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WEIGHTED POLYNOMIAL MODELS AND WEIGHTED
SAMPLING SCHEMES FOR FINITE POPULATION1

BY SEAN X. CHEN

New York University

This paper outlines a theoretical framework for finite population
models with unequal sample probabilities, along with sampling schemes
for drawing random samples from these models. We first present four
exact weighted sampling schemes that can be used for any finite popula-
tion model to satisfy such requirements as ordered�unordered samples,
with�without replacement, and fixed�nonfixed sample size. We then in-
troduce a new class of finite population models called weighted polynomial
models or, in short, WPM. The probability density of a WPM is defined
through a symmetric polynomial of the weights of the units in the sample.
The WPM is shown to have been applied in many statistical analyses
including survey sampling, logistic regression, case-control studies, lot-
tery, DNA sequence alignment and MCMC simulations. We provide gen-
eral strategies that can help improve the efficiency of the exact weighted
sampling schemes for any given WPM. We show that under a mild
condition, sampling from any WPM can be implemented within polyno-
mial time. A Metropolis�Hasting-type scheme is proposed for approximate
weighted sampling when the exact sampling schemes become intractable
for moderate population and sample sizes. We show that under a mild
condition, the average acceptance rate of the approximate sampling scheme
for any WPM can be expressed in closed form using only the inclusion
probabilities.

1. Introduction. Statistical analysis for finite populations often re-
Ž .quires the specifications of 1 a probability model for samples from the finite

Ž .population and 2 a sampling scheme that produces samples according to the
probability model. In most situations, it is also assumed that the probability
model is invariant under the permutation of the indexes of the units, or
equivalently, the units are exchangeable. When little information about the
characteristics of the population units is known, an equal probability model is
often employed for convenience. For example, when samples of n distinct
units are to be drawn from a population of N units, the equal probability

Ž .model has a density function with the probability n! N � n !�N! for each
possible sample. The sampling scheme corresponding to an equal probability
model is called simple random sampling or, in short, SRS, in which each unit
is equally likely to be chosen into the sample. Except when dealing with
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Ž .abstract objects e.g., computer memory space, playing cards , an equal
Žprobability model along with SRS often produces unsatisfactory results e.g.,

. Žlarge bias or variance for the estimate or sometimes ‘‘absurd’’ results e.g.,
.negative estimate for variance . Therefore, any auxiliary information about

the population units should be utilized when available. If all available
auxiliary information can be summarized by a single variable, which will be
called weight, then the resulting probability model can be called weighted
model in general. By analogy, any sampling scheme that draws random
samples from a weighted model can be called weighted sampling scheme.

Many existing finite population models are of the weighted model type. In
� Ž .�the context of survey sampling e.g., Hanif and Brewer 1980 , ‘‘sampling

Ž .with probabilities proportional to sizes’’ in short, PPS , or in a broader sense,
‘‘sampling with unequal probabilities,’’ often results in a weighted model.
Some models are in fact of weighted model type but were not recognized by
their inventors. In this paper, we present a unified theoretical framework
that incorporates all such models.

The use of weighted models is twofold. One is as design tools for data
collection and error control. This is the typical situation in survey sampling
� Ž . Ž .e.g., Chen, Dempster and Liu 1994 , Lahiri 1951 , Singh and Srivastava
Ž .�1980 , in which data are to be collected on samples that are randomly drawn
from a probability model through a sampling scheme. In such cases, both the
probability model and the sampling scheme must be specified. The other use
of weighted models is as modeling and simulation tools for observed data. For

Ž .example, the conditional Bernoulli model a weighted model type was ap-
Ž .plied by Chen and Liu 1997 to logistic regression and case-control studies,
Ž .and by Stern and Cover 1989 in the fitting of Canada’s Lotto 6�49 data. In

such cases, the probability model must be specified, while the sampling
scheme can be used as an option to simulate samples from the weighted
model for estimation and hypothesis testing of parameters and lack of fit.

Often times, a major obstacle in using a desired weighted model is the
difficulty of drawing random samples from it due to the tremendous amount
of computation involved. In this paper, we present several weighted sampling
schemes that can be used for different purposes. With our special strategy,
these weighted sampling schemes can be implemented efficiently.

The rest of this paper is organized as follows.
In Section 2, we present four exact weighted sampling schemes for draw-

ing random samples from any weighted model. These schemes serve general
sampling purposes, taking into account a wide variety of requirements such
as order�unordered samples, with�without replacement, and fixed�nonfixed
sample size. The use of these schemes is by no means limited to the ‘‘weighted
polynomial models’’ described in Sections 3 and 4, where the main focus is
placed upon the flexibility of these models and the efficiency of the corre-
sponding sampling schemes.

In Section 3, we introduce a new class of weighted models called weighted
polynomial models or, in short, WPM. The probability density of a WPM is
determined, up to a normalizing constant, by a symmetric polynomial of the



S. X. CHEN1896

weights of the units in the sample. Several models found in statistical
analyses including survey sampling, logistic regression, case-control studies,
lottery, biological sequence analysis and MCMC simulations can be identified
as members of this class. We use these applications to show the flexibility and
potential of the WPM in finite population studies.

In Section 4, we provide general strategies that can help improve the
efficiency of the exact weighted sampling schemes described in Section 2 for
drawing samples from the seemingly complex WPM. The use of these strate-
gies is illustrated with two examples from Section 3. We show that under a
mild condition, sampling n units from N population units for any given

Ž 2 . Ž n.WPM can be implemented within O nN operations, as supposed to O N
operations needed for a whole-sample scheme. An even higher efficiency can
be achieved when the degree of the polynomial in a WPM is less than the
sample size.

In Section 5, we propose an approximate weighted sampling scheme for
Ž .drawing samples from any weighted model not limited to the WPM . This

Žscheme is suitable when the probability density is explicitly defined some-
.times only up to a normalizing constant but does not allow for an efficient

implementation of any exact sampling scheme, especially when the sample
space is too large to enumerate. The scheme we suggest is in fact a direct
application of the Metropolis�Hasting algorithm. The convergence rate of a
Metropolis�Hasting type algorithm is closely related to the average accep-
tance rate of the algorithm. We derive a closed form formula for the average
acceptance rate based only on the inclusion probabilities when the finite
population is ‘‘monotone.’’ We show that under a mild condition, the average
acceptance rate for any WPM can be expressed in the same closed form
formula.

2. Exact weighted sampling schemes. In this section, we present four
exact sampling schemes that can be used in general finite population situa-
tions. For convenience, we present the schemes for the case when the sample
units are unordered and drawn without replacement, and the sample size is

Žfixed except for Scheme 4, which is particularly designed for the case of
.nonfixed sample size . With minor modifications, these schemes can be easily

generalized to situations in which certain combinations of ordered�unordered
samples, with�without replacement, and fixed�nonfixed sample size are
required. These schemes are also applicable in any single stage of a complex
sampling design such as multistage sampling and stratified sampling.

Throughout this paper, we use N and n to denote the population size and
� 4the fixed sample size, respectively. Let SS � 1, . . . , N be the index set of the

� �population units. For any subset A � SS , its size is denoted by A and its
c � 4complement, A . An unordered sample s � i , . . . , i is essentially a subset1 n

of SS . The sample space, denoted by �, is the collection of all possible
samples. The formal definitions of a ‘‘sampling design’’ and a ‘‘sampling
scheme’’ are given as follows.



POLYNOMIAL MODELS AND SAMPLING SCHEMES 1897

DEFINITION 1. A sampling design is a probability measure p defined on �
Ž . Ž .that satisfies p s � 0 for all s � � and Ý p s � 1.s� �

DEFINITION 2. A sampling scheme is a process of selecting samples from
� according to a sampling design p.

The first scheme is based on the enumeration of the entire sample space,
and is often referred to as the ‘‘whole-sample’’ scheme.

SCHEME 1. Line up all possible samples in any arbitrary order to form a
� .queue, say s , s , . . . , s . Draw a random number u uniformly from 0, 1 .1 2 � � �

Starting from the first sample in the queue, check one sample at a time and
k Ž .take the first sample, say s , that satisfies Ý p s � u.k i�1 i

In general, when the population size and�or the sample size get moder-
ately large, the whole-sample scheme can quickly become intractable. For
example, when N � 100 and n � 10, a whole-sample scheme needs to deal

� Ž . � 13with N!� n! N � n ! � 1.73 � 10 possible samples. It would take a one-
billion-operations-per-second computer 55 years to draw one sample! A good
way to get around this problem is to use a draw-by-draw scheme, which
draws one unit at a step and only deals with a maximum of N units at each
step.

Ž .For the following two draw-by-draw schemes Schemes 2 and 3 , let sk
denote the set of units selected into the sample after k steps for k � 1, . . . , N.
The first draw-by-draw scheme repeatedly selects one unit at a time from the
unselected units with an appropriate probability until n units are obtained.

Ž .SCHEME 2. Start with s � �. At step k k � 1, . . . , n , a unit j � SS 	 s0 k�1
Ž � 4.is selected into the sample i.e., s � s 
 j with probabilityk k�1

P j � s � p s n � k � 1 p s .Ž . Ž . Ž . Ž .Ý Ý1 k�1
s�� , s �s , j�s s�� , s �sk�1 k�1

The process stops after n units are selected into the sample.

Scheme 2 indeed draws a sample from p. The proof is straightforward by
the ‘‘telescope’’ law,

� 4P s � i , . . . , i� 41 n

� 4 � 4 � 4� P s � i , s 	 s � i , . . . , s 	 s � i� 41 1 2 1 2 n n�1 n

� 4 � 4 � 4� nP s � i n � 1 P s 	 s � i � s � i� 4 � 4Ž .1 1 2 1 2 1 1

� 4 � 4 � 4��� P s 	 s � i � s � i , . . . , s 	 s � i .� 4n n�1 n 1 1 n�1 n�2 n�1

In the second draw-by-draw scheme, the population units are considered
one at a time sequentially from unit 1 to unit N, and each time the unit being
considered is selected into the sample with an appropriate probability. Let

� 4A � 1, . . . , k for k � 1, . . . , N.k
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Ž .SCHEME 3. Start with s � �. At step k k � 1, . . . , N , the kth unit is0
Ž � 4.selected into the sample i.e., s � s 
 k with probabilityk k�1

P k � s � p s p s .Ž . Ž . Ž .Ý Ý2 k�1
s�� , s �s , k�s s�� , s �sk�1 k�1
Ž . Ž . Ž . Ž .A 	s � SS 	s A 	s � SS 	sk�1 k�1 k�1 k�1

The process stops after n units are selected into the sample.

It is easy to see that Scheme 3 indeed generates a sample from p by the
‘‘telescope’’ law:

� 4P s � i , . . . , i� 41 n

� 4� P 1 � s, 2 � s, . . . , N � s

� 4 � 4 � 4� P 1 � s P 2 � s � 1 � s ��� P N � s � 1 � s, . . . , N � 1 � s .

Between the two draw-by-draw schemes described above, Scheme 3 is
usually more efficient than Scheme 2 because in Scheme 3, each population
unit is only considered once throughout the procedure, whereas in Scheme 2,
each population unit is considered at almost every step of the procedure.

The last scheme we present is particularly designed for the case when
samples of different sizes are required. Such an example can be found in

Ž .Chen 1992 , where the task is to pick out from an unstructured list of, say
200 observations, a subset of, say 15 to 25, positive true signals that rise
above a certain level of random errors. To serve this purpose, one can first
break the entire sample space into smaller subsample spaces, each with a
fixed sample size, and then use any of the previously described schemes to
draw samples from a selected subsample space.

SCHEME 4. The sampling is done in two stages.
� � � 4Stage 1. Determine the sample size k from s : s � � according to the

Ž .probability Ý p s .� s ��k
Stage 2. Use any of Schemes 1�3 to draw a sample s of size k from the0

� � � 4 Ž . Ž .subsample space s: s � k, s � � with probability p s �Ý p s .0 s� � , � s ��k

3. Weighted polynomial models. In this section, we introduce a new
Ž .class of models called weighted polynomial models in short, WPM and show

several statistical applications in which these models have been used.
It is quite general and realistic to think that the part any unit plays in a

Ž .sampling design is determined by two factors: 1 whether this unit is in or
Ž .out of the sample and 2 all available auxiliary information about this unit.

The first factor is readily represented by s. As for the second factor, we
assume that all auxiliary information can be summarized by a single vari-
able, which we call the ‘‘weight’’. For examples, the ‘‘sizes’’ used in PPS may

�be interpreted as the weights of the population units Chen, Dempster and
Ž .�Liu 1994 , and the odds ratios in case-control studies also play the role of

� Ž .�the weights Chen and Liu 1997 .
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Ž .Denote the weights for the population units by w � w , . . . , w , where w1 N i
is the weight for the ith unit, and the weights for the units in a sample

� 4 Ž .s � i , . . . , i by w � w , . . . , w . Without further specifications, we as-1 n s i i1 n

sume that the two factors s and w enter the probability density through a
‘‘link function’’ F. The class of the WPM is formally defined as follows.

DEFINITION 3. A probabilistic model is called a weighted polynomial model,
or, in short, WPM, if there exists an n-variate function F such that for any

Ž .s � �, F w is:s

Ž . Ž . Ž . Ž . Ž .i proportional to p s , that is, p s � F w �Ý F w ;s t � � t
Ž .ii symmetric in the w for all i � s;i
Ž .iii a polynomial of the w for all i � s.i

The first assumption in Definition 3 requires that the probability of a
sample depends only on the weights of the units in the sample, except for a
normalizing constant. The second assumption is equivalent to claiming that
the sample units are exchangeable, or equivalently, unordered. The third
assumption can help make sampling from WPM efficient.

The following lemma shows that the specification of a WPM is unique up to
a constant.

LEMMA 1. For any WPM, the link function F is unique up to a constant.

PROOF. Suppose there exist two link functions F and F that are not1 2
proportional to each other for at least one sample, say t � �. Since

F w F wŽ . Ž .1 t 2 t
p t � � ,Ž .

Ý F w Ý F wŽ . Ž .s� � 1 s s� � 2 s

we get

F w Ý F wŽ . Ž .1 t s� � 1 s� .
F w Ý F wŽ . Ž .2 t s� � 2 s

By the first assumption of Definition 3, the left-hand side of the equation
above depends only on the weights of the units in the sample t, while the
right-hand side depends also on the weights of the units that are not in t.
This is obviously a contradiction. This completes the proof. �

DEFINITION 4. A WPM is called a k-degree WPM if the degree of its
polynomial link function F is k.

It is easy to see by Lemma 1 that the degree of any given WPM is unique.
� Ž .�Not every model resulting from PPS see, e.g., Hanif and Brewer 1980

satisfies all three assumptions of the WPM. For example, Sampford’s model



S. X. CHEN1900

Ž .1967 has the sampling design

p s � 1 � w w 1 � nwŽ . Ž .Ý Ł Łi i iž /
i�s i�si�s


 1 � w w 1 � nw ,Ž .Ý Ł Łi i iž /ž /
i�s i�SS 	si�s

where nw � 1 for all i � SS and ÝN w � 1. By Definition 3 and Lemma 1,i i�1 i
the link function for a WPM can only depend on the weights in s and is
unique up to a constant. One cannot find such a link function because the last
term in the second expression depends also on the weights outside s.

Many existing weighted models that have been used in various research
areas are in fact members of the WPM. The five examples we give next are by
no means exhaustive.

EXAMPLE 1. Recently, a finite population model, conditional Bernoulli
model, has been extensively studied and applied in various areas including

� Ž .�survey sampling Chen, Dempster and Liu 1994 , logistic regression and
� Ž .� �case-control studies Chen and Liu 1996 and lottery Stern and Cover

Ž .� Ž .1989 . This model was first introduced by Stern and Cover 1989 as the
maximum entropy model.

The conditional Bernoulli model is obtained by choosing a sampling design
Ž . Ž .p to maximize the entropy �Ý p s log p s subject to the marginals� �

Ž .constraints Ý p s � � . The resulting density of the conditionals� � , i� s i
Bernoulli model is

1 p s 
 F w � w ,Ž . Ž . Ž . Łs i
i�s

where the w need to satisfy the marginal constraints and can be found viai
Ž .an iterative procedure by Chen, Dempster and Liu 1994 . Obviously, the

conditional Bernoulli model is an n-degree WPM.

Ž .EXAMPLE 2. In sample surveys literature, Lahiri’s model 1951 is used to
obtain unbiased ratio-type estimates. Suppose y is the unknown characteris-i
tic associated with the ith unit, and the total Y � Ý y is to be estimated.i� SS i
For all population units, the values of an auxiliary variable z are completelyi
known and supposedly have a high positive correlation with the y . Thei

ˆ Žordinary ratio-type estimate of Y, based on a sample s, is Y � Ý y �R i� s i
ˆ.Ý z Ý z . When the sample is drawn with SRS, Y is biased. The ideai� s i i� SS i R

of Lahiri’s sampling model is that if the sample s is drawn with the
ˆprobability proportional to Ý z , Y is guaranteed to be unbiased. Treatingi� s i R

the z as the weights w , the sampling design can be written asi i

2 p s 
 F w � w ,Ž . Ž . Ž . Ýs i
i�s

which is a one-degree WPM. �
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EXAMPLE 3. Given the same set-up as in Example 2, one can also use a
� Ž .�linear regression estimate of Y given by Y � N y � b Z � z , where y islr

the sample mean for the y variable, Z and z are the population mean and
the sample mean of the z variable, respectively, and

Ý y � y z � zŽ . Ž .i� s i i
b � .2Ý z � zŽ .i� s i

Like all ratio-type estimates, the linear regression estimate is biased if SRS
Ž .is used to draw the sample. Singh and Srivastava 1980 proposed two

sampling designs to obtain unbiased linear regression estimates. In the first
Žsampling design, a sample is drawn with probability proportional to Ý zi� s i

2.� z , and the usual regression estimate y becomes unbiased. Treating thelr
Žz as the weights w , the sampling design can be expressed as after somei i

.algebra ,

3 p s 
 F w � n � 1 w2 � w w ,Ž . Ž . Ž . Ž . Ý Ý Ýs i i j
i�s i�s j�s , j�i

which is a two-degree WPM. Their second sampling design is also a two-
Ždegree WPM, though it does not make y but another regression estimatelr

.instead unbiased. �

Ž .EXAMPLE 4. In fitting lottery data, Joe 1987 suggested various distance
measures to generate probability models. A particular class of distance

Ž Ž ..measures he considered is of the form Ý � p s , where � is strictlys� �

Ž .convex so that a minimum is guaranteed. Chen 1995 showed that if � is
invertible, minimizing Joe’s distance measure subject to the marginal con-

Ž . Žstraints Ý p s � � where the � are observed frequencies of thes� � , i� s i i
.lottery numbers yields

4 p s 
 h w ,Ž . Ž . Ý iž /
i�s �

� ��1 � � � 4where h � �� , and the notation y � max 0, y . The parameters w can� i
be determined by the marginal constraints. For convenience, we only consider

Ž .the cases where h w is always nonnegative for any s so that the subscripts
Ž .‘‘�’’ in 4 can be ignored.

Ž .It can be easily checked that the model in 4 satisfies the first two
assumptions of Definition 3 for any h; and when h is an m-degree polyno-
mial, the model becomes an m-degree WPM.

Ž .When fitting the Canada’s Lotto 6�49 data, Joe 1987 chose the convex
Ž . Ž 1�� . Ž .functions � u � u � u �� , 0 � � � 1, where the limit � u � u log u� 0

is obtained with � � 0. This results in the probability model

1��

5 p s 
 F w � wŽ . Ž . Ž . Ýs iž /
i�s
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Ž .for � � 0, and the conditional Bernoulli model in 1 for � � 0. Notice that
Ž . Ž .when � � 1, the model in 5 becomes Lahiri’s model in 2 . In general, when

Ž .� � 1�m with m being any positive integer, the model in 5 becomes an
m-degree WPM.

