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Let yi ∼ N�Bxi� ��� i = 1�2� � � � �N� and y ∼ N�B�� �� be indepen-
dent multivariate observations, where the xi ’s are known vectors, B�� and
� are unknown, � being a positive definite matrix. The calibration problem
deals with statistical inference concerning � and the problem that we have
addressed is the construction of confidence regions. In this article, we have
constructed a region for � based on a criterion similar to that satisfied by
a tolerance region. The situation where � is possibly a nonlinear function,
say h���� of fewer unknown parameters denoted by the vector �, is also
considered. The problem addressed in this context is the construction of a
region for �. The numerical computations required for the practical imple-
mentation of our region are explained in detail and illustrated using an
example. Limited numerical results indicate that our regions satisfy the
coverage probability requirements of multiple-use confidence regions.

1. Introduction. In this article, we address the problem of constructing
confidence regions in the multivariate calibration problem, when the observa-
tions follow a general multivariate linear model and are normally distributed.
Thus, let yi �i = 1�2� � � � �N� be independent p× 1 random vectors with

yi ∼N�a +Bxi� ���(1.1)

where xi’s are known m× 1 vectors, a is an unknown p× 1 intercept vector,
B is an unknown p×m matrix, and � is an unknown p×p positive definite
matrix. The xi’s are known values of a controlled variable. The calibration
problem deals with statistical inference concerning an unknown value, say �,
of the controlled variable corresponding to an observation vector y, where y is
assumed to be independent of the yi’s in (1.1) and has a normal distribution
similar to (1.1), that is,

y ∼N�a +B�� ���(1.2)

The problem that we shall address is the construction of a confidence region
for the m×1 unknown vector �, using the yi’s in (1.1) and y in (1.2). We shall
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assume that rank�1N�X� = m + 1, where 1N denotes the N × 1 vector of
ones and X is the m×N matrix whose columns are the xi’s in (1.1). We also
assume that p ≥m, so that � is identifiable in the model (1.2).

The function a + Bx, where x denotes the explanatory variable, is usu-
ally referred to as the calibration curve. The observations yi �i = 1�2� � � � �N�
will be referred to as the calibration data. Depending on the practical ap-
plication, the confidence region required for � is one of two types: single-use
confidence region or multiple-use confidence region. If the yi’s in (1.1) are used
to construct a confidence region for a single vector �, corresponding to a single
observation y in (1.2), we then have a single-use confidence region. If the same
set of yi’s is used to construct confidence regions for a sequence of � values,
corresponding to a sequence of observation vectors y, we then have multiple-
use confidence regions. Multiple-use confidence regions meet the following re-
quirement, expressed in terms of two coverage probabilities, say 1 − α and
1 −β. The sequence of confidence regions is such that conditionally given the
yi’s in (1.1), the proportion of confidence regions that will include the corre-
sponding true � values is at least 1 − β. The probability that yi’s following
(1.1) will provide such a 100�1 − β�% coverage is at least 1 − α.

In practical applications, it is conceivable that the calibration data, that
is, the yi’s in (1.1), are collected and set aside and will be used repeatedly to
construct confidence regions for � in (1.2) as the corresponding observation
vector y becomes available. In many situations, it may be difficult, expen-
sive or time-consuming to measure the xi’s, whereas the yi’s are more eas-
ily obtained. Typically, this is the scenario that gives rise to the calibration
problem. Hence, when a few xi’s are accurately measured, one would like to
use the corresponding yi’s repeatedly. This is the justification for constructing
multiple-use confidence regions. We shall shortly describe a specific example
that is analyzed in this article.

A model that is more general than (1.2) is where � in (1.2) is a nonlinear
function of fewer unknown parameters, denoted by an r× 1 vector � �r ≤m�.
Let h��� denote this m×1 vector-valued function. Here the functional form of
h��� is assumed to be known. We then have the model

y ∼N�a +Bh���� ���(1.3)

The xi’s in (1.1) are now the values of h�·� evaluated at known design points.
The problem now is the construction of a confidence region for � based on
(1.1) and (1.3). Note that the model (1.3) will arise when we have polynomial
regression. We would like to point out that (1.2) and (1.3) are used as a general
notation. In the context of multiple-use confidence regions, it is understood
that there will be a sequence of independent y values corresponding to a
sequence of possibly different � values (or � values) having the distribution
specified in (1.2) [respectively, (1.3)].

Regarding the construction of single-use confidence regions, several solu-
tions are available; see Brown (1982), Fujikoshi and Nishii (1984), Brown
and Sundberg (1987), Davis and Hayakawa (1987) and Mathew and Kasala
(1994), where the models (1.1) and (1.2) are considered, and Oman (1988) and
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Mathew and Zha (1996), where the models (1.1) and (1.3) are considered. On
the problem of constructing multiple-use confidence regions in the context of
the models (1.1) and (1.2), or the models (1.1) and (1.3), solutions are cur-
rently unavailable. If we assume that � = σ2Ip (where σ2 ≥ 0 is unknown),
some solutions have been obtained recently by Mathew and Zha (1997). Apart
from this article, all the available literature on multiple-use confidence re-
gions deals with the strictly univariate case, that is, p =m = 1 in the models
(1.1) and (1.2) or p = r = 1 in the models (1.1) and (1.3). Some of the ma-
jor references are Scheffé (1973), Carroll, Spiegelman and Sacks (1988), Mee,
Eberhardt and Reeve (1991) and Eberhardt and Mee (1994). For a review of
the results on single-use and multiple-use confidence regions in some of the
articles cited above, see the papers by Osborne (1991) and Sundberg (1994)
and the book by Brown (1993).

Derivation of a multiple-use confidence region, satisfying the coverage prob-
ability requirements mentioned earlier, presents some theoretical difficulties
even in the univariate case. An approach that has been successfully employed
in the univariate case is to first derive conservative simultaneous tolerance
intervals and then to invert them to obtain conservative multiple-use confi-
dence regions. For details, see Mee, Eberhardt and Reeve (1991) and Mee and
Eberhardt (1996). Recently, Lee and Mathew (1998) have looked at regions
obtained by inverting tolerance intervals rather than simultaneous tolerance
intervals in the univariate case. The numerical results reported in their arti-
cle show that the regions so obtained satisfy the requirements of multiple-use
confidence regions quite well. That this may be the case is also conjectured
in Mee and Eberhardt (1996), Section 5. Our approach in this article is moti-
vated by this. That is, we have derived a region for � in (1.2), and � in (1.3),
using a tolerance region condition, rather than the condition that is required
of simultaneous tolerance regions. Later in the article, we have investigated
numerically whether the region so obtained satisfies the coverage probability
requirements of multiple-use confidence regions. This numerical study is car-
ried out in the context of an example. The regions derived in Mathew and Zha
(1997) are also based on a tolerance region condition.

The paper is organized as follows. In Section 2, we first give the tolerance
region condition that is used in our derivation, along with the actual condition
that should be satisfied by a multiple-use confidence region. For the models
(1.1) and (1.2), we then prove the existence of a region for � that satisfies
the tolerance region condition. The pivot statistic that we have used in our
construction is a natural choice; see (2.4) in the next section. Our procedure
is conservative, except in the univariate case, that is, p = m = 1 in (1.1)
and (1.2). In Section 3, we give a generalization of our procedure applicable
to the models (1.1) and (1.3). The computations required for the practical im-
plementation of our procedure are described in Section 4. It turns out that
our procedure is computationally involved and closed form solutions are not
available. Section 5 deals with an example taken from Oman and Wax (1984),
which deals with the estimation of gestational age (i.e., week of pregnancy)
based on two fetal bone lengths. The model relating the bone lengths to the
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gestational age is given in Oman and Wax (1984); the gestational age enters
the model nonlinearly so that the model (1.3) is applicable. The data that
are available for this example consist of fetal bone length measurements for
several women whose gestational ages are precisely known. This data can be
used repeatedly in order to construct confidence regions for the unknown ges-
tational age of women after observing the corresponding fetal bone lengths.
In other words, it is required to construct multiple-use confidence regions. It
should be mentioned that for this problem, single-use confidence regions have
been constructed by Oman (1988) and Mathew and Zha (1996). In Section
5, for the same problem, we have implemented numerically the procedure in
this article for the construction of a region that satisfies the tolerance region
condition. We have also investigated numerically whether the region derived
using the tolerance region condition does satisfy the coverage probability re-
quirements of multiple-use confidence regions. The numerical results indicate
that this is the case. Some concluding remarks appear in Section 6.

