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One of the surprising recurring phenomena observed in experiments
with boosting is that the test error of the generated classifier usually does
not increase as its size becomes very large, and often is observed to
decrease even after the training error reaches zero. In this paper, we show
that this phenomenon is related to the distribution of margins of the
training examples with respect to the generated voting classification rule,
where the margin of an example is simply the difference between the
number of correct votes and the maximum number of votes received by
any incorrect label. We show that techniques used in the analysis of
Vapnik’s support vector classifiers and of neural networks with small
weights can be applied to voting methods to relate the margin distribution
to the test error. We also show theoretically and experimentally that
boosting is especially effective at increasing the margins of the training
examples. Finally, we compare our explanation to those based on the
bias-variance decomposition.

1. Introduction. This paper is about methods for improving the perfor-
mance of a learning algorithm, sometimes also called a prediction algorithm
or classification method. Such an algorithm operates on a given set of

Ž .instances or cases to produce a classifier, sometimes also called a classifica-
tion rule or, in the machine-learning literature, a hypothesis. The goal of a
learning algorithm is to find a classifier with low generalization or prediction
error, that is, a low misclassification rate on a separate test set.

In recent years, there has been growing interest in learning algorithms
which achieve high accuracy by voting the predictions of several classifiers.
For example, several researchers have reported significant improvements in
performance using voting methods with decision-tree learning algorithms

�such as C4.5 or CART as well as with neural networks 3, 6, 8, 12, 13, 16, 18,
�29, 31, 37 .

We refer to each of the classifiers that is combined in the vote as a base
classifier and to the final voted classifier as the combined classifier.

As examples of the effectiveness of these methods, consider the results of
Žthe following two experiments using the ‘‘letter’’ dataset. All datasets are
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.described in Appendix B. In the first experiment, we used Breiman’s bagging
� � � �method 6 on top of C4.5 32 , a decision-tree learning algorithm similar to

� �CART 9 . That is, we reran C4.5 many times on random ‘‘bootstrap’’ subsam-
ples and combined the computed trees using simple voting. In the top left of

ŽFigure 1, we have shown the training and test error curves lower and upper
.curves, respectively of the combined classifier as a function of the number of

Ž .trees combined. The test error of C4.5 on this dataset run just once is 13.8%.
ŽThe test error of bagging 1000 trees is 6.6%, a significant improvement. Both
.of these error rates are indicated in the figure as horizontal grid lines.

In the second experiment, we used Freund and Schapire’s AdaBoost algo-
� �rithm 20 on the same dataset, also using C4.5. This method is similar to

bagging in that it reruns the base learning algorithm C4.5 many times and
combines the computed trees using voting. However, the subsamples that are
used for training each tree are chosen in a manner which concentrates on the

FIG. 1. Error curves and margin distribution graphs for bagging and boosting C4.5 on the letter
dataset. Learning curves are shown directly above corresponding margin distribution graphs.

ŽEach learning curve figure shows the training and test error curves lower and upper curves,
.respectively of the combined classifier as a function of the number of classifiers combined.

Horizontal lines indicate the test error rate of the base classifier as well as the test error of the
final combined classifier. The margin distribution graphs show the cumulative distribution of
margins of the training instances after 5, 100 and 1000 iterations, indicated by short-dashed,

Ž .long-dashed mostly hidden and solid curves, respectively.
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Ž .‘‘hardest’’ examples. Details are given in Section 3. The results of this
experiment are shown in the top right of Figure 1. Note that boosting drives
the test error down even further to just 3.1%. Similar improvements in test

Žerror have been demonstrated on many other benchmark problems see
.Figure 2 .

These error curves reveal a remarkable phenomenon, first observed by
� � � � � �Drucker and Cortes 16 , and later by Quinlan 31 and Breiman 8 . Ordinar-

ily, as classifiers become more and more complex, we expect their generaliza-
tion error eventually to degrade. Yet these curves reveal that test error does

Žnot increase for either method even after 1000 trees have been combined by
which point, the combined classifier involves more than two million decision-

.tree nodes . How can it be that such complex classifiers have such low error
rates? This seems especially surprising for boosting in which each new
decision tree is trained on an ever more specialized subsample of the training
set.

Another apparent paradox is revealed in the error curve for AdaBoost.
After just five trees have been combined, the training error of the combined
classifier has already dropped to zero, but the test error continues to drop

Žfrom 8.4% on round 5 down to 3.1% on round 1000. Even when the training
error of the combined classifier reaches zero, AdaBoost continues to obtain
new base classifiers by training the base learning algorithm on different
subsamples of the data. Thus, the combined classifier continues to evolve,

.even after its training error reaches zero. See Section 3 for more detail.
Surely, a combination of five trees is much simpler than a combination of

FIG. 2. Comparison of C4.5 versus bagging C4.5 and boosting C4.5 on a set of 27 benchmark
� �problems as reported in 18 . Each point in each scatter plot shows the test error rate of the two

competing algorithms on a single benchmark. The y-coordinate of each point gives the test error
Ž .rate in percent of C4.5 on the given benchmark, and the x-coordinate gives the error rate of

Ž . Ž .bagging left plot or boosting right plot . All error rates have been averaged over multiple runs.
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Ž1000 trees, and both perform equally well on the training set perfectly, in
.fact . So how can it be that the larger and more complex combined classifier

performs so much better on the test set?
The results of these experiments seem to contradict Occam’s razor, one of

the fundamental principles in the theory of machine learning. This principle
states that in order to achieve good test error, the classifier should be as
simple as possible. By ‘‘simple,’’ we mean that the classifier is chosen from a
restricted space of classifiers. When the space is finite, we use its cardinality
as the measure of complexity and when it is infinite we use the VC dimension
� �41 which is often closely related to the number of parameters that define the
classifier. Typically, both in theory and in practice, the difference between the
training error and the test error increases when the complexity of the
classifier increases.

ŽIndeed, such an analysis of boosting which could also be applied to
. � �bagging was carried out by Freund and Schapire 20 using the methods of

� �Baum and Haussler 4 . This analysis predicts that the test error eventually
will increase as the number of base classifiers combined increases. Such a
prediction is clearly incorrect in the case of the experiments described above,

� � � �as was pointed out by Quinlan 31 and Breiman 8 . The apparent contradic-
tion is especially stark in the boosting experiment in which the test error
continues to decrease even after the training error has reached zero.

� �Breiman 8 and others have proposed definitions of bias and variance for
classification and have argued that voting methods work primarily by reduc-
ing the variance of a learning algorithm. This explanation is useful for
bagging in that bagging tends to be most effective when the variance is large.
However, for boosting, this explanation is, at best, incomplete. As will be seen
in Section 5, large variance of the base classifiers is not a requirement for
boosting to be effective. In some cases, boosting even increases the variance
while reducing the overall generalization error.

Intuitively, it might seem reasonable to think that because we are simply
voting the base classifiers, we are not actually increasing their complexity but
merely ‘‘smoothing’’ their predictions. However, as argued in Section 5.4, the
complexity of such combined classifiers can be much greater than that of the
base classifiers and can result in overfitting.

In this paper, we present an alternative theoretical analysis of voting
� �methods, applicable, for instance, to bagging, boosting, ‘‘arcing’’ 8 and

� �ECOC 13 . Our approach is based on a similar result presented by Bartlett
� �2 in a different context. We prove rigorous, nonasymptotic upper bounds on
the generalization error of voting methods in terms of a measure of perfor-
mance of the combined classifier on the training set. Our bounds also depend
on the number of training examples and the ‘‘complexity’’ of the base classi-
fiers, but do not depend explicitly on the number of base classifiers. Although
too loose to give practical quantitative predictions, our bounds do give a
qualitative explanation of the shape of the observed learning curves, and our
analysis may be helpful in understanding why these algorithms fail or
succeed, possibly leading to the design of even more effective voting methods.
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The key idea of this analysis is the following. In order to analyze the
generalization error, one should consider more than just the training error,
that is, the number of incorrect classifications in the training set. One should
also take into account the confidence of the classifications. Here, we use a
measure of the classification confidence for which it is possible to prove that
an improvement in this measure of confidence on the training set guarantees
an improvement in the upper bound on the generalization error.

ŽConsider a combined classifier whose prediction is the result of a vote or a
.weighted vote over a set of base classifiers. Suppose that the weights

assigned to the different base classifiers are normalized so that they sum to
one. Fixing our attention on a particular example, we refer to the sum of the
weights of the base classifiers that predict a particular label as the weight of
that label. We define the classification margin for the example as the
difference between the weight assigned to the correct label and the maximal
weight assigned to any single incorrect label. It is easy to see that the margin

� �is a number in the range �1, 1 and that an example is classified correctly if
and only if its margin is positive. A large positive margin can be interpreted
as a ‘‘confident’’ correct classification.

Now consider the distribution of the margin over the whole set of training
examples. To visualize this distribution, we plot the fraction of examples

� �whose margin is at most x as a function of x � �1, 1 . We refer to these
graphs as margin distribution graphs. At the bottom of Figure 1, we show the
margin distribution graphs that correspond to the experiments described
above.

Our main observation is that both boosting and bagging tend to increase
the margins associated with examples and converge to a margin distribution
in which most examples have large margins. Boosting is especially aggressive
in its effect on examples whose initial margin is small. Even though the

Ž .training error remains unchanged at zero after round 5, the margin distri-
bution graph changes quite significantly so that after 100 iterations all
examples have a margin larger than 0.5. In comparison, on round 5, about
7.7% of the examples have a margin below 0.5. Our experiments, detailed
later in the paper, show that there is a good correlation between a reduction
in the fraction of training examples with small margin and improvements in
the test error.

The idea that maximizing the margin can improve the generalization error
� �of a classifier was previously suggested and studied by Vapnik 41 and led to

� �his work with Cortes on support-vector classifiers 10 , and with Boser and
� �Guyon 5 on optimal margin classifiers. In Section 6, we discuss the relation

between our work and Vapnik’s in greater detail.
� �Shawe-Taylor et al. 38 gave bounds on the generalization error of sup-

� �port-vector classifiers in terms of the margins, and Bartlett 2 used related
techniques to give a similar bound for neural networks with small weights. A
consequence of Bartlett’s result is a bound on the generalization error of a
voting classifier in terms of the fraction of training examples with small
margin.
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In Section 2, we use a similar but simpler approach to give a slightly better
bound. Here we give the main intuition behind the proof. This idea brings us
back to Occam’s razor, though in a rather indirect way. Recall that an
example is classified correctly if its margin is positive. If an example is

Ž .classified by a large margin either positive or negative , then small changes
to the weights in the majority vote are unlikely to change the label. If most of
the examples have a large margin then the classification error of the original
majority vote and the perturbed majority vote will be similar. Suppose now
that we had a small set of weighted majority rules that was fixed ahead of
time, called the ‘‘approximating set.’’ One way of perturbing the weights of
the classifier majority vote is to find a nearby rule within the approximating
set. As the approximating set is small, we can guarantee that the error of the
approximating rule on the training set is similar to its generalization error,
and as its error is similar to that of the original rule, the generalization error
of the original rule should also be small. Thus, we are back to an Occam’s
razor argument in which instead of arguing that the classification rule itself
is simple, we argue that the rule is close to a simple rule.

Boosting is particularly good at finding classifiers with large margins in
Ž .that it concentrates on those examples whose margins are small or negative

and forces the base learning algorithm to generate good classifications for
those examples. This process continues even after the training error has
reached zero, which explains the continuing drop in test error.

In Section 3, we show that the powerful effect of boosting on the margin is
not merely an empirical observation but is in fact the result of a provable
property of the algorithm. Specifically, we are able to prove upper bounds on
the number of training examples below a particular margin in terms of the
training errors of the individual base classifiers. Under certain conditions,
these bounds imply that the number of training examples with small margin
drops exponentially fast with the number of base classifiers.

In Section 4, we give more examples of margin distribution graphs for
other datasets, base learning algorithms and combination methods.

In Section 5, we discuss the relation of our work to bias-variance decompo-
sitions. In Section 6, we compare our work to Vapnik’s optimal margin
classifiers, and in Section 7, we briefly discuss similar results for learning
convex combinations of functions for loss measures other than classification
error.

2. Generalization error as a function of margin distributions. In
this section, we prove that achieving a large margin on the training set
results in an improved bound on the generalization error. This bound does
not depend on the number of classifiers that are combined in the vote. The

� �approach we take is similar to that of Shawe-Taylor et al. 38 and Bartlett
� �2 , but the proof here is simpler and more direct. A slightly weaker version of
Theorem 1 is a special case of Bartlett’s main result.

We give a proof for the special case in which there are just two possible
� 4labels �1, �1 . In Appendix A, we examine the case of larger finite sets of

labels.
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Let HH denote the space from which the base classifiers are chosen; for
example, for C4.5 or CART, it is the space of decision trees of an appropriate
size. A base classifier h � HH is a mapping from an instance space X to
� 4�1, �1 . We assume that examples are generated independently at random

� 4according to some fixed but unknown distribution DD over X � �1, �1 . The
²Ž . Ž . Ž .:training set is a list of m pairs S � x , y , x , y , . . . , x , y chosen1 1 2 2 m m

� �according to DD. We use P A to denote the probability of the event AŽ x, y .� DD

Ž . � �when the example x, y is chosen according to DD, and P A to denoteŽ x, y .� S
probability with respect to choosing an example uniformly at random from

� �the training set. When clear from context, we abbreviate these by P A andDD

� � � � � �P A . We use E A and E A to denote expected value in a similarS DD S
manner.

We define the convex hull CC of HH as the set of mappings that can be
generated by taking a weighted average of classifiers from HH:

CC � f : x � a h x a � 0; a � 1 ,Ž .˙ Ý Ýh h h½ 5
hh�HH

Žwhere it is understood that only finitely many a ’s may be nonzero. A finiteh
support is not a requirement for our proof but is sufficient for the application

.here which is to majority votes over a finite number of base classifiers. The
majority vote rule that is associated with f gives the wrong prediction on the

Ž . Ž . Ž .example x, y only if yf x � 0. Also, the margin of an example x, y in this
Ž .case is simply yf x .

The following two theorems, the main results of this section, state that
with high probability, the generalization error of any majority vote classifier
can be bounded in terms of the number of training examples with margin
below a threshold � , plus an additional term which depends on the number of
training examples, some ‘‘complexity’’ measure of HH, and the threshold �
Ž .preventing us from choosing � too close to zero .

The first theorem applies to the case that the base classifier space HH is
finite, such as the set of all decision trees of a given size over a set of

� �discrete-valued features. In this case, our bound depends only on log HH ,
which is roughly the description length of a classifier in HH. This means that
we can tolerate very large classifier classes.

If HH is infinite�such as the class of decision trees over continuous
features�the second theorem gives a bound in terms of the Vapnik�
Chervonenkis dimension of HH. Recall that the VC-dimension is defined as

� �follows: let FF be a family of functions f : X � Y where Y � 2. Then the
VC-dimension of FF is defined to be the largest number d such that there

��² Ž . Ž .: 4 � dexists x , . . . , x � X for which f x , . . . , f x : f � FF � 2 . Thus, the1 d 1 d
VC-dimension is the cardinality of the largest subset S of the space X for
which the set of restrictions to S of functions in FF contains all functions from
S to Y.

Note that the theorems apply to every majority vote classifier, regardless
of how it is computed. Thus, the theorem applies to any voting method,
including boosting, bagging, and so on.
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2.1. Finite base-classifier spaces.

� 4THEOREM 1. Let DD be a distribution over X � �1, 1 , and let S be a
sample of m examples chosen independently at random according to DD.
Assume that the base-classifier space HH is finite, and let � � 0. Then with
probability at least 1 � � over the random choice of the training set S, every
weighted average function f � CC satisfies the following bound for all � � 0:

1	2� �1 log m log HH
P yf x � 0 � P yf x � � � O � log 1	� .Ž . Ž . Ž .DD S 2ž /'ž /�m

PROOF. For the sake of the proof, we define CC to be the set of un-N
weighted averages over N elements from HH:

N1
CC � f : x � h x h � HH .Ž .˙ ÝN i i½ 5N i�1

We allow the same h � HH to appear multiple times in the sum. This set will
play the role of the approximating set in the proof.

Any majority vote classifier f � CC can be associated with a distribution
over HH as defined by the coefficients a . By choosing N elements of HHh
independently at random according to this distribution we can generate an
element of CC . Using such a construction, we map each f � CC to a distribu-N
tion QQ over CC . That is, a function g � CC distributed according to QQ isN N
selected by choosing h , . . . , h independently at random according to the1 N

Ž . Ž . N Ž .coefficients a and then defining g x � 1	N Ý h x .h i�1 i
Our goal is to upper bound the generalization error of f � CC. For any

g � CC and � � 0 we can separate this probability into two terms:N

1 P yf x � 0 � P yg x � �	2 � P yg x � �	2, yf x � 0 .Ž . Ž . Ž . Ž . Ž .DD DD DD

This holds because, in general, for two events A and B,

� � � � � � � � � �2 P A � P B 
 A � P B 
 A � P B � P B 
 A .Ž .
Ž .As 1 holds for any g � CC , we can take the expected value of the right-handN

side with respect to the distribution QQ and get

P yf x � 0Ž .DD

� P yg x � �	2 � P yg x � �	2, yf x � 0Ž . Ž . Ž .DD , g � QQ DD , g � QQ

� E P yg x � �	2 � E P yg x � �	2, yf x � 0Ž . Ž . Ž .g � QQ DD DD g � QQ

3Ž .

� E P yg x � �	2 � E P yg x � �	2 � yf x � 0 .Ž . Ž . Ž .g � QQ DD DD g � QQ

Ž .We bound both terms in 3 separately, starting with the second term.
Ž .Consider a fixed example x, y and take the probability inside the expecta-

Ž . � Ž .�tion with respect to the random choice of g. It is clear that f x � E g xg � QQ
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so the probability inside the expectation is equal to the probability that the
� 4average over N random draws from a distribution over �1, �1 is larger

than its expected value by more than �	2. The Chernoff bound yields

24 P yg x � �	2 � yf x � 0 � exp �N� 	8 .Ž . Ž . Ž . Ž .g � QQ

Ž .To upper bound the first term in 3 we use the union bound. That is, the
probability over the choice of S that there exists any g � CC and � � 0 forN
which

P yg x � �	2 � P yg x � �	2 � �Ž . Ž .DD S N

Ž . � � Ž 2 . Ž 2 .is at most N � 1 CC exp �2m� . The exponential term exp �2m�N N N
comes from the Chernoff bound which holds for any single choice of g and � .

Ž . � �The term N � 1 CC is an upper bound on the number of such choices whereN
we have used the fact that, because of the form of functions in CC , we needN
only consider values of � of the form 2 i	N for i � 0, . . . , N. Note that
� � � � NCC � HH .N

N� �Thus, if we set � � 1	2m ln N � 1 HH 	� , and take expecta-'Ž . Ž .Ž .N N

tion with respect to QQ, we get that, with probability at least 1 � � ,N

5 P yg x � �	2 � P yg x � �	2 � �Ž . Ž . Ž .DD , g � QQ S , g � QQ N

for every choice of � and every distribution QQ.
To finish the argument we relate the fraction of the training set on which
Ž . Ž .yg x � �	2 to the fraction on which yf x � � , which is the quantity that

Ž .we measure. Using 2 again, we have that

P yg x � �	2Ž .S , g � QQ

� P yf x � � � P yg x � �	2, yf x � �Ž . Ž . Ž .S , g � QQ S , g � QQ

� P yf x � � � E P yg x � �	2, yf x � �Ž . Ž . Ž .S S g � QQ

6Ž .

� P yf x � � � E P yg x � �	2 � yf x � � .Ž . Ž . Ž .S S g � QQ

To bound the expression inside the expectation we use the Chernoff bound as
Ž .we did for Equation 4 and get

27 P yg x � �	2 � yf x � � � exp �N� 	8 .Ž . Ž . Ž . Ž .g � QQ

Ž Ž ..Let � � �	 N N � 1 so that the probability of failure for any N will beN
Ž . Ž . Ž . Ž . Ž .at most Ý � � � . Then combining 3 , 4 , 5 , 6 and 7 , we get that,N �1 N

with probability at least 1 � � , for every � � 0 and every N � 1,

2P yf x � 0 � P yf x � � � 2 exp �N� 	8Ž . Ž . Ž .DD S

2 N� �1 N N � 1 HHŽ .
� ln .) ž /2m �

8Ž .
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Finally, the statement of the theorem follows by setting N �
�Ž 2 . Ž � �.�4	� ln m	ln HH . �

2.2. Discussion of the bound. Let us consider the quantitative predictions
that can be made using Theorem 1. It is not hard to show that, if � � 0 and

Ž .� � 0 are held fixed as m � �, the bound given in 8 with the choice of N
given in the theorem converges to

� �2 ln m ln HH ln m
9 P yf x � 0 � P yf x � � � � o .Ž . Ž . Ž . ( (DD S 2 ž /mm�

Ž . � � 6In fact, if � � 1	2, � � 0.01 1% probability of failure , HH � 10 and m �
Ž .1000, then the second term on the right-hand side of 9 is a pretty good

Ž .approximation of the second and third terms on the right-hand side of 8 , as
is demonstrated in Figure 3.

Ž .From 9 and from Figure 3 we see that the bounds given here start to be
meaningful only when the size of the training set is in the tens of thousands.
As we shall see in Section 4, the actual performance of AdaBoost is much
better than predicted by our bounds; in other words, while our bounds are not

Ž . Ž .FIG. 3. A few plots of the second and third terms in the bound given in 8 solid lines and their
Ž . Ž .approximation by the second term in 9 dotted lines . The horizontal axis denotes the number of

Ž .training examples with a logarithmic scale and the vertical axis denotes the value of the bound.
� � 6All plots are for � � 0.01 and HH � 10 . Each pair of close lines corresponds to a different value

of � ; counting the pairs from the upper right to the lower left, the values of � are 1	20, 1	8, 1	4
and 1	2.
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Ž .asymptotic i.e., they hold for any size of the training set , they are still very
loose. The bounds we give in the next section for infinite base-classifier spaces
are even looser. It is an important and challenging open problem to prove
tighter bounds.

From a practical standpoint, the fact that the bounds we give are so loose
suggests that there might exist criteria different from the one used in
Theorem 1 which are better in predicting the performance of voting classi-

� � � �fiers. Breiman 7 and Grove and Schuurmans 23 experimented with maxi-
mizing the minimal margin, that is, the smallest margin achieved on the
training set. The advantage of using this criterion is that maximizing the

Žminimal margin can be done efficiently if the set of base classifiers is not too
.large using linear programming. Unfortunately, their experiments indicate

that altering the combined classifier generated by AdaBoost so as to maxi-
mize the minimal margin increases the generalization error more often than
not. In one experiment reported by Breiman, the generalization error in-

Žcreases even though the margins of all of the instances are increased for
this dataset, called ‘‘ionosphere,’’ the number of instances is 351, much too

.small for our bounds to apply . While none of these experiments contradict
the theory, they highlight the incompleteness of the theory and the need to
refine it.

2.3. Infinite base-classifier spaces.

� 4THEOREM 2. Let DD be a distribution over X � �1, 1 , and let S be a
sample of m examples chosen independently at random according to DD.
Suppose the base-classifier space HH has VC-dimension d, and let � � 0.
Assume that m � d � 1. Then with probability at least 1 � � over the random
choice of the training set S, every weighted average function f � CC satisfies the
following bound for all � � 0:

P yf x � 0Ž .DD

1	221 d log m	dŽ .
� P yf x � � � O � log 1	� .Ž . Ž .S 2ž /'ž /�m

The proof of this theorem uses the following uniform convergence result,
which is a refinement of the Vapnik and Chervonenkis result due to Devroye
� �11 . Let AA be a class of subsets of a space Z, and define

� �� 4s AA, m � max A 
 S : A � AA : S � Z, S � m .� 4Ž .

Ž .LEMMA 3 Devroye . For any class AA of subsets of Z, and for a sample S of
m examples chosen independently at random according to a distribution DD

over Z, we have

� � � �mP sup P z � A � P z � A � �S � DD z � S z � DD

A�AA

� 4e8s AA, m2 exp �2m� 2 .Ž . Ž .
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In other words, the lemma bounds the probability of a significant deviation
between the empirical and true probabilities of any of the events in the
family AA.

PROOF OF THEOREM 2. The proof proceeds in the same way as that of
Ž .Theorem 1, until we come to upper bound the first term in 3 . Rather than

the union bound, we use Lemma 3.
Define

� 4AA � x , y � X � �1, 1 : yg x � �	2 : g � CC , � � 0 .� 4� 4Ž . Ž . N

� 4Let x , . . . , x � X and y , . . . , y � �1, 1 . Since the VC-dimension of HH1 m 1 m
� �is d, Sauer’s lemma 33, 42 states that

d demm² :h x , . . . , h x : h � HH � �Ž . Ž .� 4 Ý1 m ž /ž /i di�0

for m � d � 1. This implies that

d Nem
² :y g x , . . . , y g x : g � CC �Ž . Ž .� 41 1 m m N ž /d

since each g � CC is composed of N functions from HH. Since we need onlyN
Ž . Žconsider N � 1 distinct values of � , it follows that s AA, m � N �

.Ž .d N1 em	d . We can now apply Lemma 3 to bound the probability inside the
Ž .expectation in the first term of 3 . Setting

2 81 em 4e N � 1Ž .
� � dN ln � lnN ) ž / ž /ž /2m d �N

and taking expectation with respect to QQ, we get that, with probability at
Ž .least 1 � � , 5 holds for all � . Proceeding as in the proof of Theorem 1, weN

get that, with probability at least 1 � � , for all � � 0 and N � 1,

2P yf x � 0 � P yf x � � � 2 exp �N� 	8Ž . Ž . Ž .DD S

22 81 em 4e N N � 1Ž .
� dN ln � ln .) ž / ž /ž /2m d �

�Ž 2 . Ž .�Setting N � 4	� ln m	d completes the proof. �

2.4. Sketch of a more general approach. Instead of the proof above, we
can use a more general approach, which can also be applied to any class of
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real-valued functions. The use of an approximating class, such as CC in theN
proofs of Theorems 1 and 2, is central to our approach. We refer to such an
approximating class as a sloppy cover. More formally, for a class FF of
real-valued functions, a training set S of size m, and positive real numbers �

ˆand � , we say that a function class FF is an �-sloppy �-cover of FF with respect
ˆ ˆ ˆ� � Ž . Ž . � �to S if, for all f in FF, there exists f in FF with P f x � f x � � � � .x � S

Ž .Let NN FF, � , � , m denote the maximum, over all training sets S of size m, of
the size of the smallest �-sloppy �-cover of FF with respect to S. Standard

Žtechniques yield the following theorem the proof is essentially identical to
� �.that of Theorem 2 in 2 .

THEOREM 4. Let FF be a class of real-valued functions defined on the
� 4instance space X. Let DD be a distribution over X � �1, 1 , and let S be a

sample of m examples chosen independently at random according to DD. Let
� � 0 and let � � 0. Then the probability over the random choice of the
training set S that there exists any function f � FF for which

P yf x � 0 � P yf x � � � �Ž . Ž .DD S

is at most

2 NN FF , �	2, �	8, 2m exp �� 2 m	32 .Ž . Ž .

Theorem 2 can now be proved by constructing a sloppy cover using the
same probabilistic argument as in the proof of Theorems 1 and 2, that is, by
choosing an element of CC randomly by sampling functions from HH. InN

Ž .addition, this result leads to a slight improvement by log factors of the main
� �result of 2 , which gives bounds on generalization error for neural networks

with real outputs in terms of the size of the network weights and the margin
distribution.

3. The effect of boosting on margin distributions. We now give
� �theoretical evidence that Freund and Schapire’s 20 AdaBoost algorithm is

especially suited to the task of maximizing the number of training examples
with large margin.

We briefly review their algorithm. We adopt the notation used in the
previous section, and restrict our attention to the binary case.

Boosting works by sequentially rerunning a base learning algorithm, each
time using a different distribution over training examples. That is, on each
round t � 1, . . . , T, a distribution D is computed over the training exam-t

� 4ples, or, formally, over the set of indices 1, . . . , m . The goal of the base
learning algorithm then is to find a classifier h with small error � �t t

� Ž .�P y � h x . The distribution used by AdaBoost is initially uniformi� D i t it
Ž Ž . .D i � 1	m , and then is updated multiplicatively on each round:1

D i exp �y � h xŽ . Ž .Ž .t i t t i
D i � .Ž .t�1 Zt
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1 ŽŽ . .Here, � � ln 1 � � 	� and Z is a normalization factor chosen so thatt t t t2

D sums to one. In our case, Z can be computed exactly ast�1 t

m

Z � D i exp �y � h xŽ . Ž .Ž .Ýt t i t t i
i�1

� D i exp �� � D i exp �Ž . Ž . Ž . Ž .Ý Ýt t t t
Ž . Ž .i : y �h x i : y �h xi t i i t i

� 1 � � exp �� � � exp �Ž . Ž . Ž .t t t t

� 2 � 1 � � .' Ž .t t

The final combined classifier is a weighted majority vote of the base
Ž .classifiers, namely, sign f where

ÝT � h xŽ .t�1 t t
10 f x � .Ž . Ž . TÝ �t�1 t

Ž .Note that, on round t, AdaBoost places the most weight on examples x, y
t�1 Ž .for which y Ý � h x is smallest. This quantity is exactly the margin oft ��1 t � t �

the combined classifier computed up to this point.
� �Freund and Schapire 20 prove that if the training error rates of all the

base classifiers are bounded below 1	2 for all D so that � � 1	2 � 	 fort t
some 	 � 0, then the training error of the combined classifier decreases
exponentially fast with the number of base classifiers that are combined. The

Ž .training error is equal to the fraction of training examples for which yf x � 0.
It is a simple matter to extend their proof to show that, under the same
conditions on � , if � is not too large, then the fraction of training examplest

Ž .for which yf x � � also decreases to zero exponentially fast with the num-
Ž .ber of base classifiers or boosting iterations .

THEOREM 5. Suppose the base learning algorithm, when called by Ada-
Boost, generates classifiers with weighted training errors � , . . . , � . Then for1 T
any � , we have that

T
1��T 1��'11 P yf x � � � 2 � 1 � � .Ž . Ž . Ž .ŁŽ x , y .� S t t

t�1

Ž .PROOF. Note that if yf x � � then

T T

y � h x � � �Ž .Ý Ýt t t
t�1 t�1

and so
T T

exp �y � h x � � � � 1.Ž .Ý Ýt t tž /
t�1 t�1
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Therefore,
T T

P yf x � � � E exp �y � h x � � �Ž . Ž .Ý ÝŽ x , y .� S Ž x , y .� S t t tž /
t�1 t�1

T m Texp � Ý �Ž .t�1 t� exp �y � h xŽ .Ý Ýi t t iž /m i�1 t�1

T T m

� exp � � Z D i ,Ž .Ý Ł Ýt t T�1ž /ž / t�1t�1 i�1

where the last equality follows from the definition of D . Noting thatT�1
m Ž .Ý D i � 1, and plugging in the values of � and Z gives the theorem.i�1 T�1 t t

�

To understand the significance of the result, assume for a moment that, for
all t, � � 1	2 � 	 for some 	 � 0. Since here we are considering onlyt
two-class prediction problems, a random prediction will be correct exactly
half of the time. Thus, the condition that � � 1	2 � 	 for some smallt
positive 	 means that the predictions of the base classifiers are slightly better
than random guessing. Given this assumption, we can simplify the upper

Ž .bound in 11 to
T

1�� 1��' 1 � 2	 1 � 2	 .Ž . Ž .ž /
If � � 	 , it can be shown that the expression inside the parentheses is

Ž .smaller than 1 so that the probability that yf x � � decreases exponentially
�fast with T. We can show that if 	 is known in advance then an exponential

Ždecrease in the probability can be achieved by a slightly different boosting
.algorithm for any � � 2	 . However, we don’t know how to achieve this

�improvement when no nontrivial lower bound on 1	2 � � is known a priori.t
In practice, � increases as a function of t, possibly even converging to 1	2.t
However, if this increase is sufficiently slow, the bound of Theorem 5 is still
useful. Characterizing the conditions under which the increase is slow is an
open problem.

Although this theorem applies only to binary classification problems,
� � � �Freund and Schapire 20 and others 35, 36 give extensive treatment to the

Ž .multiclass case see also Section 4 . All of their results can be extended to
prove analogous theorems about margin distributions for this more general
case.

4. More margin distribution graphs. In this section, we describe
experiments we conducted to produce a series of error curves and margin
distribution graphs for a variety of datasets and learning methods.

Datasets. We used three benchmark datasets called ‘‘letter,’’ ‘‘satimage’’
and ‘‘vehicle.’’ Brief descriptions of these are given in Appendix B. Note that
all three of these learning problems are multiclass with 26, 6 and 4 classes,
respectively.
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Voting methods. In addition to bagging and boosting, we used a variant of
� � Ž .Dietterich and Bakiri’s 13 method of error-correcting output codes ECOC ,

which can be viewed as a voting method. This approach was designed to
handle multiclass problems using only a two-class learning algorithm. Briefly,
it works as follows: as in bagging and boosting, a given base learning

Ž .algorithm which need only be designed for two-class problems is rerun
repeatedly. However, unlike bagging and boosting, the examples are not
reweighted or resampled. Instead, on each round, the labels assigned to each
example are modified so as to create a new two-class labeling of the data,

� 4which is induced by a simple mapping from the set of classes into �1, �1 .
The base learning algorithm is then trained using this relabeled data,
generating a base classifier.

The sequence of bit assignments for each of the individual labels can be
viewed as a ‘‘code word.’’ A given test example is then classified by choosing
the label whose associated code word is closest in Hamming distance to the
sequence of predictions generated by the base classifiers. This coding-theo-
retic interpretation led Dietterich and Bakiri to the idea of choosing code
words with strong error-correcting properties so that they will be as far apart
from one another as possible. However, in our experiments, rather than
carefully constructing error-correcting codes, we simply used random output
codes, which are highly likely to have similar properties.

The ECOC combination rule can also be viewed as a voting method: Each
Ž .base classifier h , on a given instance x, predicts a single bit h x �t t

� 4�1, �1 . We can interpret this bit as a single vote for each of the labels
Ž .which were mapped on round t to h x . The combined hypothesis thent

predicts with the label receiving the most votes overall. Since ECOC is a
voting method, we can measure margins just as we do for boosting and
bagging.

As noted above, we used three multiclass learning problems in our experi-
ments, whereas the version of boosting given in Section 3 only handles

� �two-class data. Freund and Schapire 20 describe a straightforward adaption
of this algorithm to the multiclass case. The problem with this algorithm is
that it still requires that the accuracy of each base classifier exceed 1	2. For
two-class problems, this requirement is about as minimal as can be hoped for,
since random guessing will achieve accuracy 1	2. However, for multiclass
problems in which k � 2 labels are possible, accuracy 1	2 may be much
harder to achieve than the random-guessing accuracy rate of 1	k. For fairly
powerful base learners, such as C4.5, this does not seem to be a problem.
However, the accuracy 1	2 requirement can often be difficult for less power-
ful base learning algorithms which may be unable to generate classifiers with
small training errors.

� �Freund and Schapire 20 provide one solution to this problem by modify-
ing the form of the base classifiers and refining the goal of the base learner.
In this approach, rather than predicting a single class for each example, the
base classifier chooses a set of ‘‘plausible’’ labels for each example. For
instance, in a character recognition task, the base classifier might predict
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that a particular example is either a ‘‘6,’’ ‘‘8’’ or ‘‘9,’’ rather than choosing just
a single label. Such a base classifier is then evaluated using a ‘‘pseudoloss’’

Ž .measure which, for a given example, penalizes the base classifier 1 for
Ž .failing to include the correct label in the predicted plausible label set, and 2

for each incorrect label which is included in the plausible set. The combined
classifier, for a given example, then chooses the single label which occurs
most frequently in the plausible label sets chosen by the base classifiers
Ž .possibly giving more or less weight to some of the base classifiers . The exact
form of the pseudoloss is under the control of the boosting algorithm, and the
base learning algorithm must therefore be designed to handle changes in the
form of the loss measure.

Base learning algorithms. In our experiments, for the base learning algo-
rithm, we used C4.5. We also used a simple algorithm for finding the best

Ž .single-node, binary-split decision tree a decision ‘‘stump’’ . Since this latter
algorithm is very weak, we used the ‘‘pseudoloss’’ versions of boosting and

Ž � � .bagging, as described above. See 20, 18 for details.
Results. Figures 4 and 5 show error curves and margin distribution graphs

for the three datasets, three voting methods and two base learning algo-
rithms. Note that each figure corresponds only to a single run of each
algorithm.

As explained in the introduction, each of the learning curve figures shows
Ž . Ž .the training error bottom and test error top curves. We have also indicated

as horizontal grid lines the error rate of the base classifier when run just
once, as well as the error rate of the combined classifier after 1000 iterations.
Note the log scale used in these figures. Margin distribution graphs are
shown for 5, 100 and 1000 iterations indicated by short-dashed, long-dashed
Ž .sometimes barely visible and solid curves, respectively.

It is interesting that, across datasets, all of the learning algorithms tend to
produce margin distribution graphs of roughly the same character. As al-
ready noted, when used with C4.5, boosting is especially aggressive at
increasing the margins of the examples, so much so that it is ‘‘willing’’ to
suffer significant reductions in the margins of those examples that already
have large margins. This can be seen in Figure 4, where we observe that the
maximal margin in the final classifier is bounded well away from 1. Contrast
this with the margin distribution graphs after 1000 iterations of bagging in
which as many as half of the examples have a margin of 1.

The graphs for ECOC with C4.5 resemble in shape those for boosting more
so than bagging, but tend to have overall lower margins.

Note that, on every dataset, both boosting and bagging eventually achieve
Ž .perfect or nearly perfect accuracy on the training sets at least 99% , but the

generalization error for boosting is better. The explanation for this is evident
from the margin distribution graphs where we see that, for boosting, far
fewer training examples have margin close to zero.

It should be borne in mind that, when combining decision trees, the
Ž .complexity of the trees as measured, say, by the number of leaves , may vary

greatly from one combination method to another. As a result, the margin
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ŽFIG. 4. Error curves and margin distribution graphs for three voting methods bagging,
.boosting and ECOC using C4.5 as the base learning algorithm. Results are given for the letter,

Ž .satimage and vehicle datasets. See caption under Figure 1 for an explanation of these curves.

distribution graphs may not necessarily predict which method gives better
generalization error. One must also always consider the complexity of the
base classifiers, as explicitly indicated by Theorems 1 and 2.

When used with stumps, boosting can achieve training error much smaller
than that of the base learner; however, it is unable to achieve large margins.
This is because, consistent with Theorem 5, the base classifiers have much
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Ž .FIG. 4. continued

higher training errors. Presumably, such low margins do not adversely affect
the generalization error because the complexity of decision stumps is so much
smaller than that of full decision trees.

5. Relation to bias-variance theory. One of the main explanations for
the improvements achieved by voting classifiers is based on separating the
expected error of a classifier into a bias term and a variance term. While the

� �details of these definitions differ from author to author 8, 25, 26, 40 , they
are all attempts to capture the following quantities: the bias term measures
the persistent error of the learning algorithm, in other words, the error that
would remain even if we had an infinite number of independently trained
classifiers. The variance term measures the error that is due to fluctuations
that are a part of generating a single classifier. The idea is that by averaging
over many classifiers one can reduce the variance term and in that way
reduce the expected error.

In this section, we discuss a few of the strengths and weaknesses of
bias-variance theory as an explanation for the performance of voting meth-
ods, especially boosting.

5.1. The bias-variance decomposition for classification. The origins of
bias-variance analysis are in quadratic regression. Averaging several inde-
pendently trained regression functions will never increase the expected error.
This encouraging fact is nicely reflected in the bias-variance separation of the
expected quadratic error. Both bias and variance are always nonnegative and
averaging decreases the variance term without changing the bias term.

One would naturally hope that this beautiful analysis would carry over
from quadratic regression to classification. Unfortunately, as has been ob-
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ŽFIG. 5. Error curves and margin distribution graphs for three voting methods bagging,
.boosting and ECOC using decision stumps as the base learning algorithm. Results are given for

Žthe letter, satimage and vehicle datasets. See caption under Figure 1 for an explanation of these
.curves.

Ž � �.served before us see, for instance, 22 , taking the majority vote over several
classification rules can sometimes result in an increase in the expected
classification error. This simple observation suggests that it may be inher-
ently more difficult or even impossible to find a bias-variance decomposition
for classification as natural and satisfying as in the quadratic regression case.
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Ž .FIG. 5. continued

This difficulty is reflected in the myriad definitions that have been pro-
� �posed for bias and variance 8, 25, 26, 40 . Rather than discussing each one

separately, for the remainder of this section, except where noted, we follow
� �the definitions given by Kong and Dietterich 26 , and referred to as ‘‘Defini-

� � Ž .tion 0’’ in 8 . These definitions are given in Appendix C.

5.2. Bagging and variance reduction. The notion of variance certainly
seems to be helpful in understanding bagging; empirically, bagging appears
to be most effective for learning algorithms with large variance. In fact, under
idealized conditions, variance is by definition the amount of decrease in error
effected by bagging a large number of base classifiers. This ideal situation is
one in which the bootstrap samples used in bagging faithfully approximate
truly independent samples. However, this assumption can fail to hold in
practice, in which case bagging may not perform as well as expected, even
when variance dominates the error of the base learning algorithm.

This can happen even when the data distribution is very simple. As a
somewhat contrived example, consider data generated according to the fol-

� 4lowing distribution. The label y � �1, �1 is chosen uniformly at random.
� 47The instance x � �1, �1 is then chosen by picking each of the 7 bits to be

equal to y with probability 0.9 and �y with probability 0.1. Thus, each
coordinate of x is an independent noisy version of y. For our base learner, we
use a learning algorithm which generates a classifier that is equal to the
single coordinate of x which is the best predictor of y with respect to the
training set. It is clear that each coordinate of x has the same probability of
being chosen as the classifier on a random training set, so the aggregate
predictor over many independently trained samples is the unweighted major-



SCHAPIRE, FREUND, BARTLETT AND LEE1672

ity vote over the coordinates of x, which is also the Bayes optimal predictor in
this case. Thus, the bias of our learning algorithm is exactly zero. The
prediction error of the majority rule is roughly 0.3%, and so a variance of
about 9.7% strongly dominates the expected error rate of 10%. In such a
favorable case, one would predict, according to the bias-variance explanation,
that bagging could get close to the error of the Bayes optimal predictor.

However, using a training set of 500 examples, the generalization error
Žachieved by bagging is 5.6% after 200 iterations. All results are averaged

.over many runs. The reason for this poor performance is that, in any
particular random sample, some of the coordinates of x are slightly more
correlated with y and bagging tends to pick these coordinates much more
often than the others. Thus, in this case, the behavior of bagging is very
different from its expected behavior on truly independent training sets.

Boosting, on the same data, achieved a test error of 0.6%.

� �5.3. Boosting and variance reduction. Breiman 8 argued that boosting
is primarily a variance-reducing procedure. Some of the evidence for this
comes from the observed effectiveness of boosting when used with C4.5 or
CART, algorithms known empirically to have high variance. As the error of
these algorithms is mostly due to variance, it is not surprising that the
reduction in the error is primarily due to a reduction in the variance.
However, our experiments show that boosting can also be highly effective
when used with learning algorithms whose error tends to be dominated by

Žbias rather than variance. In fact, the original goal of boosting was to reduce
the error of so-called ‘‘weak’’ learning algorithms which tend to have very

� � .large bias 17, 20, 34 .
We ran boosting and bagging on four artificial datasets described by

� �Breiman 8 , as well as the artificial problem studied by Kong and Dietterich
� �26 . Following previous authors, we used training sets of size 200 for the
latter problem and 300 for the others. For the base learning algorithm, we
tested C4.5. We also used the decision-stump base-learning algorithm de-
scribed in Section 4. We then estimated bias, variance and average error of
these algorithms by rerunning them 1000 times each, and evaluating them
on a test set of 10,000 examples. For these experiments, we used both the

� �bias-variance definitions given by Kong and Dietterich 26 and those pro-
� � Ž .posed more recently by Breiman 8 . Definitions are given in Appendix C.

� �For multiclass problems, following 18 , we tested both error-based and
pseudoloss-based versions of bagging and boosting. For two-class problems,
only the error-based versions were used.

The results are summarized in Table 1. Clearly, boosting is doing more
than reducing variance. For instance, on ‘‘ringnorm,’’ boosting decreases the
overall error of the stump algorithm from 40.6% to 12.2%, but actually
increases the variance from �7.9% to 6.6% using Kong and Dietterich’s

Ždefinitions, or from 6.7% to 8.0% using Breiman’s definitions. We did not
.check the statistical significance of this increase.