Ž .EXAMPLE 5. Liu, Neuwald and Lawrence 1995 used a Bayesian missing-
data methodology for multiple local DNA sequence alignment. To sample
from the posterior distribution, they adopted a Gibbs sampler, part of which
is performed through what they call a doubly proportional sampling chain.
The sampling procedure can be best illustrated by urn models as follows.

At each step of the procedure, the urn contains n balls and N � n balls are
outside. At the next step, a ball, say i, is drawn from the n balls in the urn
with probability proportional to w� and is taken out of the urn; then a ball,t
say j, is picked from the N � n balls outside the urn with probability
proportional to w 	 and is put into the urn. This process is repeated until thej
distribution of the n balls inside the urn converges. Liu, Neuwald and

Ž .Lawrence 1995 showed that this procedure produces a reversible Markov
chain with the equilibrium distribution,

6 p s 
 F w � w 	�� w� .Ž . Ž . Ž . Ł Ýs i iž / ž /
i�s i�s

It is easy to see from above that, when � � 0 and 	 � 1, their procedure
Ž .converges to a conditional Bernoulli model in 1 and, when � � 	 � 1, to

Ž . Ž .Lahiri’s model in 2 . In general, whenever � , 	 are integers and 	 � � � � 0,
� Ž . �the equilibrium distribution is a n	 � n � 1 � -degree WPM.

Using the techniques described in Section 4, sampling directly from the
Ž .equilibrium distribution in 6 can be done exactly, rather than asymptoti-

Ž .cally as in Liu, Neuwald and Lawrence 1995 . They did not use an exact
sampling scheme because the sampling chain is only a part of the Gibbs
sampler and accurate sampling at that stage is not necessary. Notice that
their method is similar to the Metropolis�Hasting algorithm, and the popula-
tion is ‘‘monotone.’’ As will be shown in Section 5, the average acceptance rate
of their scheme can be explicitly expressed in closed form as a function of the
inclusion probabilities.

Last, we would like to point out that the WPM also provides a convenient
platform for building hierarchical models. In particular, models on the lower
level can be built directly upon the weights w regardless of the form of thei
WPM. For example, we can specify a generalized linear model for the w asi
follows:

7 w � g zT�Ž . Ž .i i

where z is the covariate vector for the ith unit, which supposedly containsi
all auxiliary information, and � is the parameter vector. Thus, complex

� Ž .analysis such as Bayesian inference treating 7 as the prior distribution for
�the w is readily applicable to the WPM.i
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4. Exact sampling from weighted polynomial models. In this sec-
tion, we discuss the issue of drawing random samples from WPM using exact
weighted sampling schemes and provide general strategies that can help
improve the efficiency of the schemes. As pointed out in Section 2, Scheme 3
is the most efficient among the four exact weighted sampling schemes.
Therefore we will focus on the use of Scheme 3 in sampling from WPM.

Define the ‘‘normalizing functions’’ as follows:

L B , D � F wŽ . Ž .Ý s
Ž . Ž .s�� , B�s , D	B � SS 	s

� �for any B � D � SS and B � n. The summation in the definition above is
over the samples that include the units in B but exclude the units in D 	 B.
Then the selection probability at the kth step in Scheme 3 can be expressed
as

P k � s � F w F wŽ . Ž . Ž .Ý Ý2 k�1 s s
s�� , s �s , k�s s�� , s �sk�1 k�1

Ž . Ž . Ž . Ž .A 	s � SS 	s , A 	s � SS 	sk�1 k�1 k�1 k�1

� 4L s 
 k , AŽ .k�1 k� .
L s , AŽ .k�1 k�1

Ž . Ž .In particular, L �, � � Ý F w is the normalizing constant for thes� � s
sampling design p.

Ž . Ž� 4 � 4.At the first step of Scheme 3, we need to compute L �, � and L 1 , 1 .
Ž . Ž � 4 .At each subsequent step k k � 2 , we only need to compute L s 
 k , Ak�1 k

Ž . Ž .for P k � s because L s , A is the same as the numerator in either2 k�1 k�1 k�1
Ž . Ž .P k � 1 � s or 1 � P k � 1 � s . Therefore we only need to compute a2 k�2 2 k�2

maximum of N � 1 normalizing functions for the entire procedure.
The following are two useful properties of the normalizing functions.

� � Ž .LEMMA 2. For any B � D � SS and B � n, L B, D is symmetric:

Ž . ci in the w for all i � D ;i
Ž .ii in the w for all i � B.i

Ž . Ž . Ž .PROOF. i Let L B, D denote the same polynomial as L B, D exceptj� i
that w is exchanged with w for distinct i, j � Dc. Let s denote the samei j j� i
sample as s except that unit i is exchanged with unit j if i, j � s, and unit i

Ž . � Ž .is replaced by unit j if i � s, j � s. Let � B, D � s: s � �, B � s, D 	 B
Ž .4 c� SS 	 s . Then, for any distinct units i, j � D ,

L B , D � F w � F wŽ . Ž . Ž .j�i Ý Ýs sj � i j � i
Ž . Ž .s�� B , D s�� B , D

i , j�s i�s , j�s

� F w � F wŽ .Ž .Ý Ýs si � j
Ž . Ž .s�� B , D s�� B , D

i�s , j�s i�s , j�s
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� F w � F wŽ . Ž .Ý Ýs s
Ž . Ž .s�� B , D s�� B , D

i , j�s i�s , j�s

� F w � F wŽ . Ž .Ý Ýs s
Ž . Ž .s�� B , D s�� B , D

i�s , j�s i�s , j�s

� L B , D .Ž .
Ž . Ž .ii The proof is similar to that for i . �

In order to best facilitate Scheme 3, we need to find an efficient way to
calculate the normalizing functions. The idea is to express the L functions in

Žterms of the R functions also known as the ‘‘elementary symmetric func-
.tions’’ in polynomial theory defined as follows:

R k , C � wŽ . Ý Ł iž /
i�BB�C , �B��k

� � Ž . Ž .for any nonempty set C � SS and 1 � k � C , R 0, C � 1, and R k, C � 0
� �for any k � C .

Ž . � � �Ž . Ž � � . �Computing R k, C by definition involves C !� k � 1 ! C � k ! multipli-
� �cations and additions, which becomes intractable even when k and C are

moderately large. The following recursive formula known as ‘‘Newton’s iden-
Ž . Ž � �.tity’’ helps reduce the computational complexity of R k, C to only O k C

� Ž .�operations Chen and Liu 1997 :
k1 i�18 R k , C � �1 T i , C R k � i , C ,Ž . Ž . Ž . Ž . Ž .Ýk i�1

Ž . i Ž .where T i, C � Ý w for any i � 1 and C � SS . The formula 8 is in fact aj� C j
natural generalization of the well-known ‘‘inclusion-exclusion’’ formula

k�1c � 1 c c c� � � ��� � �1 .Ž .ž / ž / ž / ž /k � 1 k � 1 k � 2 0

The following is a well-known result in polynomial theory, often referred to
� Ž .�as the ‘‘fundamental theorem on symmetric functions’’ e.g., Uspensky 1948 .

