod r
r

)2

+ s− r+ 1
n2

�

(18)

where the first equality in (18) can be seen as follows. Observe that
∑m�n

i�j=0 λ
2
ij

corresponds to the area of the shaded region in Figure 2. In the first expression
on the r.h.s. of (18), only those λ2

ij occur which are not equal to n−2 (light shaded
squares); that is, those partitions of �0�1� are counted where t1� i − t2� j < n−1.
Note that in this case t1� i − t2� j = i/m − 1/n�is/r�. The factor 2 on the r.h.s.
of (18) is obtained by symmetry. Hence exactly �s−r+1� subintervals remain
with length n−1 which are entirely contained in an interval of length m−1 (dark
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shaded squares). Observe now that �is�mod r� i = 0� 
 
 
 � r − 1 represents all
residue classes of Z/rZ and hence we obtain

�n+m�
m�n∑
i� j=0

λ2
ij = n+m

s

(
2n−1

r−1∑
i=1

i2

r2
+ s− r+ 1

n

)

= �r+ s�1 − r2 + 3rs
3rs2

= 1 + 1
3s2

− r2

3s2
+ 1

3rs
+ 2r

3s
= ι�r� s�


(19)

Now we are in the position to prove the general result for asymptotic uniform
designs according to condition (C3). We show first that we can find M�N such
that for all m ≥ M and n ≥ N the following property holds:

t1� i < t2� j ⇐⇒ i

m
<

j

n
∀�i� j� ∈ �1� 
 
 
 �m� × �1� 
 
 
 � n�
(20)

To this end observe that

�n+m� inf
�i� j�
 i/m �=j/n

∣∣∣∣ im − j

n

∣∣∣∣ = inf
�i� j�
 i/m �=j/n

∣∣∣∣i
(

1 + s

r

)
− j

(
1 + r

s

)∣∣∣∣

= inf
i=0�


�r−1
j=1�


�s

∣∣∣∣is�r+ s�
rs

− j
�s+ r�r

rs

∣∣∣∣

= inf
i=0�


�r−1
j=1�


�s

�is− jr� r+ s

rs
≥ 1

s
+ 1
r
> 0


(21)

Condition (C3) implies that maxi=0�


�m �t1� i − i/m� = o��n ∨ m��−1 and
maxj=0�


�n �t2� j − j/n� = o��n ∨m��−1. This proves, together with (21), state-
ment (20). Define now λ̃ij as the weight λij in the case of equidistant designs,
that is, when t1� i = i/m� t2� j = j/n. Now we may estimate for m�n such that
m ≥ M, n ≥ N as follows. Observe first that

#
{�i� j�
 λ2

ij �= 0
} ≤ n+m�

#
{�i� j�
 λ̃2

ij �= 0
} ≤ n+m

and let �1� 
 
 
 �m� × �1� 
 
 
 � n� = Im�n. We have for sufficiently large m�n,
∣∣∣∣
n�m∑
i� j=1

�λ2
ij − λ̃2

ij�
∣∣∣∣ ≤ �n+m� sup

�i� j�∈Im�n

�λ2
ij − λ̃2

ij�

= �n+m� sup
i� j∈Im�n

∣∣∣∣
(∫ 1

0
I�i/m� �i+1�/m��t�I�j/n� �j+1�/n��t�dt

)2

−
(∫ 1

0
I�t1� i� t1� i+1��t�I�t2� j� t2� j+1��t�dt

)2∣∣∣∣
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≤ �n+m� sup
i� j∈Im�n

∣∣∣∣
∫ 1

0

(
I�t1� i� t1� i+1��t�I�t2� j� t2� j+1��t�

− I�i/m� �i+1�/m��t�I�j/n� �j+1�/n��t�
)
dt

∣∣∣∣O��m ∨ n�−1�

(20)= sup
i� j∈Im�n

∣∣∣(t1� i+1 ∧ t2� j+1 − t1� i ∨ t2� j
)

× I�t1� i+1∧t2� j+1>t1� i∨t2� j� −
(
�i+1�/m∧�j+1�/n−i/m∨j/n

)

× I��i+1�/m∧�j+1�/n>i/m∨j/n�
∣∣∣O�1�

= o��n ∨m�−1�

This proves the assertion. ✷

Lemma A2. Assume (C1)–(C3) and let fi = f�t1� i�, i = 1� 
 
 
 �m, and gj =
g�t2� j�, j = 1� 
 
 
 � n. Then we have

lim
n�m→∞�n+m�

m∑
i

( n∑
j

λijgj

)2

= κ−1
∫ 1

0
g2�t�dt�

lim
n�m→∞�n+m�

n∑
j

( m∑
i

λijfi

)2

= �1 − κ�−1
∫ 1

0
f2�t�dt


Proof. Define step functions f%m& and g%n& as

f%m&�t� =
m∑
i=0

f�t1� i�I�t1� i� t1� i+1��t�� g%n&�t� =
n∑

j=0

g�t2� j�I�t2� j� t2� j+1��t�
(22)

We have

m
m∑
i

( n∑
j

λijgj

)2

= m
m∑
i=1

(∫ t1� i+1

t1� i

g%n&�t�dt
)2

= m
m∑
i=1

#2
1� ig

2
%n&�ξi�

=
∫ 1

0
g2�t�dt+ o�1��

where ξi ∈ �t1� i� t1� i+1� i = 1� 
 
 
 �m, and the last equality follows by
Lebesgue’s convergence theorem. The proof of the second statement is similar
and therefore omitted. ✷

Proof of Theorem 1. We assume for the moment that the designs are
equidistant, that is, #1�i = 1/m, #2� j = 1/n and let m/n = λ. Observe that

n∑
j=1

λij = #1� i = 1/m� i = 1� 
 
 
 �m�
m∑
i=1

λij = #2� j = 1/n� j = 1� 
 
 
 � n
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We have

�I� M̂2 −M2 = ∑
i

#1� i �fi + εi��fi+1 + εi+1� −
∫ 1

0
f2�t�dt

�II� +∑
j

#2� j �gj + ηj��gj+1 + ηj+1� −
∫ 1

0
g2�t�dt

�III� −∑
i� j

λij�fi+1 + εi+1��gj + ηj� +
∫ 1

0
f�t�g�t�dt

�IV� −∑
i� j

λij�fi + εi��gj+1 + ηj+1� +
∫ 1

0
f�t�g�t�dt


The fact that

λij �= 0 if and only if
i

λ
− 1 < j <

i+ 1
λ

and Lemma 1 allow us to rewrite asymptotically M̂2−M2 as a sum of centered
random variables

M̂2 −M2 =
m∑
i=2

;i +E�M̂2 −M2� =
m∑
i=2

;i + op�n−1/2��

where

;i 
= #1� i�fiεi−1 + fi−1εi + εiεi−1�
+ ∑

j∈Ji

#2� j�gjηj−1 + gj−1ηj + ηjηj−1�

− ∑
j∈Ji

λij�fi+1ηj + εi+1gj + εi+1ηj�

− ∑
j∈Ji

λij�fiηj+1 + εigj+1 + εiηj+1�

and

Ji 
=
{
j
 i

λ
− 1 < j <

i+ 1
λ

}
� i = 2� 
 
 
 �m


We find that Ji �= � �i = 2� 
 
 
 �m�,

# �Ji ∩Ji+1� =




1�
i+ 1
λ

�∈ N�

0�
i+ 1
λ

∈ N� i = 2� 
 
 
 �m− 1�

and that

Ji ∩Ji+l = �� l ≥ 2
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Hence �;i�i=1�


�m constitutes an array of rowwise 3-dependent centered ran-
dom variables. Now the assertion follows from Orey’s (1958) central limit
theorem for k-dependent random variables, provided the limiting variance
of �n +m�1/2�M̂2 −M2� exists. To show this existence we calculate in a first
step the variances of expressions I–IV:

V�I� = V

[∑
i

#1� i�εiεi+1 + fi+1εi + fiεi+1�
]
+ o�n−1�

= V

[∑
i

L1� i

]
+ o�n−1�

= ∑
i

V�L1� i� + o�n−1�

= ∑
i

#2
1� i�σ4

ε + 4σ2
εf

2
i � + o�n−1��

where we used the notation L1� i = #1� i�εiεi+1 + 2εifi� and the fact that
Cov�L1� i� L1� j� = 0, i �= j. Similarly, we find that

V�II� = ∑
j

#2
2� j�σ4

η + 4σ2
ηg

2
j� + o�n−1�


Let Hij = εi+1gj + εi+1ηj + fi+1ηj, then

V�III� = V

[∑
i� j

λijHij

]

= V

[∑
i� j

λijεi+1ηj

]
+V

[∑
i� j

λijεi+1gj

]
+V

[∑
i� j

λijfi+1ηj

]
+ o�n−1�

because Cov�εiηj� εigj� = Cov�εiηj� fiηj� = Cov�εigj� fiηj� = 0. Finally, we
obtain

V�III� = σ2
εσ

2
η

∑
i�j

λ2
ij + σ2

ε

∑
i

(∑
j

λijgj

)2

+ σ2
η

∑
j

(∑
i

λijfi

)2




Similarly,

V�IV� = V�III� + o�n−1�

It remains to calculate the covariances of expressions I–IV. We have

Cov�I� II� = 0�

2 Cov�I� III� = −2
∑
i

∑
l� k

λlk Cov�Li�Hlk�

= −4σ2
ε

∑
i� k

#1� iλikfigk + o�n−1�
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and

2 Cov�I� IV� = 2 Cov�I� III� + o�n−1�

Similarly,

2 Cov�II� III� = −4σ2
η

∑
k� j

#2� jλkjfkgj + o�n−1�

and

2 Cov�II� IV� = 2 Cov�II� III� + o�n−1�

Finally,

2 Cov�III� IV� = 2
∑

i� j� r� s

λijλrs Cov
[
εi+1gj + εi+1ηj + fi+1ηj�

εrgs+1 + εrηs+1 + frηs+1
]

= 2σ2
ε

∑
i� j� s

λijλi+1� sgjgs+1 + 2σ2
η

∑
i� r� s

λi� s+1λrsfi+1fr

+ 2σ2
εσ

2
η

∑
i� s

λi� s+1λi+1� s


(23)

The definition of λij in (4) shows that

λi� s+1λi+1� s = 0� i = 1� 
 
 
 �m− 1� s = 1� 
 
 
 � n− 1�

and hence the last expression in (23) vanishes. We also obtain for n�m → ∞,

�n+m�V�I� → κ−1
(
σ4
ε + 4σ2

ε

∫ 1

0
f2�t�dt

)
�

�n+m�V�II� → �1 − κ�−1
(
σ4
η + 4σ2

η

∫ 1

0
g2�t�dt

)
�

�n+m�2 �Cov�I� III� + Cov�I� IV�� → −8κ−1σ2
ε

∫ 1

0
f�t�g�t�dt�

�n+m�2 �Cov�II� III� + Cov�II� IV�� → −8�1 − κ�−1σ2
η

∫ 1

0
f�t�g�t�dt

and from Lemmas A1 and A2,

�n+m��V�III� +V�IV�� → 2σ2
εσ

2
ηι�r� s� + 2σ2

ε κ
−1

∫ 1

0
g2�t�dt

+ 2σ2
η�1 − κ�−1

∫ 1

0
f2�t�dt


Finally, we have for n�m → ∞,

�n+m�2 Cov�III� IV� → 2σ2
ε κ

−1
∫ 1

0
g2�t�dt

+ 2σ2
η�1 − κ�−1

∫ 1

0
f2�t�dt

(24)
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as m�n → ∞, which can be seen as follows. We obtain from (23) that

2 Cov�III� IV� = 2σ2
ε

∑
i

∫ t1� i+1

t1� i

g%n&�t�dt
∫ t1� i+2

t1� i+1

g̃%n&�t�dt

+ 2σ2
η

∑
s

∫ t2� s+1

t2� s

f%m&�t�dt
∫ t2� s+2

t2� s+1

f̃%m&�t�dt�

where f%m&� g%n& were defined in (22) and

g̃%n&�t� =
n∑

j=0

g�t2�j+1� I�t2� j� t2� j+1��t�� f̃%m&�t� =
m∑
i=0

f�t1� i+1� I�t1� i� t1� i+1��t�


Now by assumptions (C1) and (C3),

sup
t∈�0�1�

��g̃%n& − g%n&��t�� = O�n−γ�

and hence

sup
i=0�


�m−1

∣∣∣∣
∫ t1� i+1

t1� i

�g̃%n& − g%n&��t�dt
∣∣∣∣ = O�n−1−γ�


This gives

2 Cov�III� IV� = 2σ2
ε

∑
i

∫ t1� i+1

t1� i

g%n&�t�dt
∫ t1� i+2

t1� i+1

g%n&�t�dt

+ 2σ2
η

∑
j

∫ t2� j+1

t2� j
f%m&�t�dt

∫ t2� j+2

t2� j+1

f%m&�t�dt+O�n−1−γ�


Furthermore, for i = 1� 
 
 
 �m− 1 there exist ξi ∈ �t1� i� t1� i+1�, such that
∣∣∣∣
∫ t1� i+2

t1� i+1

g%n&�t�dt−
∫ t1� i+1

t1� i

g%n&�t�dt
∣∣∣∣ =

∣∣g%n&�ξi+1�#1� i+2 − g%n&�ξi�#1� i+1

∣∣

= 1
m

∣∣g�t1� i+1� − g�t1� i�
∣∣ = o��m ∨ n�−1��

where we used the Hölder continuity of g for the last equality. A similar
argument applies for the second term, which gives

2 Cov�III� IV� = 2σ2
ε

m−1∑
i=0

(∫ t1� i+1

t1� i

g%n&�t�dt
)2

+ 2σ2
η

n−1∑
j=0

(∫ t2� j+1

t2� j

f%m&�t�
)2

+ o�n−1�


An application of Lemma A2 yields now (24). Adding all variances and covari-
ances gives the required variance and completes the proof of Theorem 1 for
equidistant designs.
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The proof for asymptotic uniform designs follows exactly the same pattern,
where similar arguments as in Lemma A1 have to be used. In this case, the
asymptotic variances of III and IV are a consequence of Lemma A2. ✷

Lemma A3. Assume the set-up of the k sample problem in Theorem 3 of
Section 3.3. Under the assumptions (C1)–(C3) we have for j �= k, i �= j� k,

lim
N→∞

NCov�M̂2�fi� fj�� M̂2�fi� fk��

= κ−1
i

{
σ4
i + 4σ2

i

[∫ 1

0
f2
i �t�dt−

∫ 1

0
fi�t�fj�t�dt

−
∫ 1

0
fi�t�fk�t�dt+

∫ 1

0
fj�t�fk�t�dt

]}

= κ−1
i

{
σ4
i + 4σ2

i

∫ 1

0
�fi�t� − fj�t���fi�t� − fk�t��dt

}

= κ−1
i ζ

�i�
j� k


Proof. If we denote the expressions in (I)–(III) at the beginning of the
proof of Theorem 1 by

∫
f̂2,

∫
ĝ2 and

∫
f̂g, we obtain

�a� NCov
[
M̂2�fi� fj�� M̂2�fi� fk�

] = NCov
[∫

f̂2
i �
∫
f̂2
i

]

�b� +NCov
[∫

f̂2
i �−2

∫
ˆfifj

]

�c� +NCov
[∫

f̂2
i �−2

∫
ˆfifk

]

�d� +NCov
[
−2

∫
ˆfifj�−2

∫
ˆfifk

]



The expressions (a)–(c) are treated similarly to the proof of Theorem 1 and
give the corresponding terms in ζ

�i�
j� k
 The last term �d� is evaluated as

NCov
[
−2

∫
ˆfifj�−2

∫
ˆfifk

]
= 4Nσ2

i

ni∑
li=1

∫ ti� li+1

ti� li

f%j&�t�dt
∫ ti� li+1

ti� li

f%k&�t�dt

= 4Nσ2
i

ni∑
li=1

#2
i� li

f%j&�ξi� li�f%k&�ξi� li��

where ξi� li ∈ �ti� li � ti� li+1�, li = 1� 
 
 
 � ni, i = 1� 
 
 
 � k. By a generalization of
Lemma A2 this converges to 4κ−1

i σ2
i

∫
fj�t�fk�t�dt
 ✷
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Proof of Theorem 3. Taking into account Lemma A3 and the proof of
Theorem 1, we obtain

lim
N→∞

V

[
N1/2 ∑

i<j

M̂2
ij

]
= ∑

i<j

ξ2
ij + lim

N→∞
N

∑
i<j� s<t

�i� j��=�s� t�

Cov
[
M̂2

ij� M̂
2
st

]

= ∑
i<j

ξ2
ij + 2

∑
i<j<l

κ−1
i ζ

�i�
j� l + 2

∑
j<l<i

κ−1
i ζ

�i�
j� l

+ 2
∑

l<i<j

κ−1
i ζ

�i�
j� l

= ∑
i<j

ξ2
ij +

∑
i�=j� i�=l� j �=l

κ−1
i ζ

�i�
j� l�

(25)

where

ζ
�i�
j� l = σ4

i + 4σ2
i

∫ 1

0
�fi�t� − fj�t���fi�t� − fl�t��dt

and

ξ2
ij=κ−1

i �σ4
i +4σ2

i M
2�fi� fj��+κ−1

j

(
σ4
j +4σ2

jM
2�fi� fj�

)+2σ2
i σ

2
jι�ri� rj�


The representation of ξ2
k in Theorem 3 now follows by straightforward algebra.

For example, we obtain for the factor appearing with
∑k

i=1 κ
−1
i σ2

i from (25),
∑
i<j

(
κ−1
i σ2

i + κ−1
j σ2

j

)
M2�fi� fj�

+
k∑
i=1

κ−1
i σ2

i

∑
j �=i

∑
l�=i� l �=j

∫ 1

0
�fi�t� − fj�t���fi�t� − fl�t��dt

=
k∑
i=1

κ−1
i σ2

i

k∑
j=1

k∑
l=1

∫ 1

0
�fi�t� − fj�t���fi�t� − fl�t��dt

= k2
k∑
i=1

κ−1
i σ2

i

∫ 1

0
�fi�t� − f̄�t��2 dt


The other terms are treated similarly. The proof of the asymptotic normality
is essentially the same as in the two-sample case and therefore omitted. ✷

Proof of Theorem 4. We will only give a sketch of the proof, because it
follows exactly the same pattern as the proof of Theorem 1. Asymptotic nor-
mality follows again from the central limit theorem for m-dependent random
variables. A simple calculation shows that

E�M̂2� = M2 + o�n−1/2�
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Observe that the decomposition I–IV as in the proof of Theorem 1 still holds
true with λij as in (4). For example, we obtain, for the limiting variance of
expression I,

V�√2n I� = 2n
∑
i

#2
1� i

(
σ4
ε + 4σ2

εf
2
i

)+ o�1�

= 2
∫ 1

0

(
d

ds
H−1�s�

)2(
σ4
ε + 4σ2

εf
2�s�)ds+ o�1�

= 2
{
σ4
ε

∫ 1

0

1
h�s� ds+ 4σ2

ε

∫ 1

0

(
1

h ◦H−1�s�
)2

f2�s�ds
}
+ o�1�


Expression II is treated similarly. Moreover, the first expressions of V�III� and
V�IV�, respectively, reduce to

2n
∑
i� j

λ2
ij = 2n

n∑
i=1

λ2
ii = 2n

n∑
i=1

#2
1� i = 2

∫ 1

0

(
d

ds
H−1�s�

)2

ds+ o�1��

which proves the assertion. ✷
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