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In this paper we generalize the major results of Andersson and Perl-
man on LCI models to the setting of symmetric cones and give an explicit
closed form formula for the estimate of the covariance matrix in the gen-
eralized LCI models that we define.

To this end, we replace the cone H+I �R� sitting inside the Jordan algebra
of symmetric real I× I-matrices by the symmetric cone � of an Euclidean
Jordan algebra V. We introduce the Andersson-Perlman cone ��� � ⊆ �
which generalizes � �� � ⊆ H+I �R�. We prove several characterizations
and properties of ��� � which allows us to recover, though with different
proofs, the main results of Andersson and Perlman regarding � �� �. The
new lattice conditional independence models are defined, assuming that
the Euclidean Jordan algebra V has a symmetric representation. Using
standard results from the theory of Jordan algebras, we can reduce the
general model to the case where V is the Jordan algebra of Hermitian
matrices over the real, complex or quaternionic numbers, and � is the
corresponding cone of positive-definite matrices. Our main statistical result
is a closed-form formula for the estimate of the covariance matrix in the
generalized LCI model. We also give the likelihood ratio test for testing a
given model versus another one, nested within the first.

1. Introduction.

1.1. Background. Consider a finite index set I = �1� � � � � n�. Let � be
a lattice on I, that is, a family of subsets of I which is closed under union
and intersection and contains � and I. Andersson and Perlman (abbreviated
henceforth as AP) (1993) introduced a class of normal N�0� 	� models for
which conditional independence was determined by a lattice � . These models
are called lattice conditional independence models, abbreviated “LCI models,”
and are denoted by N�� �. The set of covariance matrices of the N�0� 	�
distributions in N�� � form a (in general nonconvex) cone � �� �, contained
in the cone H+I �R� of all real positive-definite I× I-matrices, so that

N�� � = {
N�0� 	�	 	 ∈ � �� �}�

AP (1993) gives several characterizations and properties of the cone � �� � and
also an algorithm to obtain the maximum likelihood estimate of the covariance
matrix 	 ∈ � �� �.
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1.2. A detailed description. We now give a detailed description of the con-
tents of this paper. The AP cone ��� � which we study in Section 2 is defined
in terms of a complete orthogonal system � = �e1� � � � � en� of idempotents of
V and a lattice � of subsets of I = �1� � � � � n�. For its definition we need
the following notation. Let P be the quadratic representation of V, defined in
terms of the Jordan algebra product by P�x�y = 2x�xy� − x2y for x�y ∈ V.
For K ⊆ I = �1� � � � � n� and y ∈ V, let eK =

∑
i∈K ei, yK = P�eK�y and

VK = P�eK�V. If x ∈ � and K �= �, one knows that xK ∈ �K = P�eK��,
the cone of the Euclidean Jordan algebra VK, and hence xK is invertible in
VK. We denote by x−1

K the inverse of xK in VK (not to be confused with the
VK-component of x−1�. For easier formulation in the following, it is useful to
define a sum over an empty set as 0 (it will be clear from the context where
the 0 lies) so that e� = 0 and V� = �0�. Also, we put 0−1 = 0. Let tr be
the trace form of V. The AP cone ��� � is then defined as the set of x ∈ �
satisfying for all L�M ∈� and y ∈ V,

tr�x−1
L∪M yL∪M� + tr�x−1

L∩M yL∩M� = tr�x−1
L yL� + tr�x−1

M yM��
It is easily seen that this condition generalizes the cone � �� � of AP (1993).

As in that paper, we then give several other descriptions of ��� �; see The-
orem 1. First, since the trace form is nondegenerate, the trace condition is
equivalent to

x−1
L∪M + x−1

L∩M = x−1
L + x−1

M

for all L�M ∈ � . It is remarkable that ��� � can in fact be defined by
a single equation, involving the set � �� � of all join-irreducible sets in � .
Here, � �= K ∈ � is called join-irreducible if it is not a union of proper
nonempty subsets belonging to � . If we define �K� 	= ∪�K′ ∈ � � K′ ⊆ K,
K′ �=K� ∈� then K is join-irreducible if and only if K �= �K�. We show that
x ∈ ��� � if and only if

x−1 = ∑
K∈� �� �

(
x−1
K − x−1

�K�
)
�

The different characterizations of ��� � are used to introduce the Frobenius
coordinates of x ∈ ��� � and the so-called � -parametrization of ��� �; letting

x�K� = P
(
e�K� + e�K�

)
x−P(

e�K�
)
x−P�e�K��x�

the map

��� � � x �→ ∏
K∈� �� �

(
x−1
�K�x�K�� x�K� −P�x�K��x−1

�K�
)

is injective, and its image can be precisely described; see Section 2.7.
The reader who is not familiar with Jordan algebras can easily translate

the expressions above into standard matrix notation. If we use the notation

x = x1 + x12 + x0 and 	 =
(
	11 	12

	21 	22

)
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for the same matrix where x is the Jordan algebra notation and 	 is the
standard block-matrix notation in the space of Hermitian matrices on R, C or
H, the quaternions, we have

x1 =
(
	11 0

0 0

)
� x12 =

(
0 	12

	21 0

)
�

x0 =
(

0 0

0 	22

)
� P�x12�x−1

1 = 	21	
−1
11 	12

and

x0 −P�x12�x−1
1 = 	22 − 	21	

−1
11 	12 = 	22•1�

If 	 = �	ij�1≤i� j≤n and K ⊆ �1� � � � � n�, we have xK = �xij�i� j∈K. For easier
notation, say K = �1� � � � �m� and �K� = �1� � � � � k�, so that �K� = �k +
1� � � � �m�. Then xK = x�K� + x�K� + x�K� with

x�K� =
(
	�K� 0

0 0

)
�

x�K� =
(

0 	�K�
	�K� 0

)

and

x�K� =
(

0 0

0 	�K�

)
�

Such a matrix is positive definite if and only if 	11 and 	22•1 are positive
definite. Indeed, for any �m − k� × k matrix y the Frobenius transformation
τ�y� defined by

τ�y��	� =
(
I 0

y I

)(
	11 	12

	21 	22

)(
I yt

0 I

)

leaves the cone of positive-definite matrices invariant, and for y = −	21	
−1
11

we obtain

τ�−	21	
−1
11 �

(
	11 	12

	21 	22

)
=

(
	11 0

0 	22·1

)
�

The Frobenius transformation is what statisticians have traditionally called
the “sweep operator.” We observe that x = 	 can be completely recovered once
we know its Frobenius coordinates �	11� 	21	

−1
11 � 	22•1� in matrix notation, or(

x1� x
−1
1 x12� x2 −P�x21�x−1) = (

x�K�� x
−1
�K�x�K�� x�K� −P�x�K��x−1

�K�
)

in Jordan algebra notation. The � -parametrization of ��� � for Hermitian
matrices over R, C or H is

��� � � 	 �→ ∏
K∈� �� �

(
	�K�	

−1
�K�� 	�K� −P�	�K��	−1

�K�
)
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as given in AP (1993), for the real case. We denote

	�K�• = 	�K� −P
(
	�K�

)
	−1
�K� and P

(
	�K�

)
	−1
�K� = 	�K�	−1

�K�	�K��

For our main statistical result, Theorem 3, giving the closed-form expression
of 	̂ in ��� �, we do not need the full � -parametrization of ��� �. Indeed,
the proof of Theorem 2 giving the generalized � -parametrization is based on
Proposition 3, which, in a special case, can be reformulated as follows. For
L ∈ � , let �L = �K ∈ � �K ⊂ L�. Given a regular decomposition of L, that
is M�K in � such that L =M∪̇�K� and �K� �= �, then �K� ⊂M and we can
prove that for a given �	M�	�K�	−1

�K�� 	�K�•� there exists a unique 	L ∈ ���L�
such that

�	L�M = 	M�(1.1)

	L = τ
(
	�K�	

−1
�K�

)( 	M 0

0 	�K�•

)
�(1.2)

From (1.1) and (1.2), it is clear that the Frobenius transformation
τ�	�K�	−1

�K�� leaves �	L�M = 	M unchanged. We do not need the unique-
ness of 	 with a given � -parametrization. It is just the uniqueness of 	L
satisfying (1.1) and (1.2) and the fact that 	M is unchanged by τ�	�K�	−1

�K��
that allows us to show that, if S denotes the sample covariance matrix and 	̂L
is the maximum likelihood estimate (abbreviated mle) of 	 in the L-marginal
models, then

	̂−1
L − 	̂−1

M = Ŝ−1
K − Ŝ−1

�K��(1.3)

That is, the difference between the mle of the concentration matrices of the
L- and M-marginal models, with the given independences, is the same as the
differences between the mle of the concentration matrices in the saturated K-
and �K�-marginal models. The usage of some trace and determinant formulas
to be given below, and an induction argument yields Theorem 3.

1.3. Advantages. All the main results of Section 2 of this paper are proved
in AP (1988) and (1993), Section 2, for the special case of real symmetric
matrices, but the proofs there do not seem to be adjustable to the setting of
symmetric cones. We follow a different approach here which emphasizes Peirce
decompositions and Frobenius transformations, while the main techniques
of AP (1993) are transformation groups. We give more details in Theorem 1
and Section 2.3(d). Our proofs are new, even for the case of real symmetric
matrices. We use the framework of Euclidean Jordan algebras because this
provides us with an easy and, in our opinion, elegant notational scheme which
allows us to avoid lengthy and cumbersome matrix calculations. Throughout
the paper, we translate the most important results into matrix notation for
the convenience of the reader.
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1.4. Relation to other work. In an LCI model, the conditional indepen-
dences between the different variables are determined by a lattice � on
the index set I. These independences can also be represented by a transi-
tive acyclic digraph. Indeed, Andersson, Madigan, Perlman and Triggs (1997)
have proved that LCI models coincide with a subclass of the class of graphical
Markov models determined by acyclic digraphs (ADG), namely the subclass of
transitive ADG models. Our work is therefore on a special class of graphical
models and is related to a number of other papers on graphical models apart
from AP (1988, 1993), mentionned above. The main ones are Lauritzen (1989,
1996), Anderson, Højbjerre, Sørensen and Eriksen (1995), AP (1995a, b, 1997)
and Andersson and Madsen (1998). We give more details in Section 3.3.2. The
models considered in Lauritzen (1989, 1996) are ADG models, not necessarily
transitive ones. We show in Section 3.3.1 that the results in our paper also
hold for the more general class of ADG Markov models.

2. The AP cone. In this section we will develop the mathematical back-
ground for lattice conditional independence models on Euclidean Jordan al-
gebras.

2.1. Rings of sets. We begin by reviewing some combinatorics which will
be needed in the definition of the main object of this section.

Let I be a finite nonempty set. We denote by � �I� the set of all subsets of
I. A unital subring of � �I� is a set of subsets of I which is closed under union
and intersection and which contains � and I. A ring of sets is a unital subring
of some � �I�. In the following, � ⊆ � �I� will always be a ring of sets. In
particular, � is a finite distributive lattice with respect to the partial order ⊆.
One calls � �=K ∈� join-irreducible if K = L∪M, where L�M ∈� , implies
K = L or K = M. To describe the set � �� � of join-irreducible elements of
� , let us introduce, for K ∈� , K �= �, the subsets

�K� 	= ∪{K′ ∈� � K′ ⊆K� K′ �=K}
and �K� 	=K \ �K��

Hence, any K ∈ � , K �= � has a decomposition K = �K� � �K� where �
indicates a disjoint union, and

J ∈ � �� � ⇔ J �= �J� ⇔ �J� �= ��

For K ∈ � put �K = �L ∈ � � L ⊆ K�. We note that K = � is allowed,
in which case we have �� = ��� and put � ���� = �. Then [AP (1993),
Section 2.1] for any K�L ∈� ,

� ��K� = � �� � ∩�K�(2.1)

� ��K∪L� = � ��K� ∪� ��L�� � ��K∩L� = � ��K� ∩� ��L��(2.2)

��J�� J ∈ � ��K�� is a partition of K ∈� � K �= ��(2.3)

In particular, K = ���K′�� K′ ⊆K�. By AP (1993), Section 2.7, one can always
find a never-decreasing listing of the poset �� �� ��⊆�, that is, an enumeration
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� �� � = �K1� � � � �Kq� with the property i < j⇒Kj �⊆Ki. For such a listing
one has

K1 ∪K2 ∪ · · · ∪Kk = �K1� � �K2� � · · · � �Kk� �1 ≤ k ≤ q��(2.4)

A decomposition of � �= L ∈� of the form

L = �K� �M� K ∈ � �� �� M ∈�(2.5)

will be called a regular decomposition of L. Regular decompositions always
exist. Indeed, if � ��L� = �K1� � � � �Kl� is a never-decreasing listing then K =
Kl and M =K1 ∪ · · · ∪Kl−1 satisfy the conditions of (2.5).

Lemma 1. Let R be an Abelian group written additively, and let t	 � → R
be a function with t��� = 0. Then the following are equivalent:

t�L ∪M� + t�L ∩M� = t�L� + t�M� for all L�M ∈� �(2.6)

t�L� = ∑
K∈� ��L�

t�K� − t��K�� for all L ∈� �(2.7)

t�L� = t�K� − t��K�� + t�M� for any � �= L ∈� \� �� �(2.8)

and any regular decomposition of L as in (2.5),

t�L� = t�K� − t��K�� + t�M� for any � �= L ∈� \� �� �(2.9)

and some regular decomposition of L as in (2.5).

Proof [Inspired by the proof of AP (1993), Theorem 2.1]. The direction
(2.7)⇒ (2.6) follows immediately from (2.2) and (2.7) for L ∪M� L ∩M� L
and M. For the proof of (2.6)⇒ (2.7) we first observe that (2.7) always holds
for L = � due to the assumption t��� = 0 and our convention that the sum
over an empty set is 0. We can therefore assume L �= �. We use induction
on �� �� �� = n. If n = 1 we have � = ��� I� by (2.3), and so � �� � = �I�
with �I� = � and (2.7) holds. Hence assume n > 1 and let L ∈� , L �= �. For
easier notation, put δ�K� = t�K� − t��K��.

Case 1. L ∈ � �� �: then �L� is a proper subset of L, and hence � ��L� =
�L� � � ���L�� by (2.1). In particular, �� ���L��� < n and hence t��L�� =∑

K∈� ���L�� δ�K� by induction. But then (2.7) follows from t�L� = �t�L� −
t��L��� + t��L��.

Case 2. L /∈ � �� �: then L = K ∪M with K �= L �= M. In particu-
lar, �� ��K�� < n by (2.3), and so t�K� = ∑

N∈� ��K� δ�N�. Similarly, t�M� =∑
N∈� ��M� δ�N� and t�K ∩M� = ∑

N∈� ��K∩M� δ�N� so that (2.7) follows from
(2.6) and (2.2).

(2.6)⇒ (2.8): for any regular decomposition L = �K��M, where K ∈ � �� �
and M ∈� , we have K∩M = �K� and hence (2.8) follows from (2.6) applied
to L =K ∪M.
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The implication (2.8)⇒ (2.9) is trivial, so it suffices to show (2.9)⇒ (2.7)
which we will do by induction on �� �L��. As in the proof above, the case
�� �L�� ≤ 1 is clear. So we can assume �� �L�� ≥ 2. If L /∈ � �� �, let L =
�K��M be the given regular decomposition; if L ∈ � �� � we take the regular
decomposition L = �L� �M with M = �L�. In both cases � �� � = �K� �
� ��M�. Hence (2.7) holds for M by induction. But then (2.7) holds for L.
Indeed, in the first case this follows from (2.9), while in the second we observe
that the term t�L� appears on both sides of (2.7), and hence (2.7) becomes an
equation for t��L��. ✷

2.2. Euclidean Jordan algebras. The other fundamental concept needed
in the definition of the main object of this paper is the notion of a Euclidean
Jordan algebra. All results needed from the theory of Euclidean Jordan al-
gebras are contained in the recent monograph by Faraut and Koranyi (1994)
and will be used without further reference. The reader is also referred to Mas-
sam (1994) and Massam and Neher (1997) for a review of this theory with a
special emphasis on the connection to statistics. In this subsection we set up
our notation which will be used throughout the paper.

Always, V denotes an Euclidean Jordan algebra with quadratic representa-
tion P defined in terms of the algebra product of V by P�u�v = 2u�uv� −u2v.
For u� v�w ∈ V the linearization of P and the Jordan triple product �uvw�
are given by

P�u�w�v 	= �uvw� 	= 2u�vw� + 2w�uv� − 2�uw�v�
We denote by det the determinant function (also called reduced norm) of V.
For an endomorphism ϕ of V, ϕ∗ is the adjoint of ϕ with respect to the positive
definite trace form tr. We denote the symmetric cone of V by � = ��V�.

For an idempotent c, that is, an element c ∈ V satisfying c2 = c, we de-
note the Peirce spaces of c by V�c� i� = �v ∈ V� cv = iv�� i ∈ �0� 1

2 �1�. An
arbitrary y ∈ V can then be uniquely written in the form y = y1 + y12 + y0
where yi ∈ V�c� i� for i = 0�1 and y12 ∈ V�c� 1

2�. We will refer to this as the
Peirce decomposition of y. If y1 is invertible in V�c�1�, its inverse is denoted
y−1

1 . Observe that in general y−1
1 �= �y−1�1. The symmetric cone and the deter-

minant of the Euclidean Jordan algebra V�c�1� are denoted �c, respectively,
detc (we put �0 = �0� and det0 = 1).

We assume that we are given a complete orthogonal system � = �e1� � � � � en�
of primitive idempotents of V. For any L ⊆ I = �1� � � � � n�, we put

eL 	=
∑
i∈L

ei� VL 	= V�eL�1��

yL 	= P�eL�y = VL-component of y ∈ V�
�L 	= P�eL�� = �ei� i ∈ L�� �L 	= P�eL�� = ��VL��

detL 	= determinant of VL�

[The equality P�eL�� = ��VL� is, e.g., proved in Massam and Neher (1997),
Section 3.2.] The reader is reminded of our conventions: x−1

L is the inverse of
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xL in VL, e� = 0, V� = �0� = ��, 0−1 = 0. For L�M ⊆ I and y ∈ V we put

yL\M�M\L 	= P�eL\M� eM\L�y�
Note that eK is orthogonal to eJ if K∩J = �. Hence, the element yL\M�M\L is
the V12-component of y with respect to the orthogonal system �eL\M� eM\L� e−
eL∪M�.

Theorem 1. In the setting defined above, let � ⊆ � �I� be a unital subring
and let x ∈ �. Then the following conditions (i)–(vii) are equivalent:

(i) For all L�M ∈ � and y ∈ V	 tr�x−1
L∪M yL∪M� + tr�x−1

L∩M yL∩M� =
tr�x−1

L yL� + tr�x−1
M yM�.

(ii) For all L�M ∈� 	 x−1
L∪M + x−1

L∩M = x−1
L + x−1

M .
(iii) For all L�M ∈� 	 �x−1

L∪M�L\M�M\L = 0.

(iv) For all L ∈ � and y ∈ V	 tr�x−1
L yL� =

∑
K∈� ��L� tr�x−1

K yK� −
tr�x−1

�K� y�K��.
(v) For all L ∈� 	 x−1

L =
∑

K∈� ��L� �x−1
K − x−1

�K��.
(vi) For every � �= L ∈ � \ � �� � and every regular decomposition L =

�K� �M	 x−1
L = x−1

K − x−1
�K� + x−1

M .

(vi′) For every � �= L ∈ � \ � �� � and some regular decomposition L =
�K� �M	 x−1

L = x−1
K − x−1

�K� + x−1
M .

(vii) x−1 =∑
K∈� �� � �x−1

K − x−1
�K��.

In this case, we have for L�M ∈� :
(viii) detL∪M�xL∪M�detL∩M�xL∩M� = detL�xL�detM�xM�;

(ix) detL�xL� =
∏
K∈� ��L� detK�xK�det�K��x−1

�K���

The proof of this theorem will be given later in this section. It will require
new results in the theory of Euclidean Jordan algebras which will be estab-
lished in the following subsections and Propositions 1–3.

As we will explain in Section 2.3(d) below, for the case of real symmet-
ric matrices these conditions appear—sometimes explicitly, sometimes less
explicitly—in AP (1988, 1993). It should be noted that, like our results, the
results in AP (1988) are presented in a coordinate invariant fashion. However,
our proof of the equivalence of (i)–(vii) is different from the one given by AP
(1988). We have not been able to follow their proof in the setting of Euclidean
Jordan algebras.

2.3. The Andersson–Perlman cone ��� �: definition and elementary proper-
ties. The set of elements in � = ��V� satisfying the seven equivalent condi-
tions (i)–(vii) above will be denoted ��� �. In the special case where V is the
Euclidean Jordan algebra of real symmetric matrices, ��� � coincides with
the cone P�� � studied in AP (1988, 1993); see (d) below. We therefore call it
the AP cone. We use the notation ��� � since the AP cone is a generalization
of the cone � of V; see (c) below. For examples of the AP cone, the reader is
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referred to AP (1993), 2.8 or to the examples below. In the following we collect
some of its elementary properties.

(a) It is obvious that ��� � is a cone: x ∈ ��� �, s ∈ R, s > 0⇒ sx ∈ ��� �.
It is also clear, for example from Theorem 1(ii), that ��� � is closed in �.
It is, however, in general not a convex cone. For example, let I = �1�2�3�,
L = �1�2� and M = �1�3�, and consider the ring � generated by L and
M. We have � = ��� �1��L�M�I�, �1� = �L� = L ∩M = �M� ∈ � �� �,
�L� = �2� ∈ � �� � and �M� = �3� ∈ � �� �. Then

x ∈ ��� � ⇔ x−1 + x−1
L∩M = x−1

L + x−1
M ⇔ �x−1�23 = 0⇔ x23 =

{
x12 x

−1
11 x13

}
�

Any “diagonal” element a = a1 ⊕ a2 ⊕ a3 ∈ �1 ⊕�2 ⊕�3 lies in ��� �, but
for a nondiagonal x ∈ ��� �, a + x does not in general satisfy the defining
condition above.

(b) The conditions on ��� � involve the family of idempotents �eL� L ∈� �
which in turn depend on the orthogonal system � . However, if ˜� is another
complete orthogonal system of primitive idempotents, there exists an auto-
morphism ϕ of the Euclidean Jordan algebra V such that ϕ�� � = ˜� . One
then easily sees that the cone ��� �� � defined with respect to � and the cone
��� � ˜� � defined with respect to the orthogonal system ˜� are mapped onto
each other by ϕ. We have therefore left out � in the notation ��� �.

(c) For any � we have

�e1
⊕ · · · ⊕�en

⊆ ��� � ⊆ ��(2.10)

Indeed, any “diagonal” element x = x1 ⊕ · · · ⊕ xn ∈ �1 ⊕ · · · ⊕�n has x−1
L∪M =∑

i∈L∪M x−1
i ; in particular x−1 is diagonal too, and hence x fulfills condition (ii)

in Theorem 1. We point out that the lower bound �e1
× · · · × �en

in (2.10) is
attained. Namely, if � contains disjoint subsets L�M such that I = L∪̇M,
condition (iii) in Theorem 1 yields �x−1�LM = 0, that is, x−1 = �x−1�L⊕�x−1�M,
which implies x = xL⊕xM. Thus, ��� � ⊆ �L⊕�M. Hence, if � = � �I�, then,
by (2.10), ��� �� � = �e1

×· · ·×�en
. Also the upper bound in (2.10) is obtained

for a suitable � . Namely, observe that conditions (i)–(iii) in Theorem 1 are
trivially fulfilled for all pairs �L�M� with L ⊆M or M ⊆ L. Hence, they only
need to be checked for all L�M ∈ � with L �⊆M and M �⊆ L. In particular,
if the poset �� �⊆� is a chain, that is, L ⊆M or M ⊆ L for all L�M ∈� , we
have ��� � = �.

(d) For the Euclidean Jordan algebra V of real symmetric n×n matrices, the
set P�� � defined in AP (1993) coincides with our ��� � where � = �e1� � � � � en�
is the standard Jordan frame; that is, ei = Eii is the matrix which has 1 at the
position �ii� and 0’s elsewhere. To see this, note that by AP (1993), Lemma 2.1,
a positive-definite matrix 	 lies in P�� � if and only if for all L�M ∈ � and
x ∈ Rn we have

tr
(
	−1
L∪MxL∪M xtL∪M

)+ tr
(
	−1
L∩M xL∩M xtL∩M

)
= tr

(
	−1
L xL x

t
L

)+ tr�	−1
M xM xtM��

(2.11)
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Since xL x
t
L = �xxt�L for any L ⊆ I = �1� � � � � n�, (2.11) is equivalent to

tr
(
	−1
L∪M�xxt�L∪M

)+ tr
(
	−1
L∩M �xxt�L∩M

)
= tr

(
	−1
L �xxt�L

)+ tr
(
	−1
M �xxt�M

)
�

(2.12)

By standard linear algebra, every real symmetric n × n matrix is a linear
combination of matrices of the form xxt, x ∈ Rn (rank-1 matrices). Since
(2.12) is linear in xxt, a positive-definite matrix 	 lies in P�� � if and only if
for all L�M ∈� and every real symmetric n× n matrix A,

tr
(
	−1
L∪MAL∪M

)+ tr
(
	−1
L∩MAL∩M

) = tr
(
	−1
L AL

)+ tr
(
	−1
M AM

)
�

which is exactly our condition in Theorem 1(i).

2.4. Peirce formulas. The two main techniques to prove Theorem 1 are
Peirce identities and Frobenius coordinates. For convenient reference, we list
in this subsection the Peirce formulas which will be needed several times.

Throughout, indices indicate to which Peirce space of an idempotent c ∈ V
the elements belong; see Section 2.2. The following formulas hold:

y1�y12 y0� = �y1y12�y0�(2.13)

�y1 y12 y0� = 4y1�y12 y0��(2.14)

P��y1 y12 y0��x0 = P�y1�P�y12�P�y0�x0�(2.15)

4P�y1 y12�y0 = P�y1�P�y12�y0�(2.16)

P�y12�y0 = 2c�y12�y12y0���(2.17)

x1�y1 y12� + y1�x1y12� = �x1 y1�y12�(2.18)

4x−1
1 �x1 x12� = 4x1�x−1

1 x12�
= x12 for invertible x1 ∈ V�c�1��

(2.19)

det�x� = detc�x1�dete−c�x0 −P�x12�x−1
1 � for x ∈ ��(2.20)

Formula (2.13) follows from Faraut and Koranyi (1994), Proposition II.1.1(ii)
for x = y0, y = y1, z = c, and the Peirce multiplication rules [see Faraut and
Koranyi (1994), Proposition IV.1.1]. These are also used to derive (2.14) from
(2.13). Formula (2.15) is proven in Massam and Neher (1997), Section 3.9.
Specializing y0 = e − c in (2.14) shows 2y1y12 = �y1 y12�e − c�� and this
implies (2.16) in view of (2.15). Letting y1 = c in (2.16) then yields (2.17)
by using the Peirce multiplication rules. Formulas (2.18)–(2.20) are proved in
Massam and Neher (1997), Section 3.3.

2.5. Frobenius coordinates. Frobenius coordinates have been used before,
for example, in Faraut and Koranyi (1994), Chapter VI.3, and in Massam and
Neher (1997), Section 3.3, but not in the generality needed here. Frobenius co-
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ordinates rather than the � -parametrization, presented in Section 2.7 below,
will be fundamental for Section 3.

Let us first recall that for any g ∈ G��� = �g ∈ GL�V�� g� = �� and
x ∈ �, one knows [Faraut and Koranyi (1994), VIII.2.5 and VIII.2.8] that gx
is invertible with inverse

�gx�−1 = g∗−1x−1�(2.21)

For an idempotent c and z ∈ V�c� 1
2� the Frobenius transformation on V is

defined as τc�z� = exp�L�z� c�� ∈ G���. It is straightforward to check that
τc	 V�c� 1

2� → G��� is a homomorphism, thus

τc�z+ z′� = τc�z�τc�z′�� τc�−z� = τc�z�−1�(2.22)

If x = x1 + x12 + x0 is the Peirce decomposition of x ∈ V with respect to c
then, by Faraut and Koranyi (1994), VI.3.1, and (2.17) for the idempotent e−c
instead of c,

τc�z�x = x1 ⊕ 2zx1 + x12 ⊕ 2�e− c��z�zx1� + zx12� + x0

= x1 ⊕ 2zx1 + x12 ⊕P�z�x1 + 2�e− c��zx12� + x0�
(2.23)

For any x ∈ � there exists a unique z ∈ V�c� 1
2� such that τc�z�−1x ∈ V�c�1�⊕

V�c�0�, namely z = 2x−1
1 x12 and we have

x = τc�2x−1
1 x12��x1 ⊕ �x0 −P�x12�x−1

1 ���(2.24)

Note that x1 ∈ �c and

x0• 	= x0 −P�x12�x−1
1 ∈ �e−c�(2.25)

We call �2x−1
1 x12� x1� x0•� ∈ V�c� 1

2� × �c × �e−c the Frobenius coordinates of
x ∈ � with respect to c. We also will need the operation of the adjoint map
τ�z�∗. By Massam and Neher (1997), (2.6.5), and (2.17) here we have

τc�z�∗x = �x1 + 2c�zx12� +P�z�x0� ⊕ �x12 + 2zx0� ⊕ x0�(2.26)

Therefore, (2.21) implies for x as in (2.24):

x−1 = τc�−2x−1
1 x12�∗�x−1

1 ⊕ x−1
0• �

= �x−1
1 + 4P�x−1

1 x12�x−1
0• � ⊕ −4�x−1

1 x12�x−1
0• ⊕ x−1

0• �
(2.27)

Here x−1
0• denotes the inverse of x0• in V�c�0�. Taking the trace with an arbi-

trary y = y1 + y12 + y0 ∈ V yields

tr�x−1y� = tr��x−1
1 + 4P�x−1

1 x12�x−1
0• �y1�

− 4 tr���x−1
1 x12�x−1

0• �y12� + tr�x−1
0• y0��

(2.28)

and using the associativity of tr, this can be rewritten in the form

tr�x−1y� = tr�x−1
1 y1� + tr�x−1

0• �4P�x−1
1 x12�y1 − 4 �x−1

1 x12�y12 + y0���(2.29)



1062 H. MASSAM AND E. NEHER

Now let �c1� � � � � cn� ⊆ V be a complete orthogonal system of arbitrary idem-
potents. We denote by Vij, 1 ≤ i� j ≤ n, the Peirce spaces of the orthogonal
system �c1� � � � � cn� [Faraut and Koranyi (1994), IV.2] and define, for 1 ≤ i < n,
subspaces

V�i� 	=
n⊕

k=i+1

Vik = �V�ci + · · · + cn�1��(ci� 1
2

)
�

For x ∈ V we let x =∑
i≤j xij, xij ∈ Vij, be the Peirce decomposition of x ∈ V.

We abbreviate τi = τci and �i = �ci
= ��Vii�, 1 ≤ i ≤ n. For x ∈ � there

exists a unique z1 ∈ V�1� such that

τ1�z1�−1x = y1 ⊕w ∈ �1 ⊕�c2+···+cn�

where y1 = x11, and hence by (2.23),

x = τ1�z1��y1 ⊕w� = �τ1�z1�y1� +w�
We can repeat this process with the Euclidean Jordan algebra V�c1�0� =
V�c2 + · · · + cn�1�, the idempotent c2 ∈ V�c1�0� and w ∈ �c2+···+cn ⊆ V�c1�0�.
We obtain a unique z2 ∈ V�2� such that

τ2�z2�−1w = y2 ⊕ v ∈ �2 ⊕�c3+···+cn �

Again by (2.23), τ2�z2� fixes every element of V11 ⊕V�c3 + · · · + cn�. Hence,

x = τ1�z1�τ2�z2��y1 ⊕ y2 ⊕ v� = τ1�z1�y1 + τ2�z2�y2 + v�
Continuing in this manner, we obtain the first part of the following proposition.
The second part is an immediate application of (2.21) and (2.22).

Proposition 1. The map F	 V�1�×· · ·×V�n−1�×�1×· · ·×�n→ � given by

F�z1� � � � � zn−1� y1� � � � � yn�
	= τ1�z1� · · · τn−1�zn−1��y1 ⊕ · · · ⊕ yn�
= τ1�z1�y1 + τ2�z2�y2 + · · · + τn−1�zn−1�yn−1 + yn

(2.30)

is a bijection. For x = F�z1� � � � � zn−1� y1� � � � � yn� ∈ �, the inverse of x is
given by

x−1 = τ1�−z1�∗ · · · τn−1�−zn−1�∗�y−1
1 ⊕ · · · ⊕ y−1

n ��(2.31)

We will call F−1�x� = �z1� � � � � zn−1� y1� � � � � yn� or sometimes ��zjk�� y1� � � � �
yn� for zj =

∑
k>j zjk the Frobenius coordinates of x ∈ � with respect to the

orthogonal system �c1� � � � � cn�. We note that the proposition generalizes Faraut
and Koranyi (1994), VI.3.5.

2.6. An example for Frobenius coordinates. In Proposition 2 we will need
the precise formulas for the Frobenius coordinates in the case n = 3. Thus,
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let x =∑
i≤j xij ∈ � with Peirce components xij ∈ Vij. We put

y1 = x11� z12 = 2x−1
11 x12� z13 = 2x−1

11 x13�(2.32)

Then

x = τ1�z12 + z13��y1 + x22 + x23 + x33 −P�x12 + x13�y−1
1 �

= τ1�z12 + z13��y1 ⊕ �x22 −P�x12�y−1
1 �

⊕ �x23 − �x12 y
−1
1 x13�� ⊕ �x33 −P�x13�y−1

1 ���
Now we consider w = y2 ⊕w23 ⊕w3 ∈ V�c1�0� = V�c2 + c3�1� where

y2 = x22 −P�x12�x−1
11 � w23 = x23 − �x12 x

−1
11 x13��

w3 = x33 −P�x13�x−1
11 �

(2.33)

with

z23 = 2y−1
2 w23 = 2�x22 −P�x12�x−1

11 �−1�x23 − �x12 x
−1
11 x13���(2.34)

We then obtain w = τ2�z23��y2 ⊕ w3 − P�w23�y−1
2 �. Thus, the Frobenius

coordinates of x with respect to (c1� c2� c3� are �z12� z13� z23� y1� y2� y3� where
zjk and y1� y2 are defined above and

y3 = w3 −P�w23�y−1
2

= x33 −P�x13�x−1
11 −P�x23 − �x12 x

−1
11 x13���x22 −P�x12�x−1

11 �−1�
(2.35)

As an application, let us compute the �23�-component of x−1. We have, by
(2.31),

x−1 = τ�−z12�∗τ�−z13�∗τ�−z23�∗�y−1
1 ⊕ y−1

2 ⊕ y−1
3 �

and hence, by (2.26),

�x−1�23 = �τ�−z23�∗�y−1
1 ⊕ y−1

2 ⊕ y−1
3 ��23 = −2z23y

−1
3 �(2.36)

We also note that theV�c1+c2�1�-component of x, that isP�c1+c2�x, can be ex-
pressed in terms of the Frobenius coordinates of x with respect to (c1� c2� c3� as

P�c1 + c2�x = τ1�z12��y1 ⊕ y2��(2.37)

Indeed, working in the Euclidean Jordan algebra V�c1 + c2�1�, the Frobenius
coordinates of

P�c1 + c2�x = x11 ⊕ x12 ⊕ x22 ∈ ��V�c1 + c2�1��
with respect to c1 are(

2x−1
11 x12� x11� x22 −P�x12�x−1

11

) = �z12� y1� y2��
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Proposition 2. Let � = �c1� c2� c3� be a complete orthogonal system of
idempotents in V. Put M = �1�2�, cM = c1 + c2, VM = V�cM�1� and for
u ∈ V let uM = P�cM�u = u11 + u12 + u22 be the VM-component of u. For
K = �1�3� define cK�VK and uK analogously.

(a) Given arbitrary v13 ∈ V13, wM ∈ �M = ��VM� and w3 ∈ �3, there exists
a unique x ∈ � such that x has VM-component wM and Frobenius coordinates
z13 = v13, z23 = 0 and y3 = w3 with respect to � , namely x = τ1�v13��wM⊕w3�.

(b) Let x ∈ � with Frobenius coordinates �z12� z13� z23� y1� y2� y3� and Peirce
components xij with respect to � . Denote by x−1

11 the inverse of x11 ∈ V11 cal-

culated in V11 and, similarly, by x−1
M and x−1

K the inverses of xM ∈ V�cM�1�,
respectively, xK ∈ V�cK�1�. Then the following statements (i)–(vi) are equiva-
lent:

(i) tr�x−1u� + tr�x−1
11 u11� = tr�x−1

MuM� + tr�x−1
K uK� for all u ∈ V;

(ii) x−1 + x−1
11 = x−1

M + x−1
K ;

(iii) �x−1�23 = 0;

(iv) z23 = 0;

(v) x23 = �x12 x
−1
11 x13��= 0 if c1 = 0�;

(vi) x = τ1�z13��xM ⊕ y3��
In this case,

(vii) y3 = x33 −P�x13�x−1
11 ;

(viii) x = τ1�z12��xK ⊕ y2�;
(ix) det�x�det11�x11� = detM�xM�detK�xK�

where det11, detM and detK are the determinant functions of V11�VM and VK.

Proof. (a) We first prove for arbitrary vij ∈ Vij,

�v12 v11 v13� = 4v12�v13 v11� = 4v13�v12 v11��(2.38)

By the Peirce multiplication rules, we have V12V13 ⊆ V23 and V11V23 = 0.
Hence

�v12 v11 v13� = 2�v12�v13 v11� + v13�v12v11� − v11�v12 v13��
= 2�v12�v13 v11� + v13�v12v11���

We apply (2.18) for the idempotent c1+c2 and x1 = v11, y1 = v12, y12 = v13, and
obtain v11�v12v13�+v12�v11v13� = �v11 v12�v13. Since v11�v12v13� = 0 this shows
v12�v11v13� = �v11 v12�v13, and then (2.38) follows from the formula above.

We next prove the existence part of (a). Given arbitrary v13 ∈ V13, wM =
w1 ⊕w12 ⊕w2 ∈ �M = ��VM� and w3 ∈ �3, we define x = τ1�v13��wM ⊕w3�.
Then x ∈ � since wM⊕w3 ∈ �M⊕�3 ⊆ � and τ1�v13� ∈ G��� leaves the cone
� invariant. By the Peirce multiplication rules, �e−c1�v23 = c2v23+c3v23 = v23
for arbitrary v23 ∈ V23. Hence, using (2.23),

x = τ1�v13��w1 ⊕w12 ⊕ �w2 ⊕w3��
= w1 ⊕w12 ⊕ 2w1v13 ⊕w2 ⊕ 2v13 w12 ⊕ �P�v13�w1 +w3��
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In particular, xM = w and x13 = 2w1v13. If �zij� yk� are the Frobenius
coordinates of x we obtain, by (2.19),

z13 = 2w−1
1 x13 = 4w−1

1 �w1 v13� = v13�

Using (2.38), this implies

�x12 x
−1
11 x13� = 4w12�w−1

1 x13� = 8w12�w−1
1 �w1v13�� = 2w12 v13 = x23�

Thus z23 = 0 by (2.34) and then, by (2.35),

y3 = x33 −P�x13�x−1
11 = w3 +P�v13�w1 −P�2w1v13�w−1

1 �

Since P�c3��V33 = Id and P�w1�w−1
1 = w1 it follows, using (2.14) and (2.15),

P�2w1v13�w−1
1 = P��w1 v13 c3��w−1

1 = P�c3�P�v13�P�w1�w−1
1 = P�v13�w1�

which proves y3 = w3.
It remains to show the uniqueness part of (a). Since the Frobenius coordi-

nate z23 = 0 we have, using (2.22), (2.37) and τ1�z12�w3 = w3,

x = τ1�z12 + z13��y1 ⊕ y2 ⊕ y3� = τ1�v13�τ1�z12��y1 ⊕ y2 ⊕w3�
= τ1�v13��xM ⊕w3��

(b)(iv)⇔ (v) follows from (2.34) and (2.19), and (iv)⇔ (vi) follows from (a).
The equivalence of (i)–(vi) will therefore hold if we can show (i)⇔ (ii)⇒ (iii)⇒
(iv)⇒ (ii).

(i)⇔ (ii): since tr�Vij� = 0 for i �= j, the Peirce decomposition is an orthog-
onal decomposition of V with respect to the positive definite form given by
tr�uv�. Thus, in (i) we may replace u11� uM and uK by u, and (i)⇔ (ii) follows
from the positive-definiteness of tr.

(ii)⇒ (iii) is immediate since x−1
11 ∈ V11, x−1

M ∈ V11 ⊕V12 ⊕V22 and x−1
K ∈

V11 ⊕V13 ⊕V33.
(iii)⇒ (iv): by (2.34) we have 0 = z23y

−1
3 whence z23 = 0 by (2.19).

(iv)⇒ (ii): we know x = τ1�z12+z13��y1⊕y2⊕y3�, and hence, by (2.27) and
the Peirce multiplication rules,

x−1 = y−1
1 +P�z12+ z13��y−1

2 +y−1
3 � ⊕ −2�z12+ z13��y−1

2 +y−1
3 � ⊕ �y−1

2 +y−1
3 �

= �x−1
11 +P�z12�y−1

2 +P�z13�y−1
3 � ⊕ −2z12y

−1
2 ⊕−2z13y

−1
3 ⊕ y−1

2 ⊕ y−1
3 �

By (2.37), xM = τ1�z12��y1 ⊕ y2�, which implies

x−1
M = �x−1

11 +P�z12�y−1
2 � ⊕ −2z12y

−1
2 ⊕ y−1

2 �

Since z23 = 0, (2.35) implies (vii):

y3 = x33 −P�x13�x−1
11 �
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Using (2.24), we now find xK = x11⊕x13⊕x33 = τ1�z13��y1⊕y3�. By symmetry
we therefore have

x−1
K = �x−1

11 +P�z13�y−1
3 � ⊕ −2z13y

−1
3 ⊕ y−1

3 �

A comparison of the formulas for x−1, x−1
M and x−1

K then shows (ii).
We have now shown the equivalence of (i)–(vi). Since (i)–(v) are symmet-

ric in 2 and 3, so must be (vi), and hence we have (viii). Finally, (ix) is a
consequence of

det�τc�z�y� = det�y��

which, by Massam and Neher (1996), 3.1, holds for any y ∈ V and z ∈ V�c� 1
2�,

and the formulas above:

det�x� = det11�x11�det22�y2�det33�y3��
det�xM� = det11�x11�det22�y2�� det�xK� = det11�x11�det33�y3�� ✷

Proof of Theorem 1 (First part). For further development, it will be use-
ful to prove that conditions (i)–(vi) in Theorem 1 are equivalent and that they
imply the conditions (vii)–(ix). After the preparation in the previous subsec-
tions this can now be done as follows.

We have (i)⇔ (ii)⇔ (iii)⇒ (viii) by Proposition 2 applied to xL∪M and
(i)⇔ (iv) by Lemma 1 for R = �R�+� and t�L� = tr�x−1

L yL�. In (iv) we
may replace yL, yK and y�K� by y and then the nondegeneracy of tr shows
(iv)⇒ (v). The reverse implication is obvious. The same argument also shows
(i)⇔ (vi)⇔ (vi′). Since I ∈ � , we have (v)⇒ (vii). Finally, (viii)⇔ (ix) by
Lemma 1 for the Abelian group R = �R \ �0�� ·�, now written multiplicatively,
and t�L� = detL�xL�.

Thus, all that remains to be shown for the proof of Theorem 1 is that con-
dition (vii) implies (v). This will be done in the second part of the proof, using
the following result in which ��� � is defined by the first six (equivalent)
conditions of Theorem 1. ✷

Proposition 3. As in Sections 2.1 and 2.2, let I = �K� �M be a regular
decomposition with K ∈ � �� � and M ∈ � . Define c1 = e�K�, c2 = eM\K,
c3 = e�K�, and denote by Vij the Peirce spaces with respect to the orthogonal
system � = �c1 � c2 � c3�. Also, we let ���M� ⊆ VM be the AP cone constructed
with respect to �M and the orthogonal system �M.

(a) Let v13 ∈ V13, w3 ∈ ��V33� = �c3
and wM ∈ ���M�. Then there exists

a unique x ∈ ��� � with xM = wM and Frobenius coordinates �z12� z13 =
v13� z23 = 0� y1� y2� y3 = w3� with respect to � , namely x = τc1

�v13��wM⊕w3�.
The coordinates z12� y1� y2 are uniquely determined by xM = wM and we have

z13 = 2x−1
�K� x�K���K�� w3 = x�K� −P�x�K��x−1

�K��(2.39)
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(b) An x ∈ � lies in ��� � if and only if xM ∈ ���M� and x−1 = �x−1
K −

x−1
�K�� + x−1

M .

Proof. (a) We observe that eK = c1+c3 and eM = c1+c2. By Proposition 2,
x = τc1

�v13��wM⊕w3� is the unique element of � satisfying xM = wM and the
requirements on the Frobenius coordinates. Since x�K� = x11, x�K���K� = x13

and x�K� − P�x�K��x−1
�K� = x33 − P�x13�x−1

11 , (2.39) holds in view of (2.32) and
Proposition 2(vii). Thus, it remains to show that the extra condition wM ∈
���M� implies x ∈ ��� �. We will verify condition (v) of Theorem 1.

So let L ∈ � . If L ⊆ M, then (v) holds because xL = �xM�L = �wM�L
and wM ∈ ���M�. Thus, we can assume L �⊆M. We claim that then K ⊆ L.
Indeed, otherwise L ∩K �= K and then L ∩K ⊆ �K� ⊆ M which gives the
contradiction L = �L∩M�∪�L∩K� ⊆M. We now know L = �K���L\K���K�
with L \K ⊆M \K. Define

c2′ = eL\K� c2′′ = eM\L�
Then c2 = c2′ + c2′′ and � ′ = �c1� c2′� c2′′� c3� is a complete orthogonal system
of V whose Peirce spaces we will denote by Uij, i� j ∈ �1�2′�2′′�3�. Observe
that Vij = Uij for i� j ∈ �1�3� while

V12 = U12′ ⊕U12′′� V23 = U2′3 ⊕U2′′3� V22 = U2′2′ ⊕U2′2′′ ⊕U2′′2′′ �

Let x = ∑
xij be the Peirce decomposition of x with respect to � and let

x = ∑
uij be the Peirce decomposition of x with respect to � ′; thus xij ∈ Vij

and uij ∈ Uij. By the above xij = uij for i� j ∈ �1�3� and x12 = u12′ + u12′′ ,
x23 = u2′3 + u2′′3. Hence, by Proposition 2(v),

x23 = �x12 x
−1
11 x13� = �u12′ u

−1
11 u13� + �u12′′ u

−1
11 u13��

A comparison of Peirce components then shows u2′3 = �u12′ u
−1
11 u13�. We can

therefore apply Proposition 2(b) to xL = u11 + u12′ + u13 + u2′2′ + u2′3 + u33 ∈
�L ⊆ VL and the complete orthogonal system �c1� c2′� c3� of VL. We obtain

x−1
L + x−1

�K� = x−1
L∩M + x−1

K �(2.40)

Since L ∩M ∈ �M and xN = �wM�N for all N ⊆ M, we know from Theo-
rem 1(v) for wM that

x−1
L∩M =

∑
N∈� ��L∩M�

�x−1
N − x−1

�N���(2.41)

But � ��L� = �K��� ��L∩M� by (2.3) so that (2.40) and (2.41) imply condition
(v) in Theorem 1.

(b) If x ∈ ��� � then xM ∈ ���M�, since for any N ⊆M we have �xM�N =
xN. Moreover, since M ∩K = �K�, we also know x−1 = �x−1

K − x−1
�K�� + x−1

M

by Theorem 1(ii). Conversely, if these two conditions are fulfilled then, by
Proposition 2(b), x is of the form x = τ1�z13��xM ⊕ y3� where (zij� yk� are the
Frobenius coordinates of x and z23 = 0. However, then x ∈ ��� � by (a). ✷
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Conclusion of the proof of Theorem 1. From the first part of the proof,
it remains to show that if x ∈ � satisfies condition (vii),

x−1 = ∑
K∈� �� �

(
x−1
K − x−1

�K�
)
�

then x ∈ ��� �. We use induction on q = �� �� ��. If q = 1 then � = ��� I�
by (2.3), and hence ��� � = � by Section 2.3(c). So we can assume q ≥ 2.
Let I = �K� �M be a regular deomposition. We have �� ��M�� = q − 1. In
particular, we are in the situation of Proposition 3. Let � = �c1� c2� c3� be as
in Proposition 3, and denote by Vij and vij the Peirce spaces, respectively, the
Peirce components with respect to � . By assumption,

x−1 = x−1
K − x−1

�K� +
∑

K′∈� ��M�
�x−1

K′ − x−1
�K′���(2.42)

As −x−1
�K� +

∑
K′∈� ��M��x−1

K′ − x−1
�K′�� ∈ VM = V11 ⊕V12 ⊕V22 and x−1

K ∈ VK =
V11 ⊕V13 ⊕V33, we have �x−1�23 = 0. Hence, by Proposition 2, x−1 = x−1

K −
x−1
�K� + x−1

M and by comparison with (2.42),

x−1
M =

∑
K′∈� ��M�

(
x−1
K′ − x−1

�K′�
)
�

However, then xM ∈ ���M� by induction, and hence x ∈ ��� � by Proposi-
tion 2(b). ✷

2.7. � -parametrization. For the case where V is the Euclidean Jordan
algebra of real symmetric matrices, AP (1993), Theorem 2.2, proved a coordi-
natization theorem for ��� �. In this section we will generalize their result
to the setting of arbitray Euclidean Jordan algebras. Our proof uses a differ-
ent method. Transformation groups of ��� �, the method used by AP, will be
studied in Neher (1997). To state our result, the following notation will be
needed.

As in Section 2.2, we assume that we have a unital subring � ⊆
� ��1� � � � � n�� and a complete orthogonal system � = �e1� � � � � en� ⊆ V of
primitive idempotents. We put

V�K� 	= V
(
e�K��

1
2

) ∩V(
e�K��

1
2

)
� y�K� 	= y�K�� �K� = P

(
e�K�� e�K�

)
y ∈ V�K��

so that yK = y�K� + y�K� + y�K� for any y ∈ V. For x ∈ � we have xK ∈ �K

and, using a notation from AP (1993) [see also (2.25)],

x�K�• 	= x�K� −P�x�K��x−1
�K� ∈ ��K��

We also fix a never-decreasing listing of � �� � = �K1� � � � �Kq� (cf. Section 2.1)
and define for 1 ≤ i ≤ q,

e�i� = e�Ki� =
∑

j∈�Ki�
ej� ��i� = ��Ki��

v�i� = P�e�i��v = V�Ki�-component of v ∈ V�
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e�i� = e�Ki� =
∑

j∈�Ki�
ej�

τ�i� = Frobenius transformation of the idempotent e�i��

v�i� = v�Ki� = P�e�i�� e�i��v = V�Ki�-component of v ∈ V�

Theorem 2. The map

��� � → ∏
K∈� �� �

�V�K� ×��K��	 x �→
∏

K∈� �� �

(
x−1
�K�x�K�� x�K�•

)
is a bijection. Its inverse is given by

F� 	
q∏

j=1

�v�j��w�j�� �→ τ�q��v�q�� · · · τ�2��v�2���w�1� ⊕ · · · ⊕w�q���

Following AP (1993), we call F−1
� �x� =

∏
K∈� �� � �x−1

�K�x�K�� x�K�•� the � -
parameters of x ∈ ��� �.

Proof. We define

Mi =K1 ∪ · · · ∪Ki ∈� �

�i = �Mi
� �i =�Mi

and

�i = �Mi
= �ej�j ∈Mi��

By (2.4), Mi =Mi−1 � �Ki�. Hence we can apply Proposition 3 to I = Mq,
Mq−1� � � � �M1 =K1; for any x ∈ ��� � there exist unique

v�q� ∈ V�Kq�� xq−1 = xMq−1
∈ �q−1��q−1�

and

w�q� ∈ ��q�
such that x = τ�q��v�q���xq−1 ⊕w�q��. Then xq−1 can be uniquely written in the
form

xq−1 = τ�q−1��v�q−1���xq−2 ⊕w�q−1��
with xq−2 = xMq−2

∈ �q−2��q−2� and w�q−1� ∈ ��q−1�. Since V�q� ⊆ V�e�q−1��0�
it follows from (2.23) that τ�q−1��v�q−1�� leaves every element of V�q� invariant.
Hence

x = τ�q��v�q��τ�q−1��v�q−1��
(
xq−2 ⊕w�q−1� ⊕w�q�

)
�

Continuing in this manner, we see that F� is a bijection. (In the last step,
observe that K1 = �K1�, �K1� = �, �K1

= ���K1� and hence �1��1� = ��1�
by Section 2.3(c). That F−1

� is given as stated in the theorem follows by a
repeated application of (2.39). ✷

3. The estimate of the covariance matrix. In this section, we define
lattice conditional independence models N�� � (abbreviated LCI models) with
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covariance matrices in the symmetric cone of a Euclidean Jordan algebra V. In
fact, the cone of covariance matrices for such models, as we will see, is ��� �.
We then give a closed form formula of the maximum likelihood estimate 	̂ of
the covariance matrix 	 in ��� � for such models.

3.1. Models with covariance matrix in ��� �. AP (1993) defined LCI mod-
els, which are N�0� 	� models with conditional independences defined by a
lattice � . They proved that a real-valued random variable x ∼ N�0� 	� sat-
isfies these conditional independences if and only if the covariance matrix
belongs to the subcone � �� � of the cone H+I �R� of I × I positive definite
real symmetric matrices. Since H+I �R� is the symmetric cone of the particular
Euclidean Jordan algebra of real symmetric matrices, it is natural to extend
the LCI model with covariance in H+I �R� to an LCI model with covariance in
� as defined in Section 2. In Section 2, we also saw that ��� � is the nat-
ural generalization of � �� � when working with Euclidean Jordan algebras.
We will therefore define below a new class of LCI models that are normal
N�0� 	� models with 	 parametrized by ��� �. We will assume V is a sim-
ple Euclidean Jordan algebra. If V is not simple, it decomposes as a direct
product of simple algebras, and the cone ��� � decomposes correspondingly.
It is easily seen that a model for a general V with a symmetric representation
decomposes according to the same product. Let r be the rank of V. From now
on, we assume I = �1� � � � � r� and as usual � denotes a lattice on I.

To define an LCI model with covariance in�, we first need the definition of a
normal model with covariance in �. This definition was given in Jensen (1988)
and we refer the reader to this paper for details, but we recall the definition
here for convenience. Let F denote a Euclidean space and Ls�F� be the space
of symmetric endomorphisms of F. Following Faraut and Koranyi (1994), we
say that φ is a symmetric representation of the Euclidean Jordan algebra V if
φ is a linear map from V to Ls�F� such that φ�xy� = 1

2 �φ�x�φ�y�+φ�y�φ�x��
and φ�e� is the identity of Ls�F�.

Definition 1. Let φ be a symmetric representation of V on F = R
n for

an appropriate n. Then a random variable z in F is said to have the central
Gaussian distribution with covariance φ�x� for some x ∈ � if its density with
respect to the Lebesgue measure is

�2π�−n/2�detφ�x��−1/2 exp
(− 1

2�φ�x�−1z� z�)(3.1)

where �·� ·� denotes the inner product in F and where x belongs to the set
�x ∈ � � φ�x� is positive definite�. We write z ∼N�0� φ�x��.

There are only four types of simple Euclidean Jordan algebras that admit
a symmetric representation, namely, the space Hr�D� of symmetric matrices
over D = R�C or H, the quaternions and the Lorentz algebra defined in terms
of an inner product B�·� ·� on a finite-dimensional real vector space W by
V = R×W and algebra product

�λ1�w1� ◦ �λ2�w2� = �λ1λ2 +B�w1�w2�� λ1w2 + λ2w1��
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Since the covariance matrix of a normal variable with values in F can be
viewed as a symmetric endomorphism of F, the covariance matrix of a normal
random variable has to be of the form φ�x� where x belongs to one of the four
simple Euclidean Jordan algebras given above. The standard representations
for Hr�D� are the following:

1. For V =Hr�R�, F = R
r, φ is the identity.

2. For V = Hr�C�, F = R
2r, if x = �ast + ibst�s� t=1�����r ∈ Hr�C�, φ�x� is the

2r× 2r matrix with �s� t� block(
ast bst

−bst ast

)
�

3. For V = Hr�H�, F = R
4r, if x = �ast + ibst + jcst + kdst�s� t=1�����r ∈ Hr�H�,

φ�x� is the 4r× 4r matrix with �s� t� block


ast bst cst dst

−bst ast dst −cst
−cst −dst ast bst

−dst cst −bst ast


�(3.2)

4. For V = R ×W, the representations are much more intricate [see Jensen
(1988), Theorem 6]. We do not give them here since, as we will see below,
this case will not be of interest to us.

Let us now define an LCI model with covariance 	 = φ�x� where x ∈ �. We
fix a complete orthogonal system � = �e1� � � � � er� of primitive idempotents of
V. The cone ��� � has been defined in Section 2.3.

Definition 2. Consider the set of N�0� 	� distributions with 	 = φ�x� for
some x in ��� �. We define the model N�� � as the set

N�� � = �N�0� φ�x�� �x ∈ ��� ���(3.3)

At this point, we need to make two important remarks. First, it is clear that
the model is indeed a generalization of the LCