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Based on empirical Lévy-type concentration functions, a new graph-
ical representation of the ML-density estimator under order restrictions
is given. This representation generalizes the well-known representation of
the Grenander estimator of a monotone density as the slope of the least
concave majorant of the empirical distribution function to higher dimen-
sions and arbitrary order restrictions. From the given representation it fol-
lows that a density estimator called silhouette, which arises naturally out
of the excess mass approach, is the ML-density estimator under order re-
strictions. This fact provides a new point of view to ML-density estimation
from which one gains additional insight to this problem, as demonstrated
in the present paper.

1. Introduction. In the present paper we give the connection of what is
called excess mass approach and of ML-density estimation under order restric-
tions. The link between those two is established by means of certain empirical
Lévy-type concentration functions. Based on these concentration functions, we
derive a graphical representation of the ML-density estimator (MLE) under
order restrictions. It turns out that this graphical representation is the same
as the one of the silhouette, (and hence, that the silhouette is the MLE), where
the silhouette is a density estimator, which arises naturally out of the excess
mass approach (see Section 2). This fact brings in several new aspects to ML-
density estimation under order restrictions. A more philosophical aspect, for
example, is given by the fact that the original motivation of the excess mass
approach is measuring mass concentration which (at least at a first view) is not
related to order restrictions or ML-density estimation. Another aspect comes
in through the construction of the silhouette (see below). Their construction is
completely different from the classical construction of the MLE under order
restrictions based on (generalized) isotonic regression. One also obtains new
methods to study the asymptotic behavior of the MLE which are based on
empirical process theory (see Section 7).

Estimating a density f under order restrictions means estimating f under
the assumption that f is monotone with respect to an order on the underlying
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measure space �� �� �. Such order restrictions can be expressed via a class
� of measurable sets [cf. Barlow, Bartholomew, Bremner and Brunk (1972) or
Robertson, Wright and Dykstra (1988)]: given a (quasi-) order � (reflexive and
transitive), there exists a class of sets � = �� (see also Section 3.1) such that
f is monotone with respect to � iff f is measurable with respect to ��; this
means, iff all level sets �f�λ� = ��λ� = �f ≥ λ�, λ ≥ 0, are elements of ��.
Hence, order restrictions on f can be reformulated as “f ∈ �� ” for appropriate
classes � , where

�� =
{
f	

∫
f�x�dν�x� = 1� ��λ� ∈ � for all λ ≥ 0

}

and where ν is some dominating measure on �� �� �. MLEs under order re-
strictions based on n i.i.d. observations have been derived and studied, among
others, by Grenander (1956), Robertson (1967), Wegmann (1969, 1970) and
Sager (1982). It is well known [cf. Robertson (1967), Sager (1982)], that the
structure on � given through � induces a structure on the corresponding class
��: it has to be a σ-lattice. � is called a σ-lattice if it contains � and � and
is closed under countable unions and intersections. A simple example is given
by � = �0 = �
0� x�� x ≥ 0� which corresponds to the class of decreasing (left-
continuous) densities in 
0�∞� with respect to the usual order on the real line.
Another example for a σ-lattice which is not a σ-algebra is the class of inter-
vals containing a given point, x0, say. The corresponding class �� is the class
of unimodal densities with mode x0. Discrete analogs are given by the classes
��1�2� 
 
 
 � k�� k ≥ 1� and ��−k� 
 
 
 �−1�0�1� 
 
 
 � k�� k ≥ 0�, respectively.

The model f ∈ �� for some class of measurable subsets � also underlies the
construction of the silhouette. However, there the class � need not correspond
to any order; � can in principle be completely arbitrary. We call a model
assumption of the form f ∈ �� shape restriction given by � . A standard choice
for a shape restriction (which is not an order restriction) is the class of convex
sets in Rd. In this terminology the silhouette is a density estimator under
shape restrictions which, as shown in this paper (see Theorem 2.3), is the
MLE in �� if the shape restriction actually is an order restriction.

Let us briefly point out the basic distinction between the construction of
the silhouette and the classical construction of the MLE. First, note that a
MLE f̂n in �� based on an i.i.d. sample of size n has to be of histogram type
(see Lemma 5.2); that is, there exists a partition �A1� 
 
 
 �Ak� of Rd such
that f̂n�x� = #�observations ∈ Ai�/nν�Ai�, for all x ∈ Ai. Now, constructing
the MLE using ideas of isotonic regression means constructing the sets Ai

by building them as unions of certain generating sets in � . In contrast to
that, the silhouette is constructed by putting estimated level sets one on top of
each other. The sets Ai then automatically pop up as symmetric differences
of successive level sets. Hence, in constructing the silhouette, one does not
look at the individual observations Xi and hence on the horizontal “axis,”
but one builds the estimator in “moving up” the vertical axis. Moreover, the
construction of the silhouette is of a “global” nature, whereas in contrast, the
classical approach can be considered to be of a “local” nature.
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As mentioned earlier, the proof of the fact that the silhouette is the MLE
under order restrictions is based on a graphical representation of the MLE.
This graphical representation is based on least concave majorants of certain
Lévy-type concentration functions. It generalizes the well-known represen-
tation of the Grenander density estimator of a monotone density on the real
line as the slope of the concave majorant of the empirical distribution function
[Grenander (1956)] to higher dimensions and arbitrary order restrictions. The
concentration functions under consideration are defined through constrained
maximization of certain functionals defined on � . The corresponding maximiz-
ing sets (minimum volume sets and modal sets) serve as level set estimators
and are used to build the silhouette as described above. The given graph-
ical representation also immediately provides an algorithm for calculating
the MLE (see Section 5). Moreover, the concentration functions used for the
graphical representation of the MLE also can be used for characterizing the
existence of the MLE (see Theorem 5.5).

The present paper is organized as follows. In Section 2 we introduce the
silhouette, give some of its properties, and formalize the above-mentioned
fact that the silhouette equals the MLE. In Section 3 a list of examples is
presented for illustration. In particular, the connection to the Grenander es-
timator is spelled out. Section 4 deals with concentration function and the
corresponding maximizing sets. Some properties of these objects are given. A
characterization of the existence of the MLE under order restrictions in terms
of these concentration functions is given in Section 5 where also the graph-
ical representation of the MLE is presented. Section 6 discusses algorithmic
aspects of this graphical representation. A summary and some final remarks
can be found in Section 7. All the proofs are given in Section 8.

2. The silhouette. If restricted to the continuous case, that is, the domi-
nating measure is Lebesgue measure on Rd, the first part of this section more
or less is a short version of Section 2 of Polonik (1995b). Proofs of several
facts given below can be found there. Although they are given there for the
continuous case, they apply to the general case considered here also.