2. A region for � in the model (1.2). This section deals with the con-
struction of a region for � in the models (1.1) and (1.2) using a tolerance region
condition. Let Y = �y1, y2� � � � �yN� and X = �x1, x2� � � � �xN�. Then Y and X
are, respectively, p ×N and m ×N matrices and we assume rank�1N�X� =
m + 1. If vec�Y� denotes the Np × 1 column vector obtained by writing the
columns of Y one below the other, (1.1) implies cov�vec�Y�� = IN ⊗ �. The
model (1.1) can thus be written as

Y ∼N�a1′
N +BX�IN ⊗ ���(2.1)

The least-squares estimators of B and a are given by

B̂ = Y

(
IN − 1

N
1N1′

N

)
X′

[
X

(
IN − 1

N
1N1′

N

)
X′

]−1

� â = ȳ − B̂x̄�(2.2)

where ȳ and x̄ are, respectively, the averages of the column vectors of Y and
X. Also, let

S = �Y− â1′
N − B̂X��Y− â1′

N − B̂X�′�(2.3)

Then S ∼ Wp�N − m − 1� ��, where Wp�f��� denotes the p-dimensional
Wishart distribution with df = f and scale matrix �. Furthermore, S is dis-
tributed independently of �â� B̂�. It is assumed that N−m−1 ≥ p and p ≥m.
These assumptions are required for the positive definiteness (with probability
one) of S and the identifiability of �, respectively.

2.1. The pivot statistic. The pivot statistic that we shall use for construct-
ing our region for � is motivated by the following observation. From (1.2), it
follows that if a, B and � are known, the weighted least-squares estimator of
� is �̃ = �B′�−1B�−1B′�−1�y−a� with covariance matrix �B′�−1B�−1. Hence, a
confidence region for � should be based on the pivot ��̃−��′B′�−1B��̃−��. When
a, B and � are unknown, we shall replace them by the corresponding estima-
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tors, namely â, B̂ and �1/N−m− 1�S. Thus, let �̂ = �B̂′S−1B̂�−1B̂′S−1�y − â�,
and a natural pivot for constructing a confidence region for � is

T��� = N−m− p

m
��̂ − ��′B̂′S−1B̂��̂ − �� = N−m− p

m

× [
y − ȳ − B̂�� − x̄�]′S−1B̂�B̂′S−1B̂�−1B̂′S−1[y − ȳ − B̂�� − x̄�]�

(2.4)

Later in our derivation, it will be necessary to consider the conditional distri-
bution of T���, conditionally given the calibration data Y. Note that this is the
same as the conditional distribution of T���, conditionally given ȳ, B̂ and S.
Also note that the three quantities, ȳ, B̂ and S, are independently distributed.

2.2. Coverage probability requirements. The region that we shall construct,
say � ���, is given by

� ��� = {
�� T��� ≤ k���}�(2.5)

where k��� is to be determined subject to appropriate coverage probability
requirements. Obviously � ��� depends on the data and is a function of only the
data; however, for notational convenience, we have suppressed this fact. Note
that k��� is a function of �. (It turns out that a function of � is required in order
to satisfy our coverage probability condition). We shall compute k��� satisfying
a condition similar to that required of a tolerance region. The condition is
given by

Pȳ�B̂�S

[
Py�T��� ≤ k���∣∣ȳ� B̂�S� ≥ 1 − β

] ≥ 1 − α�(2.6)

for all a, B, � and � ∈ �, where � is the parameter space for �.
When the calibration curve is used repeatedly for constructing a sequence

of confidence regions, the coverage probability requirement that we want is
different from that in (2.6). We shall now explain this. Let

C��� ȳ� B̂�S� = Py
{
T��� ≤ k���∣∣ȳ� B̂�S}�(2.7)

Let ��i�, i = 1�2� � � � � n, denote a sequence of n values of �, corresponding
to a sequence of n independent y values. As soon as we observe a y value,
a confidence region for the corresponding � can be constructed as in (2.5)
using the observed y value and the calibration data. In this case, k��� is to be
determined subject to the following condition:

Pȳ� B̂�S

[
1
n

n∑
i=1

C��i� ȳ� B̂�S� ≥ 1 − β

]
≥ 1 − α�(2.8)

for every sequence ��i�, i = 1�2� � � � � n. The interpretation of this condition
is as follows. If the calibration data is used to construct a sequence of confi-
dence regions for a sequence of possibly different � values corresponding to a
sequence of independent y values, then at least a proportion 1−β of such confi-
dence regions will include the corresponding true � values with a confidence of
at least 1−α. Thus, when k��� is determined subject to (2.8), we shall call the
confidence region (2.5) a multiple-use confidence region. The condition (2.8)
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is a multivariate analogue of the condition (5) in Mee and Eberhardt (1996).
We note that, typically, multiple-use confidence regions are derived under the
much stronger requirement

Pȳ� B̂�S

[
inf
�∈�

C��� ȳ� B̂�S� ≥ 1 − β
]
≥ 1 − α�(2.9)

where � is the parameter space for θ. In fact, most of the available results
in the univariate case deal with the computation of k��� satisfying (2.9); see
Mee and Eberhardt (1996) for a review. In the multivariate set up, we have
not investigated the problem based on (2.8) or (2.9). Instead, our attempt in
this article is to derive k��� satisfying (2.6). We would like to point out that,
as such, the condition (2.6) does not appear to have any practically relevant
interpretation for the calibration problem. Nevertheless, (2.6) is analytically
more tractable compared to (2.8) or (2.9). Furthermore, the numerical results
in the univariate case indicate that (2.6) implies (2.8); see Lee and Mathew
(1998). Later, for an example, we have investigated whether k��� satisfying
(2.6) also satisfies (2.8).

2.3. A region that satisfies �2�6�. We now turn our attention to (2.6). The-
orem 2.1 in this section gives our main result that shows the existence of k���
satisfying (2.6). As will be seen later, Theorem 2.1 also facilitates the compu-
tation of k���. We shall first obtain a lower bound for P�T��� ≤ k�ȳ� B̂�S�, for
any k > 0. Note that in order to study (2.6), we can assume � = Ip. This is be-
cause we can replace y, ȳ, B̂ and S by �−1/2y, �−1/2ȳ, �−1/2B̂ and �−1/2S�−1/2,
respectively, and this does not change T���. The following notation is used in
the sequel. We shall use χ2�s�η� to denote a noncentral chi-square random
variable with s degrees of freedom and noncentrality parameter η. A cen-
tral chi-square random variable with s degrees of freedom will be denoted by
χ2�s�. When there are several independent chi-square random variables in-
volved, we shall use the notation χ2

i �si�ηi� in the noncentral case, and χ2
i �si�

in the central case �i = 1�2� � � ��.
Lemma 2.1 below gives a lower bound for P�T��� ≤ k�ȳ� B̂�S�. The proof of

the lemma is given in the Appendix.

Lemma 2.1. Consider the models (1.1) and (1.2) and assume � = Ip. Let
T��� be as defined in (2.4).

(i) Suppose p > m. Let λ1 > λ2 > · · · > λm denote the ordered nonzero

eigenvalues of the matrix S−1B̂�B̂′S−1B̂�−1B̂′S−1. Write

� = �λ1� λ2� � � � � λm�′�

�1 =
{
X

(
IN − 1

N
1N1′

N

)
X′

}−1/2

�� − x̄��

v =
(

1
N

+ �′
1�1

)−1[�ȳ − a −Bx̄� − �B− B̂��� − x̄�]′
× [�ȳ − a −Bx̄� − �B− B̂��� − x̄�]�

(2.10)
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Then, for k > 0,

P
[
T��� ≤ k

∣∣ȳ� B̂�S]

≥ P

[
N−m−p

m

{
λ1χ

2
1

(
1�
(

1
N

+ �′
1�1

)
v

)
+

m∑
i=2

λiχ
2
i �1�

}
≤k∣∣�� v

]
�

(2.11)

(ii) Suppose p =m. Then

T��� = N− 2m
m

[
y − ȳ − B̂�� − x̄�]′S−1[y − ȳ − B̂�� − x̄�]�

and (2.11) holds with λ1 > λ2 > · · · > λm being the eigenvalues of S−1.