Ž .THEOREM 1. Any k-degree k � 1 symmetric polynomial of the variables
w , . . . , w can be expressed as a polynomial in the elementary symmetric1 N

Ž . Ž .functions R 1, SS , . . . , R k, SS . Furthermore, coefficients of the latter polyno-
mial are built up by additions and subtractions of the coefficients of the former
symmetric polynomial.

The following result follows immediately from Lemma 2 and Theorem 1.

� �COROLLARY 1. For any B � D � SS and B � n, the normalizing function
Ž . Ž c. Ž c.L B, D can be expressed as a polynomial G in R 1, D , . . . , R n, D , and
Ž . Ž � � .R 1, B , . . . , R B , B .
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Since each L function can be expressed by a polynomial of the R functions
Ž .and the R functions can be computed efficiently by 8 , we should expect

Scheme 3 to be quite efficient for the WPM.

THEOREM 2. For any given WPM, if the number of nonzero coefficients in
the polynomial expansion G of each normalizing function does not depend on

Ž 2 .N or n, then sampling from this WPM using Scheme 3 requires O nN
operations.

Ž � 4 .PROOF. As pointed out earlier, we only need to compute L s 
 k , Ak�1 k
Ž � 4 .at the kth step. By Corollary 1, L s 
 k , A can be expressed as ak�1 k

Ž c . Ž c . Ž . Ž � � .polynomial G of R 1, A , . . . , R n, A , and R 1, s , . . . , R s , s . If thek k k k k
number of nonzero coefficients in G does not depend on N or n, then the
number of operations needed to evaluate G is also independent of N and n,
given the values of the R functions. Then most of the computing time will be

Ž .spent on calculating the R functions. According to Chen and Liu 1997 , it
Ž . Ž c . Ž c .needs only about 2n N � k operations to get all R 1, A , . . . , R n, A , andk k

� � 2 Ž . Ž � � .about 2 s operations to get all R 1, s , . . . , R s , s . Since Scheme 3k k k k
Ž 2 .takes no more than N steps to complete, it requires O nN operations in

total to get all R functions needed for the entire procedure. �

COROLLARY 2. If the degree of the link function F for a given WPM does
not depend on N or n, then sampling from this WPM using Scheme 3 requires
Ž 2 .O nN operations.

PROOF. By polynomial theory, the number of terms in G is in fact equal to
the number of ways in which the degree of F can be written as the sum of
smaller integers. If the degree of F does not depend on N or n, nor does the
number of terms in G, then the result follows immediately from Theorem 2.

�

All of the sampling designs in the five examples described in Section 3
satisfy the condition in Theorem 2. For example, as will be shown next, the
number of nonzero coefficients in G is 7 for Example 4 when � � 1�3, and 3
for Example 5 when 	 � 2 and � � 1. However, only those sampling designs
in Examples 2, 3 and 4 satisfy the condition in Corollary 2. Notice that the
condition in Corollary 2 is stronger than that in Theorem 2. Thus the result
in Theorem 2 is still applicable even if the degree of the link function does

Ž .depend on the sample size n, as in the conditional Bernoulli model 1 and
Ž .Liu, Neuwald and Lawrence 1995 .

We now provide general strategies for transforming an L function into a
polynomial G of the R functions. There are two cases.

Case 1. The condition in Corollary 2 is satisfied. In such cases, the number
of all possible terms in the polynomial G does not depend on N or n. We can
first identify all possible terms in G and then solve for their coefficients. If

Ž 2 .there are m terms in G, this should not take more than O m
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operations
the same amount as required for solving m linear equations
with m unknowns.

Case 2. The condition in Corollary 2 is not satisfied, but the condition in
Theorem 2 is. In such cases, the number of nonzero coefficients in the
polynomial G does not depend on N or n, but the number of all possible
terms in G does. It is not so easy to identify the few terms with nonzero
coefficients out of a large number of all possible terms. Therefore some type of
‘‘inclusion-exclusion’’ trick has to be played to obtain the expansion G of the
R functions.

We illustrate the general strategies described above using one example
from Section 3 for each case.

Ž .EXAMPLE 4 Continued . Consider the case when � � 1�3. The sampling
design is

3

p s 
 F w � w .Ž . Ž . Ýs iž /
i�s

Obviously, the condition in Corollary 2 is satisfied since F has a degree of 3.
At the kth step of Scheme 3, there are in total ten possible terms in G,

3 2 cR 1, s , R 1, s R 2, s , R 3, s , R 1, s R 1, A ,Ž . Ž . Ž . Ž . Ž . Ž .k k k k k k

2c c cR 2, s R 1, A ,R 1, s R 1, A , R 1, s R 2, A ,Ž . Ž . Ž .Ž . Ž . Ž .k k k k k k

3c c c cR 1, A , R 1, A R 2, A , R 3, A .Ž . Ž . Ž . Ž .k k k k

It is easy to check that the second, third and fifth terms have zero coefficients.
The coefficients for the other seven terms will be determined subsequently. To
simplify our derivation, define

m

l k , C � wŽ . Ý Ým iž /
� � i�BB�C , B �k

� �for any nonempty set C � SS , 1 � k � C , and m � 1, 2, 3. Just as the R
Ž . � �functions, l k, C is 1 when k � 0, and 0 for any k � C .m

By Corollary 1, the normalizing function at the first step can be written as
39 l n , SS � L �, � � a R 1, SS � bR 1, SS R 2, SS � cR 3, SS .Ž . Ž . Ž . Ž . Ž . Ž . Ž .3

Ž .Since l n, SS is a homogeneous polynomial with degree 3, only three coeffi-3
Ž . Ž .cients in 9 are nonzero. We now determine the three coefficients in 9 .

Setting w � 1, w � ��� � w � 0, we get1 2 N

N � 13 31 � � a � 1 � b � 0 � 0 � c � 0.ž /n � 1
N � 1So a � . Setting w � w � 1, w � ��� � w � 0, we getž / 1 2 3 Nn � 1

N � 2 2 N � 23 3 32 � � � 1 � � a � 2 � b � 2 � 1 � c � 0.ž / ž / ž /n � 2 1 n � 1
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N � 2So b � �3 . Setting w � w � w � 1, w � ��� � w � 0, we getž / 1 2 3 4 Nn � 1

N � 3 3 N � 3 3 N � 33 3 33 � � � 2 � � � 1 �ž / ž / ž / ž / ž /n � 3 2 n � 2 1 n � 1

� a � 33 � b � 3 � 3 � c � 1.
N � 3ŽŽ . Ž .. Ž .So c � 3 N � 2n � N � n � 1 . Thus 9 becomesž /n � 1

3N � 1 N � 2l n , SS � R 1, SS � 3 R 1, SS R 2, SSŽ . Ž . Ž . Ž .3 ž / ž /n � 1 n � 1
10Ž .

N � 2n N � 3� 3 R 3, SS .Ž .ž /n � 1N � n � 1

Unit 1 is considered at the first step. We include this unit with probability

3� 4 � 4L 1 , 1Ž .
P 1 � � � � w l n , SS .Ž . Ž .Ý Ý2 i 3ž /L �, �Ž . � 4 i�ss�� , 1 �s

We can expand each term in the summation by

3 2 3
3 2w � w � 3w w � 3w w � w .Ý Ý Ý Ýi 1 1 i 1 i iž / ž / ž / ž /

i�s i�s , i�1 i�s , i�1 i�s , i�1

Ž .Thus the numerator in P 1 � � becomes2

c c cN � 1 3 2 � 4 � 4 � 4w � 3w l n � 1, 1 � 3w l n � 1, 1 � l n � 1, 1 ,Ž . Ž . Ž .1 1 1 1 2 3ž /n � 1

Ž .where l and l can be expressed as obtained in a similar way as for l ,1 2 3

N � 1l n , SS � R 1, SS and l n , SSŽ . Ž . Ž .1 2ž /n � 1
11Ž .

2N � 1 N � 2� R 1, SS � 2 R 2, SS .Ž . Ž .ž / ž /n � 1 n � 1

If unit 1 is selected in the first step, then at the second step, we include
unit 2 with probability

3 3� 4 � 4L 1, 2 , 1, 2Ž .
� 4P 2 � 1 � � w w .Ž . Ý Ý Ý Ý2 i iž / ž /� 4 � 4L 1 , 1Ž . � 4 i�s � 4 i�ss�� , 1, 2 �s s�� , 1 �s

Ž � 4. Ž .The denominator in P 2 � 1 is the same as the numerator in P 1 � � , and2 2
Ž � 4.the numerator of P 2 � 1 can be expanded in a similar fashion as for2

Ž .P 1 � � ,2

c3 2N � 2 � 4w � w � 3 w � w l n � 2, 1, 2Ž . Ž . Ž .1 2 1 2 1ž /n � 2
c c� 4 � 4� 3 w � w l n � 2, 1, 2 � l n � 2, 1, 2 .Ž . Ž . Ž .1 2 2 3
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If unit 1 is not selected in the first step, then the inclusion probability for
unit 2 becomes

3� 4 � 4L 2 , 1, 2Ž . c� 4P 2 � � � � w l n , 1 ,Ž . Ž .Ý Ý2 i 3ž /� 4L �, 1Ž . � 4 � 4 i�ss�� , 2 �s , 1 � SS 	s

where the numerator can be expanded into

c cN � 2 3 2 � 4 � 4w � 3w l n � 1, 1, 2 � 3w l n � 1, 1, 2Ž . Ž .2 2 1 2 2ž /n � 1
c� 4� l n � 1, 1, 2 .Ž .3

In general, the normalizing function at the kth step is

L s , AŽ .k k

N � k 3 2 c� �� R 1, s � 3 R 1, s l n � s , AŽ . Ž . Ž .k k 1 k k� �n � sž /k

� � c � � c� 3R 1, s l n � s , A � l n � s , AŽ . Ž . Ž .k 2 k k 3 k k

N � k N � k � 13 2 c� R 1, s � 3 R 1, s R 1, AŽ . Ž . Ž .k k k� � � �n � s n � s � 1ž / ž /k k

N � k � 1 2c� 3 R 1, s R 1, AŽ . Ž .k k� �n � s � 1ž /k

N � k � 2 c� 6 R 1, s R 2, AŽ . Ž .k k� �n � s � 1ž /k

N � k � 1 N � k � 23c c c� R 1, A � 3 R 1, A R 2, AŽ . Ž . Ž .k k k� � � �n � s � 1 n � s � 1ž / ž /k k

� �N � k � 2n � 2 s N � k � 3k c� 3 R 3, A ,Ž .k� �n � s � 1ž /� �N � k � n � s � 1 kk

Ž . Ž .where the second expression is obtained from 10 and 11 with n and SS

� � creplaced by n � s and A , respectively. The second expression is derived tok k
show that each normalizing function is indeed a polynomial of the R func-
tions.

Ž .EXAMPLE 5 Continued . Consider the case when 	 � 2 and � � 1. The
sampling design is

p s 
 F w � w w .Ž . Ž . Ł Ýs i iž / ž /
i�s i�s

The condition in Corollary 2 is not satisfied since F has a degree of n � 1.
Therefore we have to play some type of ‘‘inclusion-exclusion’’ trick to obtain
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the polynomial G. For the kth step of Scheme 3, the normalizing function is

L s , AŽ .k k

� w wÝ Ý Ýi iž / ž /
s�� , s �s i�s i�sk

Ž . Ž .A 	s � SS 	sk k

� w wÝ Ł Ýi iž / ž /
c i�s 
t� � � � i�s 
tkt�A , t �n� s kk k

� w w w � w � wŁ Ý Ł Ý Ý Ýi i i i iž /ž / ž /
c cci�s i�t� � � � i�sk i�A i�A 	tt�A , t �n� s k k kk k

c c c� � � � � �� R s , s R 1, s R n � s , A � R 1, A R n � s , AŽ . Ž .Ž . Ž . Ž .k k k k k k k k

c� � � �� n � s � 1 R n � s � 1, A ,Ž . Ž .k k k

which is indeed a polynomial of the R functions.

Finally, we show that under certain circumstances, an even greater effi-
Ž 2 .ciency than O nN can be achieved. For any 1 � k � n, the link function F

of a WPM is called k-dependent if each term in F involves at most k distinct
w , and at least one term involves exactly k distinct w . If a link function isi i
k-dependent, we can first use a properly designed weighted sampling scheme
to draw a subsample of size k and then draw the rest of the sample using
SRS. Since SRS is much more efficient than any weighted sampling scheme,
we can expect to reduce computational cost significantly. To construct such a
scheme, we need to decompose the link function into a series of functions,
each involving at most k distinct w .i

LEMMA 3. If the link function F of a WPM is k-dependent where 1 � k �
Ž .n � 1, then there exists a k-variate function, f , such that F w �s

Ž .Ý f w .t � s, � t ��k t

Ž .PROOF. For any 1 � j � k, consider the terms in F w that involves
exactly j distinct w . Arbitrarily pick a subsample t� from s, where thei j

Ž .subscript j denotes the size of the subset. Denote all terms in F w thats
� Ž . Ž .�involve exactly those units in t by f w . Then the terms in F w thatj j t sj

Ž .involve exactly j distinct w can be written as Ý f w due to thei t � s j tj j

symmetry of all w � s. Thus the link function can be written asi

k

12 F w � f w .Ž . Ž . Ž .Ý Ýs j t j
j�1 t �sj

Ž . � Ž .We now need to transform each Ý f w into a function, say Ý f w ,t � s j t t � s j tj j k k

n Ž .that sums over all subsamples of size k. We know that there are f w ’s,j tž /j j

n � Ž .each involving exactly j w ’s. On the other hand, each of the f w ’s hasž /i j tk k
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k terms, and each term involves exactly j w ’s. Thus,iž /j
k nn �13 f w � f w .Ž . Ž .Ž .Ý Ýj t j tj kž / ž / ž /j jk

t �s t �sj k

Ž . Ž .Plug 13 into 12 ,
n n

k kž / ž /j j
� �F w � f w � f w .Ž . Ž . Ž .Ý Ý Ý Ýs j t j tkk kn nj�1 t �s � � j�1t�s , t �kkž / ž /ž / ž /j jk k

� � Ž .We can take everything inside ‘‘ ’’ as f w and thus complete the proof. �t

Notice that the proof of Lemma 3 also provides a procedure for obtaining
the decomposition of a link function. The following is an example.

Ž .EXAMPLE 4 Continued . Letting � � 1�3 in Example 4 gives a three-
dependent link function. Following the procedure described in the proof of
Lemma 3, we get, for any t � s,3

f � w � w3, f � w � 3 w2 w and f � w � 6 w .Ž . Ž . Ž .Ý Ý Ł1 t i 2 t i j 3 t i3 3 3
i�ti�t i , j�t 33 3

� �Thus for any t � s, t � 3, we have
n

3 ž /j
�f w � f wŽ . Ž .Ýt j t3nj�1 ž / ž /j3

2 3
3 2� w � w w � 6 w .Ý Ý Łi i j in � 1 n � 2 n � 2Ž . Ž . i�ti�t i , j�t

Clearly, each term in the decomposition above involves only three weights.

We now use the result of Lemma 3 to construct the following sampling
scheme.

SCHEME 5. Suppose the link function F is k-dependent with the decompo-
Ž .sition Ý f w .t � s, � t ��k t

Stage 1. Use Scheme 1 or 2 to draw k units, i , . . . , i , from � with1 k
Ž .probability proportional to f w , . . . , w .i i1 k

Stage 2. Draw n � k units, i , . . . , i , with equal probability. Then thek�1 n
units i , . . . , i form a sample from p.1 n

It is easy to see that Scheme 5 will correctly generate a random sample
from p because

� 4p s � P Stage 1 � t P Stage 2 � s 	 t � Stage 1 � t�Ž . .Ý
� �t�s , t �k


 f w � F w .Ž . Ž .Ý t s
� �t�s , t �k
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Ž .The sampling schemes used in Lahiri 1951 and Singh and Srivastava
Ž .1980 are both special cases of Scheme 5, being one-dependent and two-de-
pendent, respectively. The first stage of their sampling schemes are ‘‘draw

Ž .one unit i with probability proportional to w ’’ Lahiri and ‘‘draw two units ii
Ž .2 Ž .and j with probability proportional to w � w ’’ Singh and Srivastava .i j

For Lahiri’s model, Schemes 2 and 3 are the same at Stage 1. Singh and
Srivastava, however, used Scheme 2 at Stage 1, instead of the more efficient
Scheme 3. Obviously, Scheme 5 cannot be applied to the conditional Bernoulli

Ž .model or the model in Liu, Neuwald and Lawrence 1995 since both models
are at least n-dependent.

5. Approximate weighted sampling scheme. For a general finite pop-
ulation model that is not of the WPM type, exact sampling schemes may not
benefit from the efficiency-improving strategies described in Section 4 and
can quickly become intractable as the population size and�or sample size get
moderately large. In such situations, an approximate sampling scheme is
often desired. The approximate sampling scheme we propose in this section is

Ž .a direct application of the Metropolis�Hasting in short, M�H algorithm.
Ž .See, for example, Smith and Roberts 1993 for a good review on this

algorithm.
The M�H algorithm is essentially a Markov chain process. In the context

of finite population, the algorithm will start from one of the possible samples
and keep transiting the current sample to a new sample. The transition
probabilities are designed in such a way that the process will eventually
converge to the correct sampling design p.

The transition at each step involves two stages: ‘‘proposal’’ and ‘‘decision.’’
First comes the ‘‘proposal’’ stage, in which a prospective sample, say s*, is

Ž .selected using any conditional distribution T s* � s , where s is the current
sample. Second is the ‘‘decision’’ stage, in which the transition from s to s* is

� Ž . Ž . � Ž . Ž .�4accepted with probability min 1, T s � s* p s* � T s* � s p s . If the transi-
tion is rejected, the new sample will be the same as the current sample.
Notice that the choice for the acceptance probability at the ‘‘decision’’ stage is
not unique. Nevertheless, the above choice is convenient for the finite popula-
tion setting, especially with fixed sample size. The advantage of having two
stages in the M�H algorithm is that we are free to choose any distribution T
at the first stage, and with a good choice of T, a relatively fast convergence
can be achieved.

For simplicity, we will choose the uniform distribution for T. A prospective
sample is constructed by swapping a number of units in the current sample
with the same number of units from outside. Let k denote the number of
units swapped at each step. Then k can be any integer from 1 up to n � 1.
We give the general ‘‘swap-k ’’ scheme as follows.

Ž .SCHEME 6 swap-k . Repeat the following two stages at each step of the
M�H algorithm.

Proposal. Draw k units i , . . . , i from the current sample s with uniform1 k
probabilities, and draw k units j , . . . , j from SS 	 s with uniform probabili-1 k
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� � 4� � 4ties. Let s* � s 
 j , . . . , j 	 i , . . . , i , that is, the same as s except that1 k 1 k
the i’s are replaced by the j’s.

Decision. Accept the transition from s to s* with probability

1, if p s* � p s ,Ž . Ž .
H s* � s �Ž . ½ p s* �p s , if p s* � p s .Ž . Ž . Ž . Ž .

If the transition is accepted, take s* as the new sample; otherwise take s as
the new sample.

One way to estimate the speed of convergence of the M�H algorithm is to
look at the expected acceptance rate. Intuitively, for a given sampling design,
the higher the acceptance rate is, the larger portion of the sample space the
M�H algorithm runs through, and therefore the faster we expect the algo-
rithm to converge. However, there is no simple theoretical result on the
relation between the acceptance rate and the convergence rate of the general
M�H algorithm. Thus the use of acceptance rate should be cautioned. In
particular, the acceptance rates for two different sampling designs should not
be compared. For example, a sampling design dominated by a few samples
with extremely large probabilities compared to the rest of the samples may
have an acceptance rate near zero, but it only takes a few steps for the M�H
algorithm to converge; whereas the M�H scheme for a uniform design will
take a lot more steps to converge, even with an acceptance rate one.

In general, there is no simple closed form formula for evaluating the
average acceptance rate of the general M�H algorithm. For finite popula-
tions, however, we will show that under mild conditions, the average accep-
tance rate under a swap-k scheme can be expressed in closed form using only
the kth-order inclusion probabilities.

Ž .As in Section 4, we attach a subscript, say k 1 � k � n � 1 , to a sample,
say s, to denote a subset s of SS with the size k. Because the size k � n, wek
will call s a ‘‘subsample’’ of SS .k

DEFINITION 5. Suppose s and s� are two disjoint subsamples of SSk k
Ž . � Ž1 � k � n � 1 . The subsample s is said to be ‘‘never smaller’’ than s ork k

� . Ž � . Ž � � .equivalently s is ‘‘never larger’’ than s if p s 
 s � p s 
 s fork k k n�k k n�k
all possible s� � SS with s � s� � s� � s� � �. This relation is de-n�k k n�k k n�k

� Ž � .noted by s � s or equivalently, s � s .k k k k

DEFINITION 6. A finite population is said to be ‘‘kth-order monotone’’ if for
all possible disjoint s , s� � SS , either s � s� or s � s�.k k k k k k

DEFINITION 7. The kth-order inclusion probability for the subsample s isk
Ž . Ž .defined as � s � Ý p s , that is, the total probabilities of thek s� � , s � sk

samples that contain the subsample s . In particular, the term ‘‘marginalk
probabilities’’ refers to the first-order inclusion probabilities.

THEOREM 3. Suppose that under a sampling design p, the finite popula-
tion is kth-order monotone. Without loss of generality, suppose all subsamples

Ž1. Ž2. Žc. � Ž . �of size k are arranged as s � s � ��� � s , where c � N!� k! N � k ! .k k k
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Then the average acceptance rate of the swap-k scheme is given by
� 4P accept

�1 cn!n N � n N n Ž i.� 2 � � 2 i� sŽ .Ý kž / ž / ž / ž /k k k k n � 2k !Ž . i�1

14Ž .

defŽ .where n � 2k ! � 1 if k � n�2.

PROOF. For any two samples s1, s2 � �, the difference between s1 and s2

1 2 � 1 24 1 2 2 1is defined as s � s � i: i � s , i � s . Note that s � s and s � s are
always disjoint. Since the conditional distribution at the ‘‘proposal’’ stage is
uniform, each prospective sample is selected with probability

�1
n N � nT � T s* � s � .Ž . ž / ž /k k
� 4 � Ž .�Then by Scheme 6 and the definition P accept � E H s* � s , we haves, s�

� 4P accept � H s* � s T s* � s p s .Ž . Ž . Ž .Ý Ý Ý
s�� s�s*�SS s*�s�SS

� � � �s�s� �k s*�s �k

� 4Let t � s � s*, t* � s* � s and � � s: t � s, t* � SS 	 s . Interchange thet � t*
three summations,

� 4P accept � T H s 
 t* 	 t � s p s .Ž . Ž .Ý Ý Ý
� � � � s��t�SS , t �k t*�SS , t* �k t� t*

t*�t��

Since t and t* run through all subsamples of size k in �, they can be
Ž i. � Ž i. Ž j. 4replaced by the ordered subsamples s . Let � � s: s � s, s � SS 	 s .k i� j k k

We have

� 4P accept
c Ž j. Ž i.p s 
 s 	 sŽ .k k� T min 1, p sŽ .Ý Ý Ý ½ 5p sŽ .i�1 j�i s�� i� j

Ž j. Ž i.c p s 
 s 	 sŽ .k k� T p s � p sŽ . Ž .Ý Ý Ý Ý Ýp sŽ .i�1 j�i s�� j�i s��i� j i � j

c
Ž j. Ž i. Ž j. Ž i. Ž j. Ž i.� T � s � � s 
 s � � s � � s 
 sŽ . Ž . Ž . Ž .Ý Ý Ýk k k k k k½ 5

i�1 j�i j�i
15Ž .

c c
Ž i. Ž j. Ž i.� 2T � s � T � s 
 sŽ . Ž .Ý Ý Ý Ýk k k

i�1 j�i i�1 j�i

c
Ž i.� 2T c � i � s � T 2k ! � sŽ . Ž . Ž .Ž .Ý Ýk 2 k

i�1 s ��2k

c
N n nŽ i.� 2T � i� s � T 2k ! ,Ž .Ž .Ý kž / ž / ž /k k 2k

i�1
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Ž . Ž .where in 15 we assume k � n�2; otherwise, 15 becomes
c

Ž i.� 4P accept � 2T c � i � s � Tn! � s .Ž . Ž .Ž .Ý Ýk n
i�1 s ��n

The result follows immediately. �

It is interesting to see that if the population is kth-order monotone and the
swap-k scheme is used, the acceptance rate depends only on the kth-order
inclusion probabilities, regardless of the inclusion probabilities of other or-
ders.

From the proof of Theorem 3, we also find an interpretation for the formula
Ž .in 14 :

� 4 � � 4P accept � 2 P s � s ,k k

where s is the subsample drawn from the current sample, and s� is thek k
subsample drawn from the units outside the sample.

Ž .When the population is first-order monotone, the result in 14 simplifies to

N1 2
� 416 P accept � 2 N � n � 1 � i� i ,Ž . Ž .Ýž /N � n n i�1

Ž .where � i is the marginal probability for the ith smallest unit.
The following lemma shows that under a mild condition, a WPM is

first-order monotone, and hence the average acceptance rate of the corre-
Ž .sponding swap-1 scheme can be explicitly evaluated from 16 .

LEMMA 4. The finite population is first-order monotone under a given
Ž .WPM if and only if the link function F w is monotone in all w for i � s.s i

PROOF. By the second assumption in Definition 3, the population units
are exchangeable. Thus we only need to prove the lemma for units 1 and 2.
Without loss of generality, assume w � w . We have1 2

F is always nondecreasing in the first argument

� F w , w , . . . , wŽ .1 i i1 n�1

� 4� F w , w , . . . , w for any distinct i , . . . , i � SS 	 1, 2Ž .2 i i 1 n�11 n�1

� 4 � 4� 1 � 2 .

This completes the proof. �

The result in Lemma 4 provides an easy way to check first-order mono-
Ž .tonicity for any WPM by checking the sign of � F w �� w for all i � s. In facts i

all sampling designs described in Section 3 except the one by Singh and
Ž .Srivastava 1980 are kth-order monotone for any 1 � k � n � 1, and there-

fore the average acceptance rate of any swap-k scheme can be evaluated for
Ž .these models as in 14 .
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