For any density f	 � → R� the following key representation holds:

f�x� =
∫ ∞

0
1��λ��x�dλ ∀x ∈ � �(2.1)

where 1C denotes the indicator function of a set C. The idea for the construc-
tion of the silhouette is to plug in estimators for ��λ� into (2.1). As estimators
we use so-called empirical generalized λ-clusters. They are defined as follows:
let X1�X2� 
 
 
 denote i.i.d. observations drawn from a distribution F which
has a density f with respect to a measure ν. Let Fn denote the empirical mea-
sure based on the first n observations, that is, nFn�C� = #��Xi� 
 
 
 �Xu�∩C�
and for λ ≥ 0 define the signed measure

Hn�λ = Fn − λν
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Definition 2.1. Any set �n�� �λ� ∈ � such that

Hn�λ��n�� �λ�� = sup
C∈�

Hn�λ�C�(2.2)

is called an empirical generalized λ-cluster in � .

The sets �n�� �λ� are called generalized since they need not be connected,
as one would expect for clusters. Nevertheless, for brevity, we omit the phrase
generalized and call the sets �n�� �λ� empirical λ-clusters or sometimes just λ-
clusters. Hartigan (1975) used the notion λ-cluster for connected components
of level sets. Note that the notion “λ-cluster” is in general used for the collec-
tion of all λ-clusters, that is, for the collection of λ-clusters at all levels λ ≥ 0.
Sometimes, however, we consider a single level λ. We hope this becomes suf-
ficiently clear from the context.

The motivation for defining �n�� �λ� as above is given by the following equal-
ity. Let Hλ = F− λν; then it is easy to see that

Hλ���λ�� = sup�Hλ�C��C ∈ � �
(2.3)

This equation motivates the use of �n�� �λ� as estimator for the level set ��λ�

Note that if ν is a continuous measure then the supremum of Hn�λ over all
measureable sets equals 1. Hence, besides the fact that the class � is used to
introduce shape restrictions, it makes sense in general to restrict the supre-
mum to certain subclasses � .

As a function of λ� the maximal value in (2.3), that is, E�λ� = EF�λ� =
Hλ���λ��, is called excess mass function. Note that E�λ� is used in majorization
ordering. There two distributions F and G with Lebesgue densities f and g,
respectively, are ordered by comparing their excess mass functions. If EF�λ� ≤
EG�λ� ∀λ ≥ 0� then G is said to majorize F [Marshall and Olkin (1979); see
also Hickey (1984), Joe (1993)]. Actually, all of this is formulated in terms of
densities. The representation (2.3), however, gives a way to express this in
terms of distributions, without using densities explicitly.

The maximal value in (2.2), that is,

En�λ� =Hn�λ

(
�n�� �λ�

)
is called empirical excess mass at level λ. Hartigan (1987) and Müller and
Sawitzki (1987) independently introduced the excess mass approach, which is
based on the idea [motivated by (2.3)] that maximizing the signed measure
Hn�λ gives information about the mass concentration of the underlying dis-
tribution. The notion excess mass was first used by Müller and Sawitzki. For
further work on excess mass and on empirical λ-clusters, see Nolan (1991),
Müller and Sawitzki (1991) and Polonik (1992, 1995a).

In all of what follows, it is assumed that � is such that:

(A1) � ∈ � .
(A2) For any λ ≥ 0 there exists an empirical λ-cluster.
(A3) Almost surely there exists a set S ∈ � with ν�S� <∞ and Fn�S� = 1.
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Let us briefly discuss these assumptions. (A1) assures that the empirical ex-
cess mass is nonnegative (as it should be). (A2) for instance holds for finite
� with � = �� and ν the counting measure. In the continuous case, that
is, if ν is Lebesgue measure and � the Borel σ-algebra, empirical λ-clusters
exist for standard classes � such as � d, �d, � d and �d� which denote the
classes of all closed intervals, balls, ellipsoids and convex sets in Rd, respec-
tively. A general sufficient condition for the existence of empirical λ-clusters is
that � is closed under intersections. Of course, this condition is not necessary.
(A3) means that a.s. there exist empirical λ-clusters for λ = 0 with nonde-
generate ν measure. Hence, since λ → ν��n�� �λ�� is a decreasing function, it
follows that all empirical λ-clusters have finite ν-measure.

The sets �n�� �λ� need not be uniquely determined. It even may happen that
there exist empirical λ-clusters for the same λ which carry different empirical
mass and hence also have different ν measure. However, the sets �n�� �λ� can
be chosen in such a way that the following property (P) holds:

(P) There exist levels 0 = λ0 < λ1 < · · · < λkn , 0 ≤ kn ≤ n� such that
ν��n�� �λkn�� = 0 and that the function λ → �n�� �λ�, λ ≥ 0, is constant
over the intervals �λj−1� λj�� j = 1� 
 
 
 � kn and obtains different values on
different such intervals.

In fact, property (P) is not a necessary assumption for the theory. However,
without (P) the silhouette may look quite erratic (this does not happen for σ-
lattices � ; cf. Lemma 2.2 below). Any choice of empirical λ-clusters satisfying
(P) automatically has the property that for any fixed µ > 0� the ν-measure of
�n�� �µ� is maximal among all empirical µ-clusters. A way to find the values
λi of (P) is given by means of the graphical representation of the silhouette
(cf. Section 5).

For every choice of sets �n�� �λ� satisfying (P), we define (a version of) the
silhouette as

fn�� �x� =
∫ ∞

0
1�n�� �λ��x�dλ ∀x ∈ � 
(2.4)

The definition of the silhouette depends on the special choice of sets �n�� �λ�.
This gives different versions of the silhouette. These versions might differ even
on sets with positive ν-measure. However, all the results given below hold for
any of these versions. We do not mention this further and only speak of “the”
silhouette.

Under (P) (with kn > 0) the silhouette can be written as

fn�� �x� =
kn−1∑
j=0

�λj+1 − λj�1�n�� �λj��x�
(2.5)

Hence, if in addition the sets �n�� �λj�, j = 1� 
 
 
 � kn� are monotonically de-
creasing for inclusion, that is, �n�� �λj+1� ⊂ �n�� �λj�� then fn�� can be vi-
sualized as putting the slices �n�� �λj� × �λj� λj+1� one on top of the other.
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The empirical λ-clusters can be chosen to be monotone if � is a σ-lattice (see
Lemma 2.2). Unfortunately, however, monotonicity of empirical λ-clusters does
not necessarily hold for non-σ-lattices � such as � 1 or �d. This means that for
non-σ-lattices � the silhouette does not necessarily lie in the model class �� .