Note that the definition of �1 in (2.10) requires the positive definiteness of
the matrix X�IN − �1/N�1N1′

N�X′. This positive definiteness follows in view
of our assumption rank�1N�X� =m+ 1.

The next lemma is on the distributions of � and v given in (2.10). It turns
out that the distributions of � and v are free of any unknown parameters.
When p = m, it is obvious that the distribution of � is free of any unknown
parameters, since S ∼ Wp�N −m − 1� Ip�. In the statement of Lemma 2.2,
B�q1� q2� Ip� denotes the matrix variate beta distribution with parameters
q1, q2; see (A.8) in the Appendix for the definition of the matrix variate beta
distribution.

Lemma 2.2. Suppose � and v are as defined in Lemma 2.1. For p > m, let
G1 ∼Wm�N−p− 1� Im�� G2 ∼Wp−m�N−m− 1� Ip−m� and U ∼N�0� Im ⊗
Ip−m�, where G1, G2 and U are independently distributed. Then, (i) for p > m,
the distribution of � is the same as the distribution of the ordered eigenvalues
of �I +UG−1

2 U′�G−1
1 , (ii) if m ≤ p/2, the distribution of � is the same as the

distribution of the ordered eigenvalues ofH−1G−1
1 , whereG1 is as defined above

and H ∼ B�N − p +m − 1� p −m�Im�, (iii) v ∼ χ2�p� and (iv) � and v are
independently distributed.

The proof of Lemma 2.2 is also given in the Appendix.
We shall now state our main result regarding the existence of k��) satisfying

(2.6). It turns out that such a k��) is a function of �′
1�1, where �1 is given in

(2.10). Hence, from now on, we shall use the notation k��′
1�1) instead of k��).

Theorem 2.1. Suppose � and v are as defined in Lemma 2.1. Let k��′
1�1�

satisfy

P�� v

[
P

(
N−m− p

m

{
λ1χ

2
1

(
1�
(

1
N

+ �′
1�1

)
v

)
+

m∑
i=2

λiχ
2
i �1�

}

≤ k��′
1�1�

∣∣�� v
)
≥ 1 − β

]
= 1 − α�

(2.12)



1996 T. MATHEW, M. K. SHARMA AND K. NORDSTRÖM

Then

Pȳ� B̂�S

[
Py�T��� ≤ k��′

1�1�
∣∣ȳ� B̂�S� ≥ 1 − β

] ≥ 1 − α�(2.13)

Proof. Noting that � and v depend only on ȳ, B̂ and S, the theorem
follows from the inequality (2.11). ✷

From (2.13) we conclude that

� ��� = {
�� T��� ≤ k��′

1�1�
}

(2.14)

is a region that satisfies (2.6). Then � ��� in (2.14) is conservative. That is, the
left-hand side (lhs) of (2.6) is not exactly equal to 1 − α; it may be more than
1 − α�

2.4. Some remarks on Lemma 2�1 and Theorem 2�1. We shall now make
several observations regarding Lemma 2.1 and Theorem 2.1. The main feature
to note is that the right-hand side of (2.11) is a random variable that depends
on � and v and the distributions of � and v are free of the nuisance parameters
a, B and �; in fact, the distributions of � and v are free of any unknown
parameters (see Lemma 2.2). The conservatism of the region (2.14), already
noted above, results from the inequality in (2.11). A careful examination of the
proof of Lemma 2.1 (given in the Appendix), shows that inequality occurs in
(2.11) for two reasons: (1) inequality occurs in (A.6), and (2) inequality occurs
in (A.7), where (A.6) and (A.7) are given in the Appendix. If any one of these is
an equality, the region (2.14) will be less conservative. If both (A.6) and (A.7)
are equalities, the region (2.14) will be exact, that is, the lhs of (2.13) will be
equal to 1 − α. Let us examine when equality will hold in (A.6) and (A.7). For
equality to hold in (A.6), it is necessary to have m = 1� For equality to hold
in (A.7), we need the condition

∑m
i=1 rir

′
i = Ip, that is, m = p, where the ri’s

are given in (A.3). In other words, equality can hold in both (A.6) and (A.7)
only in the strictly univariate case, that is, p = m = 1� If at least one of the
quantities p and m is more than 1, we cannot get an exact region satisfying
(2.6), based on T���; it will only be conservative. In other words, the lhs of
(2.13) will not be exactly equal to 1 − α when p and/or m is greater than 1.

Another important aspect to note is that the quantity k��′
1�1�, to be used in

the construction of the region (2.14), depends on �1, the parameter of interest.
The same is true of the confidence regions derived in Mathew and Zha (1996,
1997). Clearly, in order to implement (2.14) in practice, one needs to know the
functional form of k��′

1�1�. The numerical computation of the functional form
of k��′

1�1� will be discussed in Section 4. As we shall see, it will be necessary
to generate the values of the random variables λ1� λ2� � � � � λm and v in order
to accomplish the above computation. From the proof of Lemma A.2 given
in the Appendix, it follows that as far as the distribution of � is concerned,
we can assume B̂ = �Im�0�′. Hence, one realization of � can be obtained
by generating a value of the Wishart matrix S and computing the nonzero
eigenvalues of S−1B̂�B̂′S−1B̂�−1B̂′S−1, with B̂ = �Im�0�′ [see (A.2) and (A.3)
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in the Appendix]. However, representing the λi’s as the eigenvalues of the
matrix �I+UG−1

2 U′�G−1
1 , as given in Lemma 2.2, can be advantageous in the

numerical computations. If m ≤ p/2, it follows from Lemma 2.2(ii) that the
λi’s are the eigenvalues of the matrix H−1G−1

1 , where H = �I+UG−1
2 U′�−1 ∼

B�N−p+m−1� p−m�Im�� In particular, if m = 1 and p > 1, then m ≤ p/2
and �I+UG−1

2 U′�−1 is a scalar having the univariate beta distribution. Also,
when m = 1, G1 is a scalar random variable having a chi-square distribution.
Thus, in the special case m = 1 and p > 1, λ1 coincides with the scalar
�I + UG−1

2 U′�G−1
1 , which is the reciprocal of the product of a beta random

variable and a chi-square random variable, both independent. In other words,
whenm = 1, generating values of λ1 is an easy task even if p is large, resulting
in a Wishart matrix S having a large dimension. We have indeed used this
observation in our example in Section 5.

3. A region for � in the model (1.3). This section describes a generaliza-
tion of the results in Section 2 when the models (1.1) and (1.3) are applicable.
That is, we have the models

Y ∼N�a1′
N +BX�IN ⊗ ��� y ∼N�a +Bh���� ���(3.1)

where � is an r×1 vector and h��� is an m×1 vector- valued function of �. The
problem is to derive a region for � based on a criterion similar to (2.6). Let ȳ, B̂
and S be as in the previous section. Following Oman (1988) and Mathew and
Zha (1996, 1997), we assume that the components of h��� are differentiable
functions of �. Under this assumption, let H��� be the p×r matrix defined as

H��� = B̂
∂h1���
∂�

�(3.2)

As in Oman [(1988), page 179], we also assume that H��� has rank r (with
probability one) for all � belonging to the appropriate parameter space. Now
define

T��� = N−m− p

r

[
y − ȳ − B̂�h��� − x̄�]′S−1H���

× [
H���′S−1H���]−1

H���′S−1[y − ȳ − B̂�h��� − x̄�]�
(3.3)

Lemma 2.1, Lemma 2.2 and Theorem 2.1 can now be easily generalized and
we get the following inequality, similar to (2.11):

P
[
T��� ≤ k

∣∣ȳ� B̂�S]

≥ P

[
N−m− p

r

{
λ1χ

2
1

(
1�
(

1
N

+h1���′h1���
)
v

)

+
r∑
i=2

λiχ
2
i �1�

}
≤ k

∣∣�� v
]
�

(3.4)
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In (3.4),

h1��� =
{
X

(
IN − 1

N
1N1′

N

)
X′

}−1/2

�h��� − x̄��

v =
(

1
N

+ h1���′h1���
)−1[�ȳ − a −Bx̄� − �B− B̂��h��� − x̄�]′

× [�ȳ − a −Bx̄� − �B− B̂��h��� − x̄�]
(3.5)

and � = �λ1� � � � � λr�′, λ1 > λ2 > · · · > λr, are the nonzero eigenvalues
of S−1H����H���′S−1H����−1H���′S−1. Furthermore, v ∼ χ2�p� and is dis-
tributed independently of �, and the distribution of � is the same as the
distribution of the ordered eigenvalues of the matrix �I +UG−1

2 U′�G−1
1 , with

G1 ∼Wr�N−m−p+r−1� Ir�, G2 ∼Wp−r�N−m�Ip−r�, U ∼N�0� Ir⊗Ip−r�,
where G1, G2 and U are independently distributed. If r ≤ p/2 , the λi’s are
the eigenvalues of H−1G−1

1 , where H ∼ B�N−m−p+2r−1� p− r� Ir� inde-
pendently of G1. If we further have r = 1 and p > 1� then λ1 is the reciprocal
of the product of a univariate beta random variable B�N−m−p+ 1� p− 1�,
and a central chi-square random variable with N−m−p degrees of freedom.
These conclusions follow from the discussion toward the end of Section 2.

Now suppose k�h1���′h1���� is such that

P�� v

[
P

(
N−m− p

r

{
λ1χ

2
1

(
1�
(

1
N

+ h1���′h1���
)
v

)
+

r∑
i=2

λiχ
2
i �1�

}

≤ k�h1���′h1����
∣∣�� v

)
≥ 1 − β

]
= 1 − α�

(3.6)

Then the region

� ��� = {
�� T��� ≤ k�h1���′h1����

}
(3.7)

is the required region for �, satisfying the condition

Pȳ� B̂�S

[
Py

{
T��� ≤ k�h1���′h1����

∣∣ȳ� B̂�S} ≥ 1 − β
] ≥ 1 − α�

4. Computation of the regions (2.14) and (3.7). In order to implement
the region (2.14) for �, or (3.7) for �, the major practical problem is the compu-
tation of k��′

1�1� satisfying (2.12) or k�h1���′h1���� satisfying (3.6), where �1
is given in (2.10) and h1��� is given in (3.5). Note that the functional forms of
these quantities are required. We shall now explain the numerical computa-
tion of k��′

1�1� satisfying (2.12). The computation of k�h1���′h1���� satisfying
(3.6) will be similar. Let

d = �′
1�1�(4.1)

In practical applications of calibration where the models (1.1) and (1.2) are
applicable, the parameter of interest, namely �, represents a physical quantity
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and a parameter space for �, and hence for �1, will be known. In particular,
an upper bound, say δ, will be available on d = �′

1�1. Thus

0 ≤ d ≤ δ�(4.2)

Our numerical computation of k��′
1�1� = k�d� will be for d satisfying (4.2).

Note from (2.12) that k�d� is an increasing function of d. Our approach for
numerically obtaining the functional form of k�d� is in the same spirit as
in Mathew and Zha (1996, 1997), namely, numerically evaluate the value of
k�d� satisfying (2.12) for a few specified values of d satisfying (4.2), plot these
values of k�d� against d and try to fit a suitable function to the plot. The fitted
function will give approximately the functional form of k�d� = k��′

1�1�, which
can be used to compute the region (2.14).

Thus, our problem is the numerical evaluation of k�d� satisfying (2.12) for
various values of d = �′

1�1, subject to (4.2) for specified values of α and β.
For any given value of d, say d1, we will need a starting value of k�d1�, say
k∗�d1�, for evaluating the actual value of k�d1�. The starting value k∗�d1�
that we shall use will be such that k∗�d1� < k�d1� and its choice for any
d1 ≥ 0 will be described shortly. Once k∗�d1� is chosen for a specified value
of d1� such that k∗�d1� < k�d1�� we shall increase the value of k∗�d1� in
steps, each time numerically evaluating the lhs of (2.12) until it is equal to
1 − α up to a desired level of accuracy. The lhs of (2.12) can be evaluated for
a given value of d1 and k∗�d1� in the following manner. Generate one set of
values of the Wishart matrices G1 and G2� the normal matrix U and the chi-
square random variable v specified in Lemma 2.2 and compute the ordered
eigenvalues λ1 > λ2 > · · · > λm of the matrix �Im +UG−1

2 U′�G−1
1 � (If p = m�

we need to generate only the Wishart matrix S and the λi’s are the ordered
eigenvalues of S−1�� For the value of � = �λ1� � � � � λm� and v so obtained, let
i��� v� be an indicator function that takes the value one if

P

[
N−m−p

m

{
λ1χ

2
1

(
1�
(

1
N

+d1

)
v

)
+

m∑
i=2

λiχ
2
i �1�

}
≤ k∗�d1�

]
≥ 1−β�(4.3)

If (4.3) does not hold, assign the value zero to i��� v�� Note that the com-
putation of i��� v� requires the computation of the lhs of (4.3), which is a
probability involving linear combinations of independent chi-square random
variables. For any specified value of � and v, the lhs of (4.3) can be evaluated
using simulation. The values of � and v can be generated a large number of
times, and the value of i��� v� can be evaluated each time. The lhs of (2.12)
is the proportion of times i��� v� takes the value one. If this proportion is less
than 1 − α� then k∗�d1� < k�d1� and the value of k∗�d1� has to be increased
in order to get a better approximation of k�d1�� As already pointed out, we
increase the value of k∗�d1� in steps, each time computing the proportion of
times i��� v� takes the value one until this proportion is approximately equal
to 1−α� Once k�d� is thus computed for a few values of d, they can be plotted
in order to obtain the approximate functional form of k�d��

We shall now discuss the choice of the starting value k∗�d1� satisfying
k∗�d1� < k�d1�� In order to accomplish this, we shall first derive some lower
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bounds for k�0�. The result is stated in the following lemma; its proof is given
in Sharma (1996).

Lemma 4.1. Let k�d� satisfy (2.12) for d = �′
1�1 and let χ2

ε�f� and
Fε�f1� f2�, respectively, denote the 100εth percentile of the central chi-square
distribution with f degrees of freedom and the 100εth percentile of the central
F distribution with �f1� f2� degrees of freedom. Furthermore, let λmax� ε denote
the 100εth percentile of the distribution of the maximum eigenvalue of the
Wishart matrix G1 specified in Lemma 2.2. Then, for d = 0:

(i) k�0� ≥ N−m− p

m

χ2
1−β�m�
λmax�α

≥ N−m− p

m

χ2
1−β�m�

χ2
α�m�N− p− 1�� ;

(ii) k�0� ≥ F�1−β��1−α��m�N−m− p�.

From Lemma 4.1, it follows that

k∗�0� = max
[
N−m− p

m

χ2
1−β�m�

χ2
α�m�N− p− 1�� �

F�1−β��1−α��m�N−m− p�
](4.4)

is a lower bound for k�0� and can be taken as a starting value for computing
k�0�� The value of k∗�0� can be increased in steps in order to arrive at k�0��
as already explained. Now consider a finite sequence of values

0 < d1 < d2 < · · · < ds = δ�(4.5)

Since k�d� is an increasing function of d, we have k�0� < k�d1�� In other
words, once k�0� is numerically obtained, it can serve as a starting value for
the evaluation of k�d1�� In general, k�di� is a starting value for the evaluation
of k�di+1� when di < di+1�

The value of s and the choice of the di’s in the interval �0� δ� satisfying
(4.5) are clearly subjective. If δ is small, the interval �0� δ� will be narrow and
perhaps the numerical evaluation of k�di� for a small number of di’s may be
enough to determine approximately the functional form of k�d�� It should be
pointed out that δ is expected to be small (in fact, less than one) in many ap-
plications. This is for the following reason. It is reasonable to assume that the
models (1.1) and (1.2) will be used for statistical inference concerning � when �
is “like” the xi’s in (1.1). Depending on the particular application, this fact can
be expressed in different ways. Here we consider two possibilities: (1) � is a
convex combination of the xi’s, (2) min1≤i≤N xij ≤ θj ≤ max1≤i≤N xij, where θj
and xij are, respectively, the jth components of the vectors � and xi �1 ≤ i ≤
N�. When case (1) holds, we can write � =X�� where � = �ψ1� � � � � ψN�′ sat-
isfies ψi ≥ 0 and

∑N
i=1ψi = 1� Hence d = �′

1�1 = �′X′�XX′�−1X� ≤ �′� ≤ 1�
In other words, δ = 1 is an upper bound for d, when case (1) is valid. The
actual upper bound may in fact be much less than one. This upper bound can
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be easily computed once we know the parameter space for � for the partic-
ular application one is dealing with. When case (2) holds, an upper bound
for d = �′

1�1 is the maximum of �′�XX′�−1�, where the maximization is done
subject to the condition min1≤i≤N xij ≤ θj ≤ max1≤i≤N xij. This maximization
will have to be done numerically. The fact that �′

1�1 ≤ 1 when � is a convex
combination of the xi’s is also pointed out in Mathew and Zha (1997). Note
that the computational procedure described here uses only the fact that d is
bounded; it does not depend on the assumptions in case (1) and case (2) men-
tioned above. Needless to say, the experimenter has to determine the upper
bound δ on d, based on the physical constraints on �, dictated by the problem
at hand.

One can drastically reduce the numerical computations by using k�δ� in-
stead of the function k�d�� In other words, numerically evaluate the value of
k�d� only at d = δ and, instead of (2.14), compute the region �θ� T��� ≤ k�δ���
Such a region will have a larger volume compared to (2.14) since k�d� ≤ k�δ��
However, if k�δ� is not too large compared to k�d�� one can compute and use
only k�δ� to obtain the region. Since k∗�0� ≤ k�d� ≤ k�δ� for all d ∈ �0� δ�,
if k�δ� is not too large compared to k∗�0�, one can avoid computing k�d� for
other values of d and use k�δ� to get the region.

Here is a summary of the numerical procedure for the evaluation of k�d��
1. Start with k∗�0� in (4.4) for the evaluation of k�0�� Since k∗�0� ≤ k�0��

the value of k∗�0� can be increased in steps, each time evaluating the lhs
of (2.12), until its value is approximately equal to 1 − α� The numerical
evaluation of the lhs of (2.12) is already explained in this section.

2. Fix s values of d satisfying (4.5). For di+1 > di, k�di� can be taken as
a starting value for the computation of k�di+1�� The value of k�di� can
be increased in steps, as mentioned before, in order to arrive at k�di+1�,
i = 0�1�2� � � � � s− 1�

3. The pairs �di� k�di��, i = 0�1�2� � � � � s (where d0 = 0� can be plotted and
a suitable function can be fitted. Since we have a finite interval �0� δ�� a
polynomial of appropriate degree should provide a good fit.

So far, we have explained the computation of k�d� satisfying (2.12) for d =
�′

1�1� For d = h1���′h1���� the computation of k�d� satisfying (3.6) is obviously
similar with obvious modifications in the constants. For example, (4.4) should
be replaced by

k∗�0� = max
[
N−m− p

r

χ2
1−β�r�

χ2
α�r�N−m− p+ r− 1�� �

F�1−β��1−α��r�N−m− p�
](4.6)

and we have k�0� ≥ k∗�0�.

Remark 4.1. The lower bound ��N−m− p�/m��χ2
1−β�m�/λmax�α� for k�0�

may turn out to be larger than k∗�0� in (4.4), at least in some cases. It
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is certainly preferable to start with a larger lower bound for the numeri-
cal evaluation of k�0�. However, the practical difficulty in using ��N −m −
p�/m��χ2

1−β�m�/λmax�α�, in case it is larger than k∗�0�, is that λmax�α is not
readily available and may have to be numerically evaluated. On the other
hand, k∗�0� in (4.4) [or in (4.6)] is readily computed.

5. An example and some numerical results. We shall carry out the
computational procedure described in the previous section for an example
where the models (1.1) and (1.3) are applicable with r = 1, that is, the pa-
rameter � in (1.3) is a scalar, to be denoted by ξ. The data for the example is
the gestational age data analyzed in Oman and Wax (1984), Oman (1988) and
Mathew and Zha (1996). Here ξ is a scalar representing gestational age (i.e.,
week of pregnancy). The observations are bivariate, ultrasound measurements
on two fetal bone lengths: the femur length �F� and the biparietal diameter
�BPD�� The model that relates the gestational age ξ to the observation vector
y = �F�BPD�′ is

y ∼N�a +Bh�ξ�� �� where h�ξ� =
(
ξ

ξ2

)
(5.1)

[see Oman and Wax (1984)]. In (5.1), a is a 2 × 1 unknown parameter vector,
B is a 2 × 2 unknown parameter matrix and � is an unknown 2 × 2 positive
definite matrix. Thus, we have the model (1.3) with r = 1, m = 2 and p = 2�
The parameter space for ξ (in weeks) is the interval �14�41�� and the data
analyzed in Oman and Wax (1984) consists of �F�BPD� measurements for
1114 women for whom the value of ξ was precisely known. Let Y be the
2 × 1114 matrix whose columns are the �F�BPD�′ measurements for these
women. As in (1.3), we shall use y to denote the �F�BPD�′ measurement for
a woman whose gestational age ξ is unknown. Then Y and y are independent
following the models

Y ∼N�a1′
1114 +BX�I1114 ⊗ ��� y ∼N�a +Bh�ξ�� ���(5.2)

The ith column of X in (5.2) is h�ξi�, ξi being the known gestational age for
the ith woman �i = 1�2� � � � �1114��

5.1. Computation of k�d� and the region �3�7�. For the data in Oman and
Wax (1984), we have

X

(
IN − 1

N
1N1′

N

)
X′ =

(
52877�52 2878329
2878329 159145978

)
=M (say) and

x̄ =
(

28�410233
854�607720

)
�

(5.3)

Furthermore, from (3.5),

h1�ξ� =M−1/2�h�ξ� − x̄��(5.4)
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In our computations, we have chosen α = 0�05 and β = 0�05. T�ξ� is given by
(3.3) with r = 1, N−m− p = 1110 and

H�ξ� = B̂

(
1
2ξ

)
�

Since H�ξ� is a column vector, T�ξ� becomes

T�ξ� = 1110 × ��y − ȳ − B̂�h�ξ� − x̄��′S−1H�ξ��2
�H�ξ�′S−1H�ξ�� �(5.5)

For the gestational age data, the matrices �â� B̂� and S are given in Oman
(1988), page 182. For d = h1�ξ�′h1�ξ�� and α = β = 0�05, we shall evaluate
k�d� satisfying (see (3.6))

Pλ1�v

[
P

{
1110×λ1χ

2
1

(
1�
(

1
1114

+d
)
v

)
≤k�d�∣∣λ1� v

}
≥0�95

]
=0�95�(5.6)

where v ∼ χ2�2� and λ1 = �hg1�−1 with h ∼ Beta�1111�1�, g1 ∼ χ2�1110�
and v, h and g1 are independently distributed. For several values of ξ ∈
�14�41�, d = h1�ξ�′h1�ξ� was calculated and k�d� was numerically obtained,
as explained in Section 4. The starting value for the computation of k�0� is
k∗�0�, given in (4.6). Since

N−m− p

r

χ2
1−β�r�

χ2
α�N−m− p+ r− 1� = 1110 × χ2

0�95�1�
χ2

0�05�1110�

= 1110 × 3�8415
1032�493

= 4�1299

and F�1−β��1−α��r�N−m−p� = F0�9025�1�1110� = 2�7506, k∗�0� = 4�1299. We
used this as a starting value for the computation of k�d� for d = 0�00059�
the smallest value of d that we considered (see Table 1). The computation
was carried out as follows. We generated 100,000 pairs of values of �λ1� v��
For a given value of d and k�d� and for a given pair of values of �λ1� v�� we
evaluated P�1110 × λ1χ

2
1�1� �1/1114 + d�v� ≤ k�d��λ1� v� based on 100,000

simulations. If this probability is at least 0.95, define i�λ1� v� = 1� following
the notation in Section 4. Otherwise i�λ1� v� = 0� The value of i�λ1� v� is
computed for each of the 100,000 pairs of values of �λ1� v�� The lhs of (5.6) is
the proportion of times i�λ1� v� takes the value one. Here k�d� is determined
so as to make this proportion equal to 0.95, approximately. In other words,
for computing k�0�00059�, we computed the lhs of (5.6) starting with k∗�0� =
4�1299. The value of k∗�0� was adjusted suitably and the lhs of (5.6) was
evaluated repeatedly, until we arrive at a value of k�d� for which the lhs of
(5.6) is 0.95, approximately. The value of k�d� that we finally accepted is such
that the lhs of (5.6) is between 0.9490 and 0.9510. The values so obtained are
given in Table 1 [the quantity k0�d� given in Table 1 is explained later]. The
value k∗�0� = 4�1299 turned out to be a very satisfactory starting value for the
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Table 1
Values of ξ, d, k�d� satisfying �5�6� and k0�d� satisfying �5�7�

� d k�d� k0�d�

14 0.01033 4.2572 4.2576
15 0.00747 4.2175 4.2180
16 0.00530 4.1899 4.1911
18 0.00257 4.1610 4.1611
22 0.00096 4.1458 4.1456
26 0.00102 4.1461 4.1461
30 0.00073 4.1435 4.1435
34 0.00059 4.1418 4.1422
38 0.00357 4.1719 4.1716
39 0.00539 4.1939 4.1921
40 0.00784 4.2225 4.2229
41 0.01105 4.2690 4.2684

computation of k�0�00059�, since, from Table 1, k�0�00059� = 4�1418, which is
very close to k∗�0�.

A plot of the �d�k�d�� values in Table 1 is given in Figure 1. The following
function gave a good fit to the plot:

k0�d� = 4�136977 + 8�62437d+ 295�4134d2�(5.7)

where k0�d� denotes the values on the curve given in (5.7). Figure 1 also gives
a plot of k0�d�� The plot in Figure 1 and the values of k0�d� given in Table 1
show that k0�d� is a very good approximation to k�d�. Thus the region (3.7)
is given by {

ξ� T�ξ� ≤ k0�h1�ξ�′h1�ξ��
}
�(5.8)

where T�ξ� is given by (5.5), h1�ξ� is given by (5.4) and k0�h1�ξ�′h1�ξ�� is
obtained from (5.7).

For a few values of y = �F�BPD�′� the region (5.8) is given in Table 2. These
y values were also considered by Mathew and Zha (1996) for the construction
of single-use confidence regions.

We conclude this subsection with the following observations. First, an upper
bound for d is δ = 0�01105�which corresponds to ξ = 41 (see Table 1). From Ta-
ble 1, we also have k�δ� = 4�2690� One can certainly use k�δ�, instead of k0�d�,
to construct the region (5.8). Such a region is given by �ξ� T�ξ� ≤ 4�2690�.
For the y values in Table 2, the regions �ξ� T�ξ� ≤ 4�2690� are, respec-
tively, (12.978, 16.051), (18.440, 21.982), (23.024, 27.139), (27.530, 32.441) and
(31.748, 37.805). As expected, these regions are slightly wider compared to
the regions in Table 2 since most of the k�d� and k0�d� values are somewhat
smaller than k�δ� = 4�2690. However, the difference between the above in-
tervals based on k�δ� and those in Table 2 based on k0�h1�ξ�′h1�ξ�� is rather
negligible. The main advantage of using k�δ� is that one can avoid numeri-
cal computation of the other k�d� values. For this example, the use of k�δ�
appears to be quite satisfactory.
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Fig. 1. A plot of the k�d� �denoted by the dots� and k0�d� �the curve� satisfying �5�6� and �5�7��
respectively.

Remark 5.1. As already pointed out, the k�d� values in Table 1 were ob-
tained based on 100,000 simulations of the lhs of (5.6). This is extremely
computationally intensive. One such simulation took about 13 hours on a Sun
Ultra 1 with 128MB of RAM and 200 MHz UltraSPARC CPU. We used a pro-
gram written in C for this computation. We also did the same computation
using 10,000 simulations instead of 100,000. Each simulation now took only
about 10 minutes and the k�d� values agreed with those in Table 1 up to
the second decimal place. This appears quite satisfactory to us, for practical
purposes, even though we used 100,000 simulations to get a more accurate
result.

Remark 5.2. Our first interval in Table 2 extends beyond the interval
�14�41�, which is the parameter space for ξ. Strictly speaking the region

Table 2

The region �5�8� for ξ using the Oman and
Wax �1984� data for a few values of y

y′ � �F�BPD� Region (5.8)

(14,27) (12.968, 16.008)
(32,47) (18.462, 21.955)
(45,62) (23.052, 27.107)
(56,75) (27.563, 32.400)
(65,85) (31.788, 37.763)
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should be (5.8) intersected with the parameter space, that is, �ξ� T�ξ� ≤
k0�h1�ξ�′h1�ξ��� ∩ �14�41�. This will obviously bring all the intervals within
the parameter space. We note that intersecting with the parameter space will
not affect the coverage probability requirements.

5.2. Conservatism of the region �5�8�. It should be noted that since p > 1
in our example, the region (5.8) will only be conservative. That is, the quantity

Pȳ� B̂�S

[
Py�T�ξ� ≤ k�h1�ξ�′h1�ξ��

∣∣ȳ� B̂�S� ≥ 0�95
]

(5.9)

will in general be more than 0.95, even though the lhs of (5.6) is equal to
0.95. In order to study the amount of conservatism of the region (5.8), we
need to simulate (5.9) for various parameter values, that is, for various values
of B and ξ. Note that we can choose � = I2 and a = 0, without loss of
generality. In this article, we have not reported the simulated values of (5.9);
see Sharma (1996) for such numerical results. Our main concern here is to
investigate numerically whether the region (5.8), derived using the tolerance
region condition (5.6), satisfies the requirements of a multiple-use confidence
region, that is, whether it satisfies a condition similar to (2.8).

5.3. The criterion �2�8�. For the numerical investigation of (2.8), note that
we can choose � = I2 and a = 0, without loss of generality. In other words,
we consider the model y ∼N�Bh�ξ�� I2�. For M given in (5.3), write

B1 = BM1/2 and B̂1 = B̂M1/2�(5.10)

Thus, under the assumptions � = I2 and a = 0, we have the models

y ∼N�B1M
−1/2h�ξ�� I2�� ȳ ∼N�B1M

−1/2x̄� I2��
B̂1 ∼N�B1� I2 ⊗ I2�� S ∼W�1111� I2��

(5.11)

where the quantities in (5.11) are also independently distributed. Also, T�ξ�
in (5.5) can be written as

T�ξ� = 1110 × ��y − ȳ − B̂1h1�ξ��′S−1H�ξ��2
�H�ξ�′S−1H�ξ�� �(5.12)

In the simulations that follow, we have used the models in (5.11) withB1 = ηI2
for various values of η and ξ�

Following (2.7), let

C�ξ� ȳ� B̂1� S� = Py
[
T�ξ� ≤ k0�h1�ξ�′h1�ξ��

∣∣ȳ� B̂1� S
]
�(5.13)

where k0�h1�ξ�′h1�ξ�� is the function given in (5.7). Similar to (2.8), the con-
dition to be satisfied by multiple-use confidence regions is

Pȳ� B̂1� S

[
1
n

n∑
i=1

C�ξi� ȳ� B̂1� S� ≥ 1 − β

]
≥ 1 − α�(5.14)

for every sequence �ξi�, i = 1�2� � � � � n. We shall now investigate numerically
whether the confidence region (5.8), derived subject to (5.6), satisfies (5.14)
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for 1 − α = 1 − β = 0�95. It is clearly not possible to do this for all possible
sequences �ξi�. We have considered only two choices. In view of (3.4) and
(3.6), we note that (5.14) will hold if the ξi’s are all equal in the sequence
�ξi�. Consequently, (5.14) is expected to hold when the ξi’s are nearly equal.
Thus it is natural to investigate whether (5.14) will hold when the ξi’s are
as unequal as possible. In any finite sequence, the variance among the ξi’s is
maximum, that is, the ξi’s are as unequal as possible, when half of the ξi’s
take the minimum value and the remaining half take the maximum value,
which are 14 weeks, and 41 weeks, respectively. Thus, consider a sequence
where half of the ξi’s are equal to 14 and the remaining half are equal to 41.
In this case, the lhs of (5.14) becomes

Pȳ� B̂1� S

[ 1
2

{
C�14� ȳ� B̂1� S� +C�41� ȳ� B̂1� S�

} ≥ 0�95
]
�(5.15)

Table 3 gives the simulated values of (5.15) for the models in (5.11) with B1 =
ηI2 for various values of η. The results are based on 10,000 simulations, car-
ried out as follows. For a given value of η, we generated the values of ȳ, B̂1 and
S, based on the model (5.11), and simulatedC�14� ȳ� B̂1� S� andC�41� ȳ� B̂1� S�
based on 10,000 simulations. For this simulation, we used the definition of
C�ξ� ȳ� B̂1� S� given in (5.13). If 1

2�C�14� ȳ� B̂1� S� + C�41� ȳ� B̂1� S�� is more
than or equal to 0.95, define i�ȳ� B̂1� S� to be one, and zero otherwise. We
then generated 10,000 sets of values of �ȳ� B̂1� S� and computed the proportion
of times i�ȳ� B̂1� S� assumed the value one. This proportion is the simulated
value of (5.15).

Yet another sequence �ξi� that we have considered is the following. There
are 28 integer values of ξ in the interval �14�41�. Let these be

ξ1 = 14� ξ2 = 15� ξ3 = 16� � � � � ξ28 = 41�(5.16)

Consider a sequence of ξ values where the above 28 values appear equally
often. When this is the case, the lhs of (5.14) becomes

Pȳ� B̂1� S

[
1
28

28∑
i=1

C�ξi� ȳ� B̂1� S� ≥ 0�95
]
�(5.17)

where the ξi’s are as given in (5.16), for i = 1�2� � � � �28. Table 4 gives the
simulated values of (5.17) for the models in (5.11) with B1 = ηI2 for various
values of η. The simulation of (5.17) was carried out similar to that of (5.15).
However, the results are based on only 2500 simulations. We used fewer simu-
lations since, in order to compute (5.17), we need to simulate the 28 quantities

Table 3

Simulated values of �5�15� for the model �5�11� based on 10�000 simulations with
B1 = ηI2 for various values of η

� 0.001 0.01 1 10 100

Simulated value of (5.15) 0.9664 0.9664 0.9696 0.9777 0.9774
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Table 4

Simulated values of �5�17� for the model �5�11� based on 2500 simulations with
B1 = ηI2 for various values of η

� 0.001 0.01 1 10 100

Simulated value of (5.17) 0.9736 0.9736 0.9740 0.9888 0.9912

C�ξi� ȳ� B̂1� S� �i = 1�2� � � � �28�, as opposed to only two such terms in (5.15).
That is, the computation of (5.17) requires considerably more computational
time than the computation of (5.15). Consequently, we decided to compute
(5.17) using only 2500 simulations.

The simulation results in Table 3 and Table 4 show that (5.14) holds at least
for the parameter values considered for simulation. In other words, the indi-
cation is that confidence regions derived using the tolerance region condition
(2.6) do satisfy the requirements of multiple-use confidence regions. Clearly,
more extensive simulation is necessary before we can draw a firm conclusion
regarding this.

Remark 5.3. The computations for the above example were carried out as
follows. The values of k�d� in Table 1 was computed using a program written
in C, as pointed out in Remark 5.1. Figure 1 was obtained using S-Plus. The
regions in Table 2 were obtained using MATLAB and the numerical results
reported in Tables 3 and 4 were obtained using SAS-IML.

6. Concluding remarks. In this article, we have derived a region for
the parameter � in the model (1.2) or the parameter � in the model (1.3),
using a tolerance region condition. The results are applicable to finite sam-
ples. For some selected parameter values, we have also investigated numeri-
cally whether our region satisfies the coverage probability requirements of a
multiple-use confidence region. The numerical results indicate that this is the
case. Establishing this fact theoretically appears quite difficult. Hence, exten-
sive numerical results are necessary before one can draw the above conclusion.
We believe that this article provides the necessary framework and theoretical
tools for the further investigation of this problem.

The implementation of our procedure is computationally involved, since
the functional form of k�d� satisfying (2.12), or (3.6), has to be numerically
evaluated. One alternative to reduce the computational burden is to replace
d by an upper bound, say δ, and compute the region using k�δ� instead of
the function k�d�. This will of course result in a region having a larger vol-
ume, since k�d� ≤ k�δ�. However, if k�δ� is not too large compared to k∗�0� in
(4.4) [or (4.6)], the increase in volume of the region based on k�δ� will not be
that significant. This is indeed the case for the example in Section 5. Another
alternative is to explore the possibility of approximating k�d� by a suitable
function, say a linear function, and then to determine numerically the coeffi-
cients in the function so that the lhs of (2.12) [or (3.6)] is at least 1 − α. Such
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an approximation may also result in a region having a larger volume since the
actual function k�d� satisfies (2.12) [or (3.6)] with equality, that is, the lhs of
(2.12) and (3.6) are equal to 1−α� It should be remembered that in situations
that call for the use of multiple-use confidence regions, the same k�d� will be
used repeatedly in order to construct a sequence of confidence regions. Con-
sequently, if our regions are to be used as multiple-use confidence regions, it
may be worthwhile to do the numerical work and compute the functional form
of k�d�, following the procedure described in Section 4 of this article. In other
words, in a given set-up of the calibration problem, the computation of k�d�
has to be done only once. It can then be used repeatedly for the construction
of multiple-use confidence regions. Nevertheless, in order to save on compu-
tations, it is highly desirable to have good approximations for k�d�. We hope
that this article will stimulate research in this direction.

APPENDIX

In this Appendix, we shall give the proofs of Lemma 2.1 and Lemma 2.2.
In order to prove Lemma 2.1, we shall use the following result.

Lemma A.1. Let χ2
i �si�ηi� denote independent noncentral chi-square ran-

dom variables with degrees of freedom si and noncentrality parameters ηi and
let χ2

i �si� denote independent central chi-square random variables with de-
grees of freedom si �i = 1�2� � � � �m�. Let λ1 ≥ λ2 ≥ · · · ≥ λm be nonnegative
scalars. Then

∑m
i=1 λiχ

2
i �si�ηi� is stochastically smaller than λ1χ

2
1�s1�

∑m
i=1 ηi�+∑m

i=2 λiχ
2
i �si�.

The proof of Lemma A.1 is omitted since it is a special case of more general
results in Mathew and Nordström (1997).

Proof of Lemma 2.1. Recall that we are assuming � = Ip. Note that
given ȳ, B̂ and S,

y − ȳ − B̂�� − x̄� ∼N
[�B− B̂��� − x̄� − �ȳ − a −Bx̄�� Ip

]
�(A.1)

Let R be a p × p orthogonal matrix and 4 be a p × p diagonal matrix such
that

S−1B̂�B̂′S−1B̂�−1B̂′S−1 = R4R′�(A.2)

Write

R = �r1� r2� � � � � rp� and

4 = diag�λ1� λ2� � � � � λm�0� � � � �0�� λ1 > λ2 > · · · > λm�
(A.3)

The ri’s �i = 1�2� � � � � p� are the eigenvectors and the λi’s �i = 1�2� � � � �m�
are the nonzero eigenvalues of the matrix on the lhs of (A.2). Note from (A.2)
that R depends only on B̂ and S and hence is distributed independently of y.



2010 T. MATHEW, M. K. SHARMA AND K. NORDSTRÖM

Consequently, given ȳ, B̂ and S, it follows from (A.1) and the orthogonality of
R that

R′[y − ȳ − B̂�� − x̄�] ∼N
[
R′�B− B̂��� − x̄� −R′�ȳ − a −Bx̄�� Ip

]
�(A.4)

From (A.2), (A.3) and (A.4), we get

T��� = N−m− p

m

m∑
i=1

λi
{
r′
i

[
y − ȳ − B̂�� − x̄�]}2

�

Furthermore, given ȳ, B̂ and S,
{
r′
i

[
y − ȳ − B̂�� − x̄�]}2 ∼ χ2

i �1�ηi��
where, for i = 1�2� � � � �m, χ2

i �1�ηi� denote independent noncentral chi-square
random variables with one d.f. each, noncentrality parameters ηi and

ηi =
{
r′
i

[�ȳ − a −Bx̄� − �B− B̂��� − x̄�]}2
�

Thus, conditionally given ȳ, B̂ and S, we have the representation

T��� = N−m− p

m

m∑
i=1

λiχ
2
i �1�ηi��

Hence, for any k > 0,

P
[
T��� ≤ k

∣∣ȳ� B̂�S]

= P

[
N−m− p

m

m∑
i=1

λiχ
2
i �1�ηi� ≤ k

∣∣�� η1� � � � � ηm

]
�

(A.5)

where � = �λ1, λ2, � � � , λm�′. Since λ1 > λ2 > · · · > λm, we use Lemma A.1 to
conclude that

P

[
N−m− p

m

m∑
i=1

λiχ
2
i �1�ηi� ≤ k

∣∣�� η1� � � � � ηm

]

≥ P

[
N−m−p

m

{
λ1χ

2
1

(
1�

m∑
i=1

ηi

)
+

m∑
i=2

λiχ
2
i �1�

}
≤k∣∣�� η1� � � � � ηm

]
�

(A.6)

Note that
m∑
i=1

ηi =
[�ȳ − a −Bx̄� − �B− B̂��� − x̄�]′

×
m∑
i=1

rir
′
i

[�ȳ − a −Bx̄� − �B− B̂��� − x̄�]

≤ [�ȳ−a−Bx̄�− �B− B̂���− x̄�]′[�ȳ−a−Bx̄�− �B− B̂���− x̄�]�
=

(
1
N

+ �′
1�1

)−1

v�

(A.7)
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where �1 and v are given in (2.10). The inequality (2.11) now follows, in view
of (A.5), (A.6) and (A.7). Finally, when p = m, B̂ is an m × m nonsingular
matrix (with probability one) and hence we have the simplification T��1� =
��N− 2m�/m��y−ȳ−B̂��−x̄�′S−1�y−ȳ−B̂��−x̄��� Furthermore, in the special
case when p = m, the lhs of (A.2) is S−1 and the λi’s are the eigenvalues of
S−1. The proof of Lemma 2.1 is thus complete. ✷

We shall now prove Lemma 2.2. For this, we need the definitions of the ma-
trix variate beta andF distributions and some related basic results. These def-
initions and the results given in (A.8) are taken from Eaton [(1983), pages 331
and 332].

Let S1 ∼ Wp�q1� Ip� and S2 ∼ Wp�q2� Ip� be independently distributed.
Then:

�A�8�

1. If q1 + q2 ≥ p, �S1 + S2�−1/2S1�S1 + S2�−1/2 ∼ B�q1� q2� Ip�, the
matrix variate beta distribution with parameters q1� q2.

2. If q2 ≥ p, S−1/2
2 S1S

−1/2
2 ∼ F�q1� q2−p+1� Ip�, the matrix variate

F distribution with parameters q1 and q2 − p+ 1.
3. If U is an r×p matrix �r ≤ p� distributed independently of S1 as
U ∼N�0� Ir ⊗ Ip� and if q1 ≥ p, US−1

1 U′ ∼ F�p�q1 − p+ 1� Ir�.
4. If F ∼ F�s1� s2� Ip� then �I+F�−1 ∼ B�p+ s2 − 1� s1� Ip�.

The following result will also be used for proving Lemma 2.2.

Lemma A.2. Let S ∼ Wp�q� Ip�, q ≥ p. Let Z be a random p × r matrix
�r<p� distributed independently of S and satisfying Z′Z = Ir (with proba-
bility one). Then:

(i) The distribution of �Z′S−2Z�−1�Z′S−1Z� is the same as the distribution
of G1�I + UG−1

2 U′�−1, where G1 ∼ Wr�q − p + r� Ir�, G2 ∼ Wp−r�q� Ip−r�,
U ∼N�0� Ir ⊗ Ip−r�, and G1�G2� and U are independently distributed.

(ii) If r ≤ p/2, the distribution of �Z′S−2Z�−1Z′S−1Z is the same as that of
G1H, where G1 is as defined above, H ∼ B�q−p+ 2r�p− r� Ir� and G1 and
H are independently distributed.

Proof. Let Z1 be a p× �p− r� matrix such that Z0 = �Z � Z1� is a p×p
random orthogonal matrix. Then Z′

0SZ0 ∼Wp�q� Ip�. Using the orthogonality
of Z0, we also get �Z′

0SZ0�−1 = Z′
0S

−1Z0 and �Z′
0SZ0�−2 = Z′

0S
−2Z0. Thus

Z′S−1Z, which is the top left-hand corner r×r submatrix of Z′
0S

−1Z0, is also
the top left-hand corner r× r submatrix of the inverse of a Wp�q� Ip� matrix.
Similarly, Z′S−2Z is the top left-hand corner r × r submatrix of the square
of the inverse of the same Wishart matrix. In other words, in order to prove
Lemma A.2, we can assume Z = �Ir � 0�′. Now partition S as S = (S11 S12

S21 S22

)
,

where S11 is r× r, S12 is r× �p− r�, S22 is �p− r� × �p− r� and S21 = S′
12.

Using the expression for the inverse of a partitioned matrix, we conclude
the following: the top left-hand corner r× r submatrix of S−1 is S−1

11�2, where
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S11�2 = S11 − S12S
−1
22S21. Furthermore, writing S−2 = S−1S−1 and using the

expression for S−1 in the partitioned form, the top left-hand corner r × r
submatrix of S−2 is seen to be S−2

11�2 +S−1
11�2S12S

−2
22S21S

−1
11�2. Consequently, with

Z = �Ir � 0�′, the distribution of �Z′S−2Z�−1Z′S−1Z mentioned in Lemma A.2
is the same as the distribution of the quantity[

S−2
11�2 +S−1

11�2S12S
−2
22S21S

−1
11�2

]−1
S−1

11�2 = S11�2
[
Ir +S12S

−2
22S21

]−1
�(A.8)

We shall now use the following distributional results [see Muirhead (1982),
Theorem 3.2.10]: (i) S22 ∼ Wp−r�q� Ip−r�, (ii) S11�2 ∼ Wr�q − p + r� Ir� and

is distributed independently of S12 and S22 and (iii) S12S
−1/2
22 ∼ N�0� Ir ⊗

Ip−r� and is distributed independently of S22. Taking G1 = S11�2, G2 = S22

and U = S12S
−1/2
22 , part (i) of Lemma A.2 follows from the representation

(A.9). Part (ii) follows by noting that when r ≤ p − r, that is, when r ≤ p/2,
UG−1

2 U′ ∼ F�p − r� q − p + r + 1� Ir� [using (iii) in (A.8)], and hence H =
�I+UG−1

2 U′�−1 ∼ B�q−p+ 2r�p− r� Ir�, using (iv) in (A.8)]. This completes
the proof of Lemma A.2. ✷

Proof of Lemma 2.2. Recall that � is the vector of ordered nonzero eigen-
values of the matrix S−1B̂�B̂′S−1B̂�−1B̂′S−1. Note that

S−1B̂�B̂′S−1B̂�−1B̂′S−1 = S−1Z�Z′S−1Z�−1Z′S−1�

where Z = B̂�B̂′B̂�−1/2. Since Z′Z = Im and since the nonzero eigenvalues of
S−1Z�Z′S−1Z�−1Z′S−1 are the same as those of �Z′S−1Z�−1Z′S−2Z� parts (i)
and (ii) of Lemma 2.2 follows from Lemma A.2. In order to prove (iii), note that
since ȳ ∼N�a+Bx̄� �1/N�Ip� and B̂ ∼N�B� �X�IN−�1/N�1N1′

N�X′�−1⊗Ip�,
we immediately get

�ȳ − a −Bx̄� − �B− B̂��� − x̄� ∼N

[
0�

(
1
N

+ �′
1�1

)
Ip

]
�(A.9)

where �1 is given in (2.10). The definition of v in (2.10) along with (A.10)
shows that v ∼ χ2�p�. Finally, we need to show that v and � are independently
distributed. From the proof of (i) given above, it follows that � is distributed
independently of B̂. Furthermore, S is distributed independently of B̂ and ȳ.
Using the definition of v, we now conclude that v and � are independently
distributed. This concludes the proof of Lemma 2.2. ✷
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