Breiman also tested boosting with a low-variance base learning algorithm
Ž .�namely, linear discriminant analysis LDA �and attributed the ineffec-
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TABLE 1
Results of bias-variance experiments using boosting and bagging on five synthetic datasets described in Appendix B*

[ ] [ ]Kong and Dietterich 26 definitions Breiman 8 definitions

Stumps C4.5 Stumps C4.5

Error Pseudoloss Error Error Pseudoloss Error

Name — Boost Bag Boost Bag — Boost Bag — Boost Bag Boost Bag — Boost Bag

Waveform bias 26.0 3.8 22.8 0.8 11.9 1.5 0.5 1.4 19.2 2.6 15.7 0.5 7.9 0.9 0.3 1.4
var 5.6 2.8 4.1 3.8 8.6 14.9 3.7 5.2 12.5 4.0 11.2 4.1 12.5 15.5 3.9 5.2
error 44.7 19.6 39.9 17.7 33.5 29.4 17.2 19.7 44.7 19.6 39.9 17.7 33.5 29.4 17.2 19.7

Twonorm bias 2.5 0.6 2.0 0.5 0.2 0.5 1.3 0.3 1.1 0.3 0.1 0.3
var 28.5 2.3 17.3 18.7 1.8 5.4 29.6 2.6 18.2 19.0 1.9 5.6
error 33.3 5.3 21.7 21.6 4.4 8.3 33.3 5.3 21.7 21.6 4.4 8.3

Threenorm bias 24.5 6.3 21.6 4.7 2.9 5.0 14.2 4.1 13.8 2.6 1.9 3.1
var 6.9 5.1 4.8 16.7 5.2 6.8 17.2 7.3 12.6 18.8 6.3 8.6
error 41.9 22.0 36.9 31.9 18.6 22.3 41.9 22.0 36.9 31.9 18.6 22.3

Ringnorm bias 46.9 4.1 46.9 2.0 0.7 1.7 32.3 2.7 37.6 1.1 0.4 1.1
var �7.9 6.6 �7.1 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error 40.6 12.2 41.4 19.0 4.5 9.5 40.6 12.2 41.4 19.0 4.5 9.5

Kong and bias 49.2 49.1 49.2 7.7 35.1 7.7 5.5 8.9 49.0 49.0 49.0 5.3 29.7 5.1 3.5 6.2
Dietterich var 0.2 0.2 0.2 5.1 3.5 7.2 6.6 4.3 0.4 0.3 0.5 7.5 8.9 9.8 8.5 6.9

error 49.5 49.3 49.5 12.8 38.6 14.9 12.1 13.1 49.5 49.3 49.5 12.8 38.6 14.9 12.1 13.1

* For each dataset and each learning method, we estimated bias, variance and generalization error rate, reported in percent, using two sets
Ž .of definitions for bias and variance given in Appendix C . Both C4.5 and decision stumps were used as base learning algorithms. For

stumps, we used both error-based and pseudoloss-based versions of boosting and bagging on problems with more than two classes. Columns
labeled with a dash indicate that the base learning algorithm was run by itself.
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Ž .tiveness of boosting in this case to the ‘‘stability’’ low variance of LDA. The
experiments with the fairly stable stump algorithm suggest that stability in
itself may not be sufficient to predict boosting’s failure.

Our theory suggests a different characterization of the cases in which
boosting might fail. Taken together, Theorem 1 and Theorem 5 state that

Ž .boosting can perform poorly only when either 1 there is insufficient training
Ž .data relative to the ‘‘complexity’’ of the base classifiers, or 2 the training

Ž .errors of the base classifiers the � ’s in Theorem 5 become too large toot
quickly. Certainly, this characterization is incomplete in that boosting often
succeeds even in situations in which the theory provides no guarantees.
However, while we hope that tighter bounds can be given, it seems unlikely
that there exists a ‘‘perfect’’ theory. By a ‘‘perfect’’ theory we mean here a
rigorous analysis of voting methods that, on the one hand, is general enough
to apply to any base learning algorithm and to any i.i.d. source of labeled
instances and on the other hand gives bounds that are accurate predictors of
the performance of the algorithm in practice. This is because in any practical
situation there is structure in the data and in the base learning algorithm
that is not taken into account in the assumptions of a general theory.

5.4. Why averaging can increase complexity. In this section, we challenge
a common intuition which says that when one takes the majority vote over
several base classifiers the generalization error of the resulting classifier is
likely to be lower than the average generalization error of the base classifiers.
In this view, voting is seen as a method for ‘‘smoothing’’ or ‘‘averaging’’ the
classification rule. This intuition is sometimes based on the bias-variance
analysis of regression described in the previous section. Also, to some, it
seems to follow from a Bayesian point of view according to which integrating
the classifications over the posterior is better than using any single classifier.
If one feels comfortable with these intuitions, there seems to be little point to
most of the analysis given in this paper. It seems that because AdaBoost
generates a majority vote over several classifiers, its generalization error is,
in general, likely to be better than the average generalization error of the
base classifiers. According to this point of view, the suggestion we make in
the introduction that the majority vote over many classifiers is more complex
than any single classifier seems to be irrelevant and misguided.

In this section, we describe a base learning algorithm which, when com-
bined using AdaBoost, is likely to generate a majority vote over base classi-
fiers whose training error goes to zero, while at the same time the generaliza-
tion error does not improve at all. In other words, it is a case in which voting
results in overfitting. This is a case in which the intuition described above
seems to break down, while the margin-based analysis developed in this
paper gives the correct answer.

Suppose we use classifiers that are delta functions; that is, they predict �1
on a single point in the input space and �1 everywhere else, or vice versa
Ž . Ž�1 on one point and �1 elsewhere . If you dislike delta functions, you can
replace them with nicer functions. For example, if the input space is � n, use



BOOSTING THE MARGIN 1675

balls of sufficiently small radius and make the prediction �1 or �1 inside,
.and �1 or �1, respectively, outside. To this class of functions we add the

constant functions that are �1 everywhere or �1 everywhere.
Now, for any training sample of size m we can easily construct a set of at

most 2m functions from our class such that the majority vote over these
functions will always be correct. To do this, we associate one delta function
with each training example; the delta function gives the correct value on the
training example and the opposite value everywhere else. Letting m and�
m denote the number of positive and negative examples, we next add m� �
copies of the function which predicts �1 everywhere, and m copies of the�
function which predicts �1 everywhere. It can now be verified that the sum
Ž .majority vote of all these functions will be positive on all of the positive
examples in the training set and negative on all the negative examples. In
other words, we have constructed a combined classifier which exactly fits the
training set.

Fitting the training set seems like a good thing; however, the very fact that
we can easily fit such a rule to any training set implies that we don’t expect
the rule to be very good on independently drawn points outside of the
training set. In other words, the complexity of these average rules is too
large, relative to the size of the sample, to make them useful. Note that this
complexity is the result of averaging. Each one of the delta rules is very

Ž .simple the VC-dimension of this class of functions is exactly 2 , and indeed, if
Ž .we found a single delta function or constant function that fit a large sample

we could, with high confidence, expect the rule to be correct on new randomly
drawn examples.

How would boosting perform in this case? It can be shown using Theorem 5
Ž .with � � 0 that boosting would slowly but surely find a combination of the
type described above having zero training error but very bad generalization
error. A margin-based analysis of this example shows that while all of the
classifications are correct, they are correct only with a tiny margin of size
Ž .O 1	m , and so we cannot expect the generalization error to be very good.

6. Relation to Vapnik’s maximal margin classifiers. The use of the
margins of real-valued classifiers to predict generalization error was previ-

� � � �ously studied by Vapnik 41 in his work with Boser and Guyon 5 and
� �Cortes 10 on optimal margin classifiers.

We start with a brief overview of optimal margin classifiers. One of the
main ideas behind this method is that some nonlinear classifiers on a
low-dimensional space can be treated as linear classifiers over a high-dimen-
sional space. For example, consider the classifier that labels an instance
x � � as �1 if 2 x 5 � 5x 2 � x � 10 and �1 otherwise. This classifier can be
seen as a linear classifier if we represent each instance by the vector
Ž . Ž 2 3 4 5. Ž .h x � 1, x, x , x , x , x . If we set � � �10, 1, �5, 0, 0, 2 , then the clas-˙

Ž .sification is �1 when � 
 h x � 0 and �1 otherwise. In a typical case, the
data consists of about 10,000 instances in �100 which are mapped into
�1,000,000. Vapnik introduced the method of kernels, which provides an effi-
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cient way for calculating the predictions of linear classifiers in the high-
dimensional space. Using kernels, it is usually easy to find a linear classifier
that separates the data perfectly. In fact, it is likely that there are many
perfect linear classifiers, many of which might have very poor generalization
ability. In order to overcome this problem, the prescription suggested by
Vapnik is to find the classifier that maximizes the minimal margin. More
precisely, suppose that the training sample S consists of pairs of the form
Ž . � 4x, y where x is the instance and y � �1, �1 is its label. Assume that
Ž . n Žh x is some fixed nonlinear mapping of instances into � where n is

.typically very large . Then the maximal margin classifier is defined by the
vector � which maximizes

y � 
 h xŽ .Ž .
12 min .Ž .

	 	�Ž .x , y �S 2

	 	Here, � is the l or Euclidean norm of the vector � . A graphical sketch of2 2
the maximal margin method is given in Figure 6. For the analysis of this

Ž .method, Vapnik assumes that all of the vectors h x are enclosed within a
ball of radius R; that is, they all are within Euclidean distance R from some
fixed vector in � n. Without loss of generality, we can assume that R � 1.

� �Vapnik 42 showed that the VC dimension of all linear classifiers with
minimum margin at least � is upper bounded by 1	� 2. This result implies
bounds on the generalization error in terms of the expected minimal margin
on test points which do not depend on the dimension n of the space into
which the data are mapped. However, typically, the expected value of the

� �minimal margin is not known. Shawe-Taylor et al. 38 used techniques from
the theory of learning real-valued functions to give bounds on generalization

� �error in terms of margins on the training examples. Shawe-Taylor et al. 39
also gave related results for arbitrary real classes.

FIG. 6. The maximal margins classification method. In this example, the raw data point x is an
element of �, but in that space the positive and negative examples are not linearly separable. The

Ž 2 .raw input is mapped to a point in a high-dimensional space here � by a fixed nonlinear
transformation h. In the high-dimensional space, the classes are linearly separable. The vector �
is chosen to maximize the minimal margin � . The circled instances are the support vectors;
Vapnik shows that � can always be written as a linear combination of the support vectors.
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Ž .Consider the relation between 10 and the argument of the minimum in
Ž . � 4T T12 . We can view the coefficients � as the coordinates of a vector � � �t t�1

� Ž .4T Ž .and the predictions h x as the coordinates of the vector h x �t t�1
� 4T Ž .�1, �1 . Then we can rewrite 10 as

� 
 h xŽ .
f x � ,Ž .

	 	� 1

	 	 T � �where � � Ý � is the l norm of � . In our analysis, we use the fact1 t�1 t 1
Ž . � �that all of the components of h x are in the range �1, �1 , or, in other

Ž . 	 Ž .	words that the max or l norm of h x is bounded by 1: h x ���
T � Ž . �max h x � 1.t�1 t

Viewed this way, the connection between maximal margin classifiers and
boosting becomes clear. Both methods aim to find a linear combination in a
high-dimensional space which has a large margin on the instances in the
sample. The norms used to define the margin are different in the two cases
and the precise goal is also different�maximal margin classifiers aim to
maximize the minimal margin while boosting aims to minimize an exponen-
tial weighting of the examples as a function of their margins. Our interpreta-
tion for these differences is that boosting is more suited for the case when the
mapping h maps x into a high-dimensional space where all of the coordi-

� 4nates have a similar maximal range, such as �1, �1 . On the other hand,
the optimal margin method is suitable for cases in which the Euclidean norm

Ž .of h x is likely to be small, such as is the case when h is an orthonormal
transformation between inner product spaces. Related to this, the optimal
margin method uses quadratic programming for its optimization, whereas the
boosting algorithm can be seen as a method for approximate linear program-

� �ming 7, 19, 21, 23 .
Both boosting and support vector machines aim to find a linear classifier in

a very high-dimensional space. However, computationally, they are very
different: support vector machines use the method of kernels to perform
computations in the high-dimensional space while boosting relies on a base
learning algorithm which explores the high-dimensional space one coordinate
at a time.

� �Vapnik 42 gave an alternative analysis of optimal margin classifiers,
based on the number of support vectors, that is, the number of examples that
define the final classifier. This analysis is preferable to the analysis that
depends on the size of the margin when only a few of the training examples

� �are support vectors. Previous work 17 has suggested that boosting also can
be used as a method for selecting a small number of ‘‘informative’’ examples
from the training set. Investigating the relevance of this type of bound when
applying boosting to real-world problems is an interesting open research
direction.

7. Other loss functions. We describe briefly related work which has
been done on loss functions other than the 0-1 loss.
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� � � �For quadratic loss, Jones 24 and Barron 1 have shown that functions in
the convex hull of a class HH of real-valued functions can be approximated by a

Ž .convex combination of N elements of HH to an accuracy of O 1	N by
iteratively adding the member of HH which minimizes the residual error to the

� �existing convex combination. Lee, Bartlett and Williamson 27 extended this
result to show that the procedure will converge to the best approximation in
the convex hull of HH even when the target function is not in the convex hull of

� �HH. Lee, Bartlett and Williamson 27, 28 also studied the generalization error
when this procedure is used for learning. In results analogous to those
presented here, they showed that the generalization error can be bounded in

Žterms of the sum of the absolute values of the output weights when the
� �.members of HH are normalized to have output values in the interval �1, 1 ,

rather than in terms of the number of components in the convex combination.
Similar work on iterative convex approximation in L spaces was pre-p

� �sented by Donahue et al. 14 . To the best of our knowledge, similar iterative
schemes for combining functions have not been studied for the log loss.

Extensions of boosting to solve regression problems were suggested by
� � � �Freund 17 and Freund and Schapire 20 . These extensions are yet to be

� �tested in practice. Drucker 15 experimented with a different extension of
boosting for regression and reported some encouraging results.

8. Open problems. The methods in this paper allow us to upper bound
the generalization error of a voted classifier based on simple statistics which
can be measured using the training data. These statistics are a function of
the empirical distribution of the margins. While our bounds seem to explain
the experiments qualitatively, their quantitative predictions are greatly over-
pessimistic. The challenge of coming up with better bounds can be divided
into two questions. First, can one give better bounds that are a function of the
empirical margins distribution? Second, are there better bounds that are
functions of other statistics?

A different approach to understanding the behavior of AdaBoost is to find
functions of the training set which predict the generalization error well on all
or most of the datasets encountered in practice. While this approach does not
give one the satisfaction of a mathematical proof, it might yield good results
in practice.

APPENDIX A

Generalization error for multiclass problems. In this appendix, we
describe how Theorems 1 and 2 can be extended to multiclass problems.

� 4Suppose there are k classes, and define Y � 1, 2, . . . , k as the output
space. We formally view the base classifiers h � HH as mappings from X � Y

� 4 Ž .to 0, 1 , with the interpretation that if h x, y � 1 then y is predicted by h
to be a plausible label for x. This general form of classifier covers the forms of
base classifiers used throughout this paper. For simple classifiers, like the



BOOSTING THE MARGIN 1679

decision trees computed by C4.5, only a single label is predicted so that, for
Ž .each x, h x, y � 1 for exactly one label y. However, some of the other

combination methods�such as pseudoloss-based boosting or bagging, as well
as Dietterich and Bakiri’s output-coding method�use base classifiers which

Ž .vote for a set of plausible labels so that h x, y may be 1 for several labels y.
We define the convex hull CC of HH as

CC � f : x , y � a h x , y a � 0; a � 1 ,Ž . Ž .˙ Ý Ýh h h½ 5
hh�HH

Ž . Ž .so a classifier f in CC predicts label y for input x if f x, y � max f x, y�y �� y
Ž . Ž .and ties are broken arbitrarily . We define the margin of an example x, y
for such a function f as

13 margin f , x , y � f x , y � max f x , y� .Ž . Ž . Ž . Ž .
y��y

Ž . Ž .Clearly, f gives the wrong prediction on x, y only if margin f, x, y � 0.
With these definitions, we have the following generalization of Theorems 1
and 2.

THEOREM 6. Let DD be a distribution over X � Y, and let S be a sample of
m examples chosen independently at random according to DD. Assume that the
base-classifier space HH is finite, and let � � 0. Then with probability at least
1 � � over the random choice of the training set S, every function f � CC

satisfies the following bound for all � � 0:

P margin f , x , y � 0Ž .DD

1	2� �1 log mk log HHŽ .
� P margin f , x , y � � � O � log 1	� .Ž . Ž .S 2ž /'ž /�m

More generally, for finite or infinite HH with VC-dimension d, the following
bound holds as well, assuming that m � d � 1:

P margin f , x , y � 0Ž .DD

1	221 d log mk	dŽ .
� P margin f , x , y � � � O � log 1	� .Ž . Ž .S 2ž /'ž /�m

PROOF. The proof closely follows that of Theorem 1, so we only describe
the differences. We first consider the case of finite HH.

First, we define

N1
CC � f : x , y � h x , y h � HH .Ž . Ž .˙ ÝN i i½ 5N i�1
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As in the proof of Theorem 1, for any f � CC we choose an approximating
function g � CC according to the distribution QQ, and we haveN

P margin f , x , y � 0Ž .DD

� E P margin g , x , y � �	2Ž .g � QQ DD

� E P margin g , x , y � �	2 � margin f , x , y � 0 .Ž . Ž .DD g � QQ

We bound the second term of the right-hand side as follows: fix f, x and y,
Ž .and let y� � y achieve the maximum in 13 so that

margin f , x , y � f x , y � f x , y� .Ž . Ž . Ž .
Ž . Ž . Ž .Clearly, margin g, x, y � g x, y � g x, y� and

E g x , y � g x , y� � f x , y � f x , y�Ž . Ž . Ž . Ž .g � QQ

so

P margin g , x , y � �	2 � margin f , x , y � 0Ž . Ž .g � QQ

� P g x , y � g x , y� � �	2 � f x , y � f x , y� � 0Ž . Ž . Ž . Ž .g � QQ

� exp �N� 2	8Ž .
using the Chernoff bound.

Ž . Ž . Ž .Equations 5 and 6 follow exactly as in the proof of Theorem 1 with yf x
Ž . Ž . Ž .and yg x replaced by margin f , x, y and margin g, x, y . We can derive the

Ž .analog of 7 as follows:

P margin g , x , y � �	2 � margin f , x , y � �Ž . Ž .g � QQ

� P � y� � y : g x , y � g x , y� � �	2 �Ž . Ž .g � QQ

� y� � y : f x , y � f x , y� � �Ž . Ž .
� P g x , y � g x , y� � �	2 � f x , y � f x , y� � �Ž . Ž . Ž . Ž .Ý g � QQ

y��y

� k � 1 e�N� 2 	8 .Ž .
Proceeding as in the proof of Theorem 1, we see that, with probability at

least 1 � � , for any � � 0 and N � 1,

P margin f , x , y � 0Ž .DD

� P margin f , x , y � �Ž .S

2 N� �1 N N � 1 HHŽ .
2� k exp �N� 	8 � ln .Ž . ) ž /2m �

�Ž 2 . Ž 2 � �.�Setting N � 4	� ln mk 	ln HH gives the result.
For infinite HH, we follow essentially the same modifications to the argu-

ment above as used in the proof of Theorem 2. As before, to apply Lemma 3,
Ž .we need to derive an upper bound on s AA, m where

AA � x , y � X � Y : margin g , x , y � �	2 : g � CC , � � 0 .� 4� 4Ž . Ž . N
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Let x , . . . , x � X and y , . . . , y � Y. Then applying Sauer’s lemma to the1 m 1 m
�Ž . 4set x , y : 1 � i � m, y � Y givesi

² :h x , 1 , . . . , h x , k ; . . . ;h x , 1 , . . . , h x , k : h � HHŽ . Ž . Ž . Ž .� 41 1 m m

dd emkkm� � .Ý ž / ž /i di�0

This implies that

² :g x , 1 , . . . , g x , k ; . . . ; g x , 1 , . . . , g x , k : g � CCŽ . Ž . Ž . Ž .� 41 1 m m N

d Nemk
� ,ž /d

and hence

d Nemk
margin g , x , y , . . . , margin g , x , y : g � CC � .� 4Ž . Ž .Ž .1 1 m m N ž /d

Ž . Ž .Ž .d NThus, s AA, m � N � 1 emk	d . Proceeding as before, we obtain the
bound

2P margin f , x , y � 0 � P margin f , x , y � � � k exp �N� 	8Ž . Ž . Ž .DD S

22 81 em k 4e N N � 1Ž .
� dN ln � ln .) ž / ž /ž /2m d �

Setting N as above completes the proof. �

APPENDIX B

Brief descriptions of datasets. In this appendix, we briefly describe
the datasets used in our experiments.

B.1. Non-synthetic datasets. In Section 4, we conducted experiments on
three nonsynthetic datasets called ‘‘letter,’’ ‘‘satimage’’ and ‘‘vehicle.’’ All
three are available from the repository at the University of California at

� �Irvine 30 .
Some of the basic characteristics of these datasets are given in Table 2.

The letter and satimage datasets came with their own test sets. For the
vehicle dataset, we randomly selected half of the data to be held out as a test

Ž .set. All features are continuous real-valued . None of these datasets have
missing values.

The letter benchmark is a letter image recognition task. The dataset was
created by David J. Slate. According to the documentation provided with this
dataset, ‘‘The objective is to identify each of a large number of black-and-white
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TABLE 2
The three benchmark machine-learning problems used in the experiments

Number of
examples Number of Number of

Name Train Test classes features

Vehicle 423 423 4 18
Satimage 4435 2000 6 36
Letter 16000 4000 26 16

rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images were based on 20 different fonts and each
letter within these 20 fonts was randomly distorted to produce a file of 20,000
unique stimuli. Each stimulus was converted into 16 primitive numerical

Ž .attributes statistical moments and edge counts which were then scaled to fit
into a range of integer values from 0 through 15.’’

The satimage dataset is the statlog version of a satellite image dataset.
According to the documentation, ‘‘This database consists of the multi-spectral
values of pixels in 3 � 3 neighborhoods in a satellite image, and the classifi-
cation associated with the central pixel in each neighborhood. The aim is to
predict this classification, given the multi-spectral values . . . The original
database was generated from Landsat Multi-Spectral Scanner image data . . .
purchased from NASA by the Australian Center for Remote Sensing, and
used for research at The Center for Remote Sensing . . . The sample database

Ž .was generated taking a small section 82 rows and 100 columns from the
original data. The binary values were converted to their present ASCII form
by Ashwin Srinivasan. The classification for each pixel was performed on the
basis of an actual site visit by Ms. Karen Hall, when working for Professor
John A. Richards . . . Conversion to 3 � 3 neighborhoods and splitting into
test and training sets was done by Alistair Sutherland . . . .’’

The purpose of the vehicle dataset, according to its documentation, is ‘‘to
classify a given silhouette as one of four types of vehicle, using a set of
features extracted from the silhouette. The vehicle may be viewed from one of
many different angles . . . This dataset comes from the Turing Institute . . .

� �The extracted features were a combination of scale independent features
utilizing both classical moments based measures such as scaled variance,
skewness and kurtosis about the major	minor axes and heuristic measures
such as hollows, circularity, rectangularity and compactness. Four ‘Corgie’
model vehicles were used for the experiment: a double decker bus, Chevrolet
van, Saab 9000 and an Opel Manta 400 . . . . The images were acquired by a
camera looking downwards at the model vehicle from a fixed angle of eleva-
tion . . . .’’
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B.2. Synthetic datasets. In Section 5, we described experiments using
synthetically generated data. Twonorm, threenorm and ringnorm were taken

� �from Breiman 8 :

Twonorm: This is 20-dimension, 2-class data. Each class is drawn from a
multivariate normal distribution with unit covariance matrix. Class �1 has

Ž . Ž .mean a, a, . . . , a and class �2 has mean �a, �a, . . . , �a where a �
'2	 20 .
Threenorm: This is 20-dimension, 2-class data. Class �1 is drawn with

Ž .equal probability from a unit multivariate normal with mean a, a, . . . , a and
Ž .from a unit multivariate normal with mean �a, �a, . . . , �a . Class �2 is

Ž .drawn from a unit multivariate normal with mean a, �a, a, �a, . . . , �a
'where a � 2	 20 .

Ringnorm: This is 20-dimension, 2-class data. Class �1 is multivariate
normal with mean zero and covariance matrix 4 times the identity. Class �2

'Ž .has unit covariance matrix and mean a, a, . . . , a where a � 1	 20 .

� �The waveform data is 21-dimension, 3-class data. It is described in 9 . A
� �program for generating this data is available from the UCI repository 30 .

� �The last dataset was taken from Kong and Dietterich 26 . This is a
2-dimension, 6-class classification problem where the classes are defined by

� � � �the regions of 0, 15 � 0, 15 shown in Figure 7.

� �FIG. 7. The 2-dimension, 6-class classification problem defined by Kong and Dietterich 26 on
� � � �the region 0, 15 � 0, 15 .



SCHAPIRE, FREUND, BARTLETT AND LEE1684

APPENDIX C

Two definitions of bias and variance for classification. For the sake
of completeness, we include here the definitions for bias and variance for
classification tasks which we have used in our experiments. The first set of

� �definitions is due to Kong and Dietterich 26 and the second one is due to
� �Breiman 8 . Assume that we have an infinite supply of independent training

sets S of size m. Each sample S is drawn i.i.d. from a fixed distribution D
� 4over X � 1, . . . , k where k is the number of classes. Denote by C theS

classifier that is generated by the base learning algorithm given the sample
S. Denote by C the classification rule that results from running the baseA
learning algorithm on an infinite number of independent training sets and

Žtaking the plurality vote over the resulting classifiers. The plurality vote
outputs the class which receives the largest number of votes, breaking ties
uniformly at random. When k � 2 the plurality vote is equal to the majority

.vote. Finally, denote by C* the Bayes optimal prediction rule for the distri-
bution D. The prediction of a classifier C on an instance x � X is denoted
Ž .C x and the expected error of a classifier C is denoted

PE C � P C x � y .Ž . Ž .˙ Ž x , y .� D

The definitions of Kong and Dietterich are

Bias � PE C � PE C* ,Ž . Ž .˙ A

mVariance � E PE C � PE C .Ž . Ž .˙ S � D S A

Breiman defines a partition of the sample space into two sets. The ‘‘unbi-
Ž . Ž .ased’’ set U consists of all x � X for which C x � C* x and the ‘‘biased’’A

set B is U ’s complement. Given these sets the definitions of bias and
variance are

Bias � P C* x � y , x � BŽ .˙ Ž x , y .� D

m� E P C x � y , x � B ,Ž .S � D Ž x , y .� D S

Variance � P C* x � y , x � UŽ .˙ Ž x , y .� D

m� E P C x � y , x � U .Ž .S � D Ž x , y .� D S
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