Lemma 2.2. If � is a σ-lattice then

�fn�� �λ� ∈ � ∀λ > 0


Moreover, if kn ≥ 1�

ν
(
�n�� �λj+1�\�n�� �λj�� = 0 ∀j = 0� 
 
 
 � kn − 1�

and the empirical λ-clusters can be chosen such that

�n�� �λj+1� ⊂ �n�� �λj� ∀j = 0� 
 
 
 � kn − 1


Note that the first assertion of Lemma 2.2 does not say that fn�� ∈ �� �
which requires in addition that

∫
fn�� = 1. In fact, it might happen that∫

fn�� < 1 and even
∫
fn�� = 0. In case of a σ-lattice � this is connected to

the existence of an MLE in �� (see Theorem 5.5). Of course fn�� ∈ �� is a
necessary condition for fn�� to be a maximum likelihood estimator in �� .

A density f ∈ �� is called MLE in �� iff

n∏
i=1

f�Xi� = sup
g∈��

n∏
i=1

g�Xi� <∞


Now we state one of the main theorems.

Theorem 2.3. Let � be a σ-lattice. If a MLE in �� exists, then

fn�� ∈ arg max
f∈��

n∏
i=1

f�Xi�


3. Examples. To illustrate the implications of the above we now briefly
discuss several interesting special situations. In particular, the well-known
case of the Grenander estimator is covered. In each case we explicitly mention
the corresponding classes � underlying the construction of the silhouette. For
computational aspects we refer to Section 6.

3.1. Order restrictions. Here we give some examples of order restrictions
and the corresponding classes �� which lead to known MLEs. It follows from
Theorem 2.3 that in all these cases the silhouette corresponding to the class
� = �� equals the MLE. Recall that for a given (quasi-) order � the class ��
(cf. the Introduction) is the class of so-called upper sets for �. U is an upper
set if and only if x ∈ U, x � y⇒ y ∈ U
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The histogram. Given a partition � = �P1� 
 
 
 �PN� of the sample space
�0 < ν�Pi� < ∞� i = 1� 
 
 
 �N�� define x � y ⇔ “x and y lie in the same
set Pi.” Hence, one identifies all observations in the individual sets Pi without
further restrictions. Here �� = σ�� �� the σ-algebra generated by � 
 The
corresponding silhouette equals the histogram based on the partition � 
 This
follows from the well-known fact that the histogram is the MLE in the class
of all functions which are constant on each Pi, i = 1� 
 
 
 �N


The Grenander estimator. For the usual order “≥” on the positive real line
we have �≥ = �0 = intervals starting at zero. Hence, ��0

consists of all prob-
ability densities on the positive real line which are nonincreasing. It is well
known that the MLE in ��0

exists a.s.; it is the Grenander estimator of a
monotone density [Grenander (1956)].

Other univariate MLEs. A unimodal MLE on the real line with given mode
x0, say, can (roughly speaking) be represented [see Robertson, Wright and
Dykstra (1988)] as the slope of a function F̂n� which is the greatest convex
minorant of Fn� on �−∞� x0� and the least concave majorant of Fn on 
x0�∞�

(But see Theorem 5.3.) Here the corresponding class of upper sets consists of
intervals with midpoint x0
 A bimodal MLE with given or estimated modes
x1 < x2 exists, provided both x1 and x2 do not coincide with one of the obser-
vations. The class �� is one of the classes �x1� x2

�a� = �I1 ∪I2�I1� I2 intervals,
xi ∈ Ii and I1 ≤ a < I2�
 For each a� the class �x1� x2

�a� is a σ-lattice (cf.
Sections 3.2 and 6).

Doubly monotone MLE. A generalization of the Grenander estimator to
higher dimensions is the following. A function f	 
0�∞�2 → R is said to be
doubly monotone iff it is monotone in both coordinates. The corresponding
(partial) order on R2 is given by �x1� y1� � �x2� y2� iff x1 ≥ x2 and y1 ≥ y2

Hence, a doubly monotone function in 
0�∞�2 is unimodal with mode �0�0�
and has level sets which are subgraphs of a nonincreasing function from 
0�∞�
to 
0�∞�
 This class of sets in 
0�∞�2 with monotone boundary is the corre-
sponding class of upper sets.

Sager’s multivariate unimodal MLEs. For modeling unimodality in Rd�
Sager (1982) considered two different classes of sets ��. One is the class of
ellipsoids with known (or estimated) location vector µ and scale parameter
", a positive definite d× d matrix. The corresponding order is given through
x � y iff �y − µ�′"�y − µ� ≤ �x − µ�′"�x − µ�
 The other σ-lattice consid-
ered by Sager, 	 , say, is defined through the following property: S ∈ 	 iff
x ∈ S implies 
0� x� ∈ 	 , where 
0� x� denotes the d-dimensional interval

0� x1�× 
0� x2�×· · ·× 
0� xd�, for x=�x1� 
 
 
 xd�≥0, and replace 
0� xi� through

xi�0� for xi < 0. This class 	 corresponds to unimodal densities in higher di-
mensions with mode 0. For d = 2 the corresponding order is the doubly mono-
tone order considered above applied to each quadrant separately. In both cases,
estimating the mode results in a MLE conditional on the estimated mode.

Discrete cases. Let � = �x1� 
 
 
 � xk�, xi ∈ R
 Without loss of generality
assume the xi’s to be ordered, and let � = 
��x1� 
 
 
 � xj�� j = 1� 
 
 
 � k��.
Further, choose ν as the counting measure. The corresponding silhouette is the
MLE of the probabilies pi = P�xi�� i = 1� 
 
 
 � k under the restriction that the
pi’s are monotone decreasing [for more on this MLE, see Barlow, Bartholomew,
Bremner and Brunk (1972)]. Analogously, discrete unimodal situations can be
modeled (cf. the Introduction).
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3.2. Shape restrictions. For the construction of uni- or multimodal, uni-
variate MLEs, one has to assume the mode(s) to be given (see above). Drop-
ping this assumption usually leads to shape restrictions which are no longer
order restrictions.

For instance, as a univariate unimodal shape restriction, choose � as the
class of all intervals. A MLE in the corresponding class �� formally does not
exist, since the maximum likelihood product is infinite here (see also end of
Section 4). In contrast to that, the silhouette in �� can be calculated and usu-
ally leads to reasonable estimates [cf. Müller and Sawitzki (1991)]. However,
it might happen that the silhouette does not lie in �� ; this is to say, it might
not be unimodal. Nevertheless, with increasing sample size it converges to the
underlying density f [cf. Polonik (1995b)].

Similar remarks apply to bimodal situations on the real line without known
(or estimated) mode. There an appropriate class is � = � ∪� = �C ⊂ R	 C =
I1 ∪ I2�I1� I2 intervals�
 But knowing the modes does not necessarily lead
to an order restriction, as can be seen from � = �x1� x2

= �C ⊂ R	 C =
I1 ∪ I2�I1� I2 intervals� xi ∈ Ii� i = 1�2�


Multivariate shape restrictions are given through the assumptions of elliptic
or convex density contours. In our language this translates to choose � as the
class � d or � d� respectively. Here again the silhouette need not lie in the
corresponding model class, but it converges asymptotically to the underlying
density if the model is correct. See Sager (1979) for another, but related density
estimate with convex level sets.

4. Concentration functions and optimal sets. Above we used the (em-
pirical) excess mass function En to define the silhouette. As has already been
mentioned, this function can be considered as a concentration function. Now
we introduce two additional concentration functions, qn and F̃n, which have a
close connection to En (see below). We shall use them to formulate the graphi-
cal representation and an existence theorem for the MLE. They are defined as

qn�α� = inf
C∈�

{
ν�C�	 Fn�C� ≥ α

}
� α ∈ 
0�1�(4.1)

and

F̃n�l� = sup
C∈�

{
Fn�C�	 ν�C� ≤ l

}
� l ≥ 0
(4.2)

Here qn is a generalized quantile function in the sense of Einmahl and Mason
(1992) [see Polonik (1997) for weak Bahadur–Kiefer approximations of the nor-
malized qn and for tests of multimodality based on qn]. The function F̃n is an
empirical Lévy-type concentration function [see Hengartner and Theodorescu
(1973)]. Any set Cn�α� ∈ � such that

qn�α� = ν�Cn�α��
is called an (empirical) minimum volume (MV ) set in � at level α with respect
to ν. Any set Mn�l� ∈ � such that

F̃n�l� = Fn�Mn�l��



ML DENSITY UNDER ORDER RESTRICTIONS 1865

is called an (empirical) modal set in � at level l with respect to ν. Given ob-
servations X1� 
 
 
 �Xn� the set of all MV sets at level α is denoted by 
�n�α�,
and 
�n = ⋃

α∈
0�1� 
�n�α� denotes the set of all MV sets. Analogously, let

�n�l� and 
�n denote the sets of modal sets at level l and the set of all
modal sets, respectively.

The notion minimum volume set of course is motivated by the case ν = Leb,
where Leb denotes Lebesgue measure (in Rd). A special case of a MV set is the
well-known shorth [cf. Andrews, Bickel, Hampel, Huber, Rodgers and Tukey
(1972)] which is the MV set in the class of one-dimensional intervals at the
level 1/2. For this class of one-dimensional intervals, qn has been considered
by Grübel (1988). Chernoff (1964) used the midpoint of modal intervals, that is,
modal sets in the class of one-dimensional intervals, as estimators of the mode.
Similarly, Venter (1967) used MV intervals instead of modal intervals. Note
that in the literature the notion “modal set” is also used in a broader sense,
so that MV sets are sometimes called modal sets also [e.g., Lientz (1970)].

We assume that � is such that

(A4) Almost surely there exist MV sets and modal sets with finite ν-measure
for every α ∈ 
0�1� and l ≥ 0, respectively.

(A4) can, for example, be assured if, in addition to the assumptions given
above, � is closed under intersections. This closedness of course is not a nec-
essary condition for (A4) to hold, as can be seen from the case � = � 2.

If (A4) holds, then we have qn�α� ≤ l⇔ F̃n�l� ≥ α
 However, for given obser-
vations, the class of all MV sets does not coincide with the class of all modal
sets, in general. Consider, for example, the case � = 
0�1�, ν = Lebesgue
measure and let � = ��� 
0�1/2�� 
1/2�1��� �. Let α1 = Fn�
0�1/2��, and
α2 = Fn�
1/2�1��. If α1 �= α2� then either 
0�1/2� or 
1/2�1� is not a modal
set, depending on whether α1 < α2 or α1 > α2. But all the sets in � are MV
sets. In general we have the following lemma.

Lemma 4.1. Given observations X1� 
 
 
 �Xn the following are equivalent:

(i) ∃� ∈ 
�n ∩
�n with ν��� = l, Fn��� = α;

(ii) F̃n is discontinuous at l and F̃n�l� = α;
(iii) qn is discontinuous at α and qn�α� = l.

Note that by definition

�n�� �λ� ∈ 
�n
(
Fn��n�� �λ��

) ∩
�n

(
ν��n�� �λ��

)

(4.3)

Therefore, it follows from Theorem 2.3 that for σ-lattices � � every level set of
the MLE in �� is both (empirical) MV set and modal set. However, not every
set which is both MV set and modal set is an empirical λ-cluster (see below).
In general the set of all empirical λ-clusters is much smaller than 
�n∩
�n.
It also follows from (4.3) that assumption (A4) implies (A2) and (A3).

Theoretical MV sets and modal sets can be defined analogously to the sets
Cn�α� and Mn�l� as maximizers of corresponding theoretical concentration
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functions. These theoretical concentration functions are defined through re-
placing the empirical measure by the true measure F in definitions (4.1) and
(4.2), respectively. The level sets of the underlying density f are both (theo-
retical) MV sets and modal sets, provided all level sets lie in � . MV sets as
estimators of level sets are studied in Polonik (1997).

Now we give a connection of the excess mass functional and F̃n. To that
end define

F̃∗
n = least concave majorant of F̃n�

where the least concave majorant of a function g is defined to be the smallest
concave function lying above g. Note that F̃n is a piecewise constant increasing
function bounded by 1 with at most n+1 different values. Hence, F̃∗

n is a convex
function which is piecewise linear, increasing, bounded by 1 with at most n
changes of slope. Therefore, for every given λ ≥ 0 there exists a tangent (from
above) to F̃∗

n which has slope λ.

Lemma 4.2. For each fixed λ ≥ 0� the empirical excess mass En�� �λ� equals

the intercept of the tangent (from above) with slope λ to F̃∗
n. In other words,En��

is the Legendre transform of the convex function −F̃∗
n (restricted to positive λ).

Closely related to that fact is the graphical representation of the silhouette
given in Polonik (1995b): the at most n different positive values λ1� 
 
 
 � λkn of
(P) [see (2.5)] are given by the different slopes (left-hand derivatives) of F̃∗

n.
The corresponding modal sets (which also are MV sets) at the levels where
the slope changes are the empirical λ-clusters �n�� �λi�� i = 1� 
 
 
 � kn. For σ-
lattices � � the values λi and the corresponding sets �n�� �λi� are the different
levels and level sets, respectively, of the silhouette. The same graphical repre-
sentation holds for the MLE in �� , provided � is a σ-lattice (see Theorem 5.3).
This fact then proves Thorem 2.3.

5. A graphical representation of the MLE. We start this section with
two properties of the MLE in �� . Both will be used to prove the graphical
representation of the MLE given below (Theorem 5.3). However, they also
have some interest of their own.

Lemma 5.1. If f∗
n is a MLE in �� � then

1
n

∑
�i	 Xi∈C�

1
f∗
n�Xi�

≤ ν�C�(5.1)

for all C ∈ � such that �f∗
n + ε1C�/�1+ εν�C�� ∈ �� for ε > 0 small enough. If

� is a σ-lattice, then (5.1) holds for all C ∈ � .

It is well known, that a MLE in �� does not exist if there exist sets C ∈ �
with Fn�C� > 0 and arbitrary small ν-measure. This can also been seen from
Lemma 5.1.
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Another property of the MLE in �� is the following. For a subset π ⊂
�1� 
 
 
 � n� denote Xπ = �Xi	 i ∈ π�. Then we have the following lemma.

Lemma 5.2. Suppose that � is closed under intersections. Given X1� 
 
 
 �
Xn� let 
n = �L ∈ � 	 L = ⋂�C ∈ � 	 Xπ ⊂ C� for some subset π ⊂ �1� 
 
 
 � n�}.
For any function f ∈ �� with

∏n
i=1 f�Xi� > 0 there exists a function f∗ ∈ �
n

with
∏n
i=1 f

∗�Xi� ≥
∏n
i=1 f�Xi�. Hence, if a MLE f∗

n in �� exists, then we have

f∗
n�x� ∈

{
Fn�A \B�
ν�A \B� 	 A�B ∈ 
n�B ⊂ A

}



Note that the class 
n is finite (for a given realization X1� 
 
 
 �Xn) and
that it contains all MV sets in � with nonzero ν-measure. We shall see later
(Corollary 5.4), that for σ-lattices � the assertion of Lemma 5.2 holds with
the class 
n replaced by the class of all MV sets (or of all modal sets) which
in general is a much smaller class. Lemma 5.2 not only says, that the MLE in
�� is piecewise constant with at most �n+ 1� different levels and that it is of
histogram type (which is well known). It also gives a finite number of levels
among which the levels of the MLE can be found and it gives the corresponding
class of sets among which the sets can be found where the MLE is constant.

Now we formulate the graphical representation of the MLE which is based
on F̃∗

n. It has already been mentioned in Section 4 that F̃∗
n is a piecewise

linear, increasing function with at most n changes of slope. These changes of
slope occur at levels l where F̃n�l� = F̃∗

n�l�. Let l1� 
 
 
 � lkn , kn ≤ n denote those
levels in decreasing order and denote by si the left-hand derivatives of F̃∗

n at
li, i = 1� 
 
 
 � kn (see Figure 1). Note that si < si+1, i = 1� 
 
 
 � kn − 1
 Further
denote αi = F̃n�li�, i = 1� 
 
 
 � kn, such that li is the ν-measure of the MV set at
the level αi. Given a MLE f∗

n in �� � let 0 = f0 < f1 < · · · < fk∗
n
, k∗

n ≤ n denote
the different levels of f∗

n and let �∗
n�� �fi� be their corresponding (different)

level sets at the levels fi. With these notations we have the theorem.

Theorem 5.3. Suppose that (A1) and (A4) hold and that a MLE in ��

exists. If � is a σ-lattice, then we have for any MLE f∗
n with the above notation

that k∗
n = kn and:

(i) fi = si ∀ i = 1� 
 
 
 � kn�
(ii) �∗

n�� �fi� ∈ 
�n�αi� ∩
�n�li� ∀ i = 1� 
 
 
 � kn


Theorem 5.3(i) says that the different values of the MLE are given by the
slopes of the least concave majorant of F̃n, and (ii) says that the corresponding
level sets are the modal sets at these levels (see Figure 2). This proves The-
orem 2.3, because the silhouette has the same graphical representation [cf.
Polonik (1995b)] which, however, not only holds for σ-lattices; see comments
after Lemma 4.2.

The following corollary is an easy consequence of Lemma 5.2 and Theo-
rem 5.3.



1868 W. POLONIK

Fig. 1. The notation used in Theorem 5.3 with ν = Lebesgue measure, denoted by Leb. A possible
realization of F̃n and F̃∗

n for n = 12 is shown.

Corollary 5.4. Suppose that the assumptions of Theorem 5.3 hold. Let

V
�n
=

{
Fn�A \B�
ν�A \B� 	 A�B ∈ 
�n�B ⊂ A

}

and

V
�n
=

{
Fn�A \B�
ν�A \B� 	 A�B ∈ 
�n�B ⊂ A

}



Then we have

f∗
n�x� ∈ V
�n

∩V
�n
∀x ∈ � 


The concentration functions F̃n and qn can also be used to characterize the
existence of a MLE in �� which is an assumption in Theorem 5.3.

Theorem 5.5. Suppose that (A1) and (A4) hold and that � is closed under
intersection; then the following are equivalent:

(i) A MLE in �� exists;
(ii) limα→0 qn�α� > 0�

(iii) liml→0 F̃n�l� = 0�
(iv)

∫
fn�� �x�dx = 1


The well-known fact, that a.s. there exists a MLE in the class of monotone
decreasing densities on 
0�∞� follows from Theorem 5.5, since the smallest
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Fig. 2. The construction of an MLE (corresponding to Figure 1) as given in Theorem 5.3. The class
� is chosen to be the class of all intervals with midpoint zero, which is a σ-lattice. The four different
level sets are the sets Mn�2/n��Mn�9/n��Mn�10/n�� and Mn�1�� respectively, corresponding to
Figure 1.

MV set in �0 which is 
0�X�1��, where X�1� denotes the first order statistic,
has a.s. positive Lebesgue measure. Theorem 5.5 also says, that for � = � 1,
or more generally, for the classes � = �d the MLE in �� does not exist.
However, if, for example, one removes all sets from �d with Lebesgue measure
bigger than a fixed positive ε (with the exception of the empty set), then the
MLE exists [see Wegman (1970) or Robertson, Wright and Dykstra (1988)].
Of course there exist other ways to modify the class � in order to ensure
the existence of a MLE. For example, a data dependent approach is given by
measuring the significance of a given set through the (empirical) excess mass
it carries. More precisely, consider only sets C ∈ � with Hn�λ�C� > ε. Since the
value Hn�λ�C� is interpreted as a measure of mass concentration, it should
be easier to choose an ε here. A similar method, also based on excess mass,
has been used by Müller and Sawitzki (1991) in the context of the silhouette.
These approaches also reduce the well-known problem of spiking of the MLE
(and of the silhouette) [cf. Wegman (1970)].

6. Algorithmic aspects. Theorem 5.3 immediately provides an algor-
ithm for calculating the MLE under order restrictions: First, calulate all the
modal sets or, alternatively, all the minimum volume sets Cn�i/n�, i = 0� 
 
 
 � n
in the corresponding class � = ��. Then calculate the least concave majorant
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to the points �Fn�Cn�i/n��� ν�Cn�i/n���� i = 0� 
 
 
 � n
 The empirical MV sets
corrresponding to the extremal points which define a certain (automatically
selected) subclass of the MV sets give the different level sets of the MLE.
The left-hand slopes of the concave minorant in these extremal points give
the corresponding levels. For calculation of the concave majorant, one can use
well-known algorithms such as the pool adjacent violator algorithm (PAVA)
[cf. Robertson, Wright and Dykstra (1988)].

All this says is that calculation of the MLE can be reduced to calculation
of empirical MV sets in the class ��
 This point of view, provides a unified
way to look at the problem. However, from an algorithmic point of view, this
cannot be studied systematically. In each particular case one has to think
about how to calculate the MV sets efficiently. It turns out that in special cases
this has already been done implicitly. Hence, as demonstrated below, the MV
point of view leads to both new and well-known algorithms or representations,
respectively, for MLEs. We refer to Section 3.1 for a brief description of the
special cases discussed now.

The Grenander estimator. For � = �
0� x�� x ≥ 0� we have Cn�i/n� =

0�X�i��, where X�i� denotes the ith order statistic, such that Fn�Cn�i/n�� =
i/n and ν�Cn�i/n�� = X�i�
 Hence, the above algorithm (or representation)
gives us back the well-known representation of the Grenander estimator as
the least concave majorant of the empirical distribution function.

Other univariate MLEs. In the unimodal case instead of calculating a con-
vex minorant–concave majorant, one can do the following. Calculate all the
empirical MV sets in the class of all intervals which contain the given mode.
Plot the empirical mass content of these sets against their length, and cal-
culate the least concave majorant to these points [see Robertson, Wright and
Dykstra (1988) for another representation]. Similarly, for the bimodal case
calculate the MV sets in the classes �x1�x2

�a� for a ∈ �x1� x2� ∩ �X1� 
 
 
 �Xn��
and caculate the corresponding silhouette (or MLE) in each class �x1� x2

�a�

Finally, select the one with the largest likelihood product.

Elliptic contours. Given the location vector µ and scatter matrix " (either
known or estimated) the MLE, or conditional MLE, respectively, can be cal-
culated easily: calculate the values �Xj − µ�′"�Xj − µ�� j = 1� 
 
 
 � n� and
order them. The ellipsoid corresponding to the ith largest of these values is
the set Cn�i/n�. The empirical mass content of course is i/n and the corre-
sponding Lebesgue measures can be calculated easily. Now plot i/n versus the
Lebesgue measures and calculate the least concave majorant. [This seems to
be the algorithm used by Sager (1982).]

Doubly monotone MLE. Here the empirical MV sets are sets which have
monotone decreasing piecewise constant boundary with vertices at the obser-
vations. Hence, a possible algorithm searches through all these sets to find the
MV sets. However, if the number of observations is large, the class to search in
becomes very large. Therefore one has to try to develop algorithms using the
fact that we are searching for “optimal” sets in the sense of the MV property.
This has not been considered in detail yet. Let us mention here that other
known algorithms for this problem (as the related minimum lower set algo-
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rithm) are also known to be very complex [cf. Robertson, Wright and Dykstra
(1988)].

Convex contours. To calculate the silhouette with � = �2� an algorithm of
Hartigan (1987) can be used. In contrast to the above, this algorithm calculates
the level sets of the silhouette directly by minimizing the (empirical) excess
mass function for a given level λ
 Hence, in order to calculate the silhouette
one has to use this algorithm for all levels λ > 0
 Alternatively, one can use
ideas from the Hartigan algorithm to develop an algorithm for calculation of
all the convex MV sets. (Such an algorithm is available from the author.)

7. Summary and final remarks.

Summary. The present paper brings together the so-called excess mass
approach and ML-density estimation under order restrictions. This connection
provides new points of view for ML-density estimation under order restriction.
The presented results are of a nonasymptotic nature.

We show that if a MLE under a given order restriction exists, then it equals
the silhouette corresponding to the class of upper sets. The silhouette can also
be used to characterize the existence of a MLE.

A key result is the graphical representation of the MLE under order restric-
tions formulated in Theorem 5.3. It generalizes the well-known representation
of the Grenander density estimator as the least concave majorant to the em-
pirical distribution function. Algorithmic aspects of this representation are
also discussed.

Final remarks. (a) Results about the asymptotic behavior of the silhou-
ette can be found in Polonik (1995b). In view of Theorem 2.3 of the present
paper, these results can also be interpreted as results on the MLE under or-
der restirictions. In other words, the strong tools of empirical process theory
can be used to derive results about the MLE under order restriction. This is
another aspect to ML-density estimation under order restriction brought in
through the connections developed in the present paper.

(b) Note that the dominating measure ν used here need not be Lebesgue
or counting measure. This, for example, enables us to do the following: let g
denote Lebesgue density of some known measure G
 Suppose one is interested
in estimating the Lebesgue density f of F under the additional information
that h = f/g satisfies some order restrictions. Then the MLE of f under this
additional information is given by f̂ = gĥ where ĥ is the MLE of h under the
corresponding order restriction with ν = G. Hence, the results given in the
present paper for ĥ can immediately be translated to results about f̂


(c) The presented MV-approach to ML-density estimation can also be ap-
plied to other situations, such as regression problems or reliability theory.
This will be studied in a seperate paper. Let us just mention here that in
these cases the empirical process has to be replaced by other processes com-
ing out of the particular situation naturally. In the regression case this will be
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the generalized partial sum process, and in reliability theory an appropriate
transformation of the empirical process can be used.

(d) There is another (univariate) shape restriction often considered in the
literature: one assumes the underlying target function f to be concave (or
convex). This assumption does not directly fit the approach in the present
paper. However, basically one might think about letting the derivative f′ take
over the role of f
 This will be studied elsewhere.

8. Proofs.

Proof of Lemma 2.2. Let for any c > 0�

�̂n�c� =
{
x	 fn�� �x� ≥ c

}



Define further Jc = �π ⊂ �0� 
 
 
 � kn − 1�	 ∑
j∈π�λj+1 − λj� ≥ c�. Then, since

x ∈ �̂n�c� ⇔ ∃π ∈ Jc	 x ∈ ⋂
j∈π

�n�� �λj��

it follows that

�̂n�c� =
⋃
π∈Jc

(⋂
j∈π

�n�� �λj�
)
�

from which the first assertion follows.
To see that ν��n�� �λj+1� \ �n�� �λj�� = 0 assume that it actually is greater

than 0. Since

Hn�λj
��n�� �λj� ∪ �n�� �λj+1��(8.1)

=Hn�λj
��n�� �λj�� +Hn�λj

��n�� �λj+1� \ �n�� �λj���(8.2)

and �n�� �λj� ∪ �n�� �λj+1� ∈ � � it follows by definition of the empirical λ-
clusters as maximizers of the functional Hn�λ that Hn�λj

��n�� �λj+1�\�n�� �λj��
≤ 0. Hence, since λj < λj+1 and ν��n�� �λj+1� \ �n�� �λj�� > 0 (by assumption)
it follows that

Hn�λj+1
��n�� �λj+1� \ �n�� �λj�� < 0


On the other hand we have

Hn�λj+1

(
�n�� �λj� ∩ �n�� �λj+1�

)
=Hn�λj+1

��n�� �λj+1�� −Hn�λj+1

(
�n�� �λj+1�\�n�� �λj�

)
> Hn�λj+1

(
�n�� �λj+1�

)



Since � is closed under intersection, this gives a contradition by definition of
empirical λ-clusters.

These arguments also show how the empirical λ-clusters can be chosen in
order to be monotone for inclusion. Namely, if actually �n�� �λj+1�\�n�� �λj� �=
�� then replace �n�� �λj+1� by �n�� �λj+1� ∩ �n�� �λj�. ✷
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Proof of Lemma 4.1. (i)⇒ (ii): If F̃n has no jump at l = Fn��� then there
exists a set C ∈ � with ν�C� = l0 < l and Fn�C� = α = Fn���. Hence,
qn�α� ≤ l0 < l and it follows that � �∈ 
�n.

(ii)⇒ (iii): Suppose F̃n has a jump at l. If qn would have no jump at α =
F̃n�l� then there exists a set C ∈ � with Fn�C� = α and ν�C� = l0 < l. This
implies F̃n�l0� = α which is a contradiction to the assumption that F̃n has a
jump at l.

(iii)⇒ (i): Suppose qn has a jump at α. Then ∃� with Fn��� = α and ν��� =
qn�α�. If � �∈ 
�n�ν���� then ∃C ∈ � with ν�C� ≤ qn�α� and Fn�C� > α. This
implies that qn has no jump at α� a contradiction. ✷

Proof of Lemma 4.2. We have

En�λ� = sup
�C∈� �

{
Fn�C� − λν�C�}

= sup
l≥0

sup
�C∈� 	 ν�C�≤l�

{
Fn�C� − λν�C�}

= sup
l≥0

{
F̃n�l� − λl

}



The last line is the maximal difference of F̃n and a line through the origin
with slope λ. This supremum is attained at a point where F̃n = F̃∗

n and the
maximal value itself, of course, is the intercept of the tangent at this point. If
there exist more than one point where this supremum is attained, then they all
lie on the same tangent. This argument has been used in Groeneboom (1985)
(with Fn instead of F̃n). He used this argument for proving exact L1-rates of
convergence for the Grenander density estimator. ✷

Proof of Lemma 5.1. Let f∗
n� ε�C = �f∗

n+ ε1C�/�1+ εν�C��. It then follows
that for the ML-estimator f∗

n one has

d

dε

{
1
n

n∑
j=1

log f∗
n� ε�C�Xj�

}∣∣∣∣
ε=0

≤ 0

for all C ∈ � such that f∗
n� ε�C ∈ �� . From this, (5.1) follows by elementary

calculations. The fact that (5.1) holds for all C ∈ � if � is a σ-lattice follows
directly from the fact that in this case �� is a cone [see Robertson, Wright
and Dykstra (1988)]. It can also be seen directly by noting that

{
x	 f�x� + ε1C�x� > λ

} = {
x	 f�x� > λ

} ∪ {�x	 f�x� > λ− ε� ∩C}



However, this essentially is the proof of the fact that �� is a cone for σ-
lattices � . ✷

Proof of Lemma 5.2. Let f ∈ �� be arbitrary. Denote f0 = 0, fj = f�Xj�,
j = 1� 
 
 
 � n and let �j = �x	 f�x� ≥ fj� be the level sets of f at the levels fj.
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Without loss of generality assume them to be orderd, f0 < f1 ≤ · · · ≤ fn.
Define

g�x� = cfj for x ∈ �j\�j+1� j = 0� 
 
 
 � n�

where �n+1 = � and c > 0 is a norming constant to make g integrate
to 1. Since g/c ≤ f� we have c ≥ 1. Moreover, g ∈ �� and

∏n
j=1 g�Xj� =

cn
∏n
j=1 f�Xj� ≥

∏n
j=1 f�Xj�.

Now we construct a density with an even larger likelihood product and level
sets in 
n. Let πj = �i	Xi ∈ �j�, j = 0� 
 
 
 � n and define �̃j =

⋂�C ∈ � 	Xπj ⊂
C�. Then, since Xπj+1 ⊂Xπj� we have �̃j+1 ⊂ �̃j. Let gj = g�Xj� = cfj. Define

h�x� = c̃gj for x ∈ �̃j \ �̃j+1�

where as above c̃ is a norming constant. As above, it follows that h has a
larger likelihood product than g since the norming constant is bigger than 1.
By definition, h has level sets �̃j ∈ 
n. The density h is constant at �̃j \ �̃j+1.
These sets define a partition of �̃0 and it is not difficult to see [see, for example,
Devroye (1987)] that for a given partition A1� 
 
 
 �Ak with ν�Aj� > 0∀j =
1� 
 
 
 � k the histogram density, which has constant values Fn�Aj�/ν�Aj� at
Aj has the largest likelihood among all densities which are constant at Aj,
j = 1� 
 
 
 � k. This finishes the proof, since ν��̃j� > 0∀ i = 1� 
 
 
 � n. This follows
from the assumption that a MLE exists (cf. Theorem 5.5). ✷

Proof of Theorem 5.3. We first prove Theorem 5.3 under the additional
assumptions that (for given observations) the MV sets and modal sets at each
level are monotone for inclusion. We refer to this assumption as (M).

Using Lemma 5.1, one easily gets fk∗
n
≥ Fn�C�/ν�C�, ∀C ∈ � . Since by

assumption a MLE exists, it follows from Theorem 5.5 and Lemma 5.2 that

fk∗
n
= sup

C∈�
Fn�C�/ν�C� = sup

L∈
n

Fn�L�/ν�L�
(8.3)

Clearly, any set maximizing Fn�C�/ν�C� over all C ∈ � has to be in 
�n ∩

�n. Assume for the moment that this maximizing set is unique. Then it
follows from Lemma 5.2 that the maximizing set is �∗

n�� �fk∗
n
�, the level set of

the MLE at the maximal level fk∗
n

such that

�∗
n�� �fk∗

n
� ∈ 
�n ∩
�n(8.4)

and

fk∗
n
= Fn��∗

n�� �fk∗
n
��

ν��∗
n�� �fk∗

n
�� 
(8.5)

Equation (8.3) says that fk∗
n

equals the steepest slope of F̃∗
n [note that F̃∗

n

starts at �0�0� since a MLE exists] which is the left-hand derivative of F̃∗
n

at lkn . Hence we have

fk∗
n
= skn
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In the next step we can restrict ourselves to sets C ∈ � with �∗
n�� �fk∗

n
� ⊂ C.

Then (5.1) gives

∑
�j	 Xj∈�∗n�� �fk∗n ��

1
f∗
n�Xj�

+ ∑
�j	 Xj∈C\�∗n�� �fk∗n ��

1
f∗
n�Xj�

≤ nν�C�
(8.6)

From (8.5) we get that the first term on the left-hand side of (8.6) equals
ν��∗

n�� �fk∗
n
��. Hence it follows that fk∗

n−1 has to satisfy

fk∗
n−1 ≥ Fn�C \ �∗

n�� �fk∗
n
��

ν�C \ �∗
n�� �fk∗

n
�� ∀C ∈ � s.th. �∗

n�� �fk∗
n
� ⊂ C
(8.7)

As above, it follows that

fk∗
n−1 = sup

{
Fn�L \ �∗

n�� �fk∗
n
��

ν�L \ �∗
n�� �fk∗

n
�� 	 L ∈ 
n� �

∗
n�� �fk∗

n
� ⊂ L

}

(8.8)

Since the numerators and the denominators in (8.8) actually are differences
of the corresponding measures of the sets L and �∗

n�� �fk∗
n
� it follows by using

(M) that the maximizing set in (8.8) lies in 
�n ∩
�n. If we again assume
that it is unique, then we have as above,

�∗
n��

(
fk∗

n−1
) ∈ 
�n ∩
�n

and

fk∗
n−1 = skn−1


This argument can be repeated and leads to the desired result.
It remains to remove the assumption of uniqueness of the maximizing sets

in (8.3), (8.8) and so on and to remove (M). First note that it follows from the
graphical representation of the silhouette (cf. the discussion after Lemma 4.2)
together with Lemma 2.2 that there exist empirical λ-clusters �n�� �λj�, j =
1� 
 
 
 � kn� (which by definition all lie in 
�n ∩
�n) which are monotone for
inclusion. These sets correspond to the vertices of F̃∗

n; this means that the
points �ν��n�� �λj���Fn��n�� �λj��� are vertices of the graph of F̃∗

n. From this
it follows that the maximal values in (8.5), (8.8) and so on, that is, the different
values of the MLE, are the slopes of F̃∗

n even if (M) is not assumed to hold. It
also follows that all the maximizing sets correspond to points on F̃∗

n, that is,
for any maximizing set �n the point (ν��n��Fn��n�� lies on the graph of F̃∗

n. In
other words, the maximizing sets are empirical λ-clusters. The corresponding
value of λ equals the maximal value in (8.5), (8.8), and so on. We show below
that if �1 and �2 are two empirical λ-clusters to the same value of λ, then also
the union �1 ∪�2 is an empirical λ-cluster to this value of λ. From this we can
remove the assumption of uniqueness as follows: suppose the maximizing set
in (8.5) is not unique, and we did not choose the largest maximizing set, that
is, the union of all maximizing sets. Then the next iteration step leads to the
same maximal value; that is, we stay at the same level of the MLE, and the
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(present) level set of the MLE only becomes larger until we finally reach the
largest level set. Hence, the uniqueness assumption is not necessary.

It remains to show that if �1 and �2 are two empirical λ0-clusters, then
�1 ∪ �2 also is a λ0-cluster. We have

Hn�λ0
��1 ∪ �2� =Hn�λ0

��1� +Hn�λ0
��2 \ �1�

and

Hn�λ0
��1 ∩ �2� =Hn�λ0

��2� −Hn�λ0
��2 \ �1�


From the first equality it follows that Hn�λ0
��2 \ �1� ≤ 0, since by definition

�1 maximizes Hn�λ0
over all sets in � . Analogously, the second equality gives

Hn�λ0
��2 \ �1� ≥ 0 and hence it equals zero. The first equation now gives the

assertion. ✷

Proof of Theorem 5.5. The equivalence of (ii) and (iii) is obvious. (i)⇒ (ii)
follows from Lemma 5.1. This lemma inplies that the ν-measure of sets in �
which have positive Fn-measure has (uniformly) to be bounded away from
zero. This implies limα→0 qn�α� > 0 as well as liml→0 F̃n�l� = 0. Now suppose
the latter to be true. This says that all the MV sets at levels α > 0 have positive
ν-measure. From this and from Lemma 5.2 the assertion follows, since all
sets in 
n, defined in Lemma 5.2, have bigger ν-measure than the MV set at
level 1/n. To see that also (iv) is equivalent, just observe that

∫
fn�� �x�dx = 1

iff there exists no set C ∈ � with ν�C� = 0 and Fn�C� > 0. ✷
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I am grateful to Lutz Dümbgen for the hint to look at derivatives in di-
rections of indicator functions, which is used in the proof of Lemma 5.1. This
lemma eventually turned out to be one of the key results in the proof of the
graphical representation of the MLE.

I also thank the Editor, an Associate Editor and the referees for helpful
questions, comments and suggestions.

REFERENCES

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rodgers, W. H. and Tukey, J. W.
(1972). Robust Estimation of Location: Survey and Advances. Princeton Univ. Press.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Infer-
ence Under Order Restrictions. Wiley, London.

Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16 31–41.
Devroye, L. (1987). A course in density estimation. Birkhäuser, Boston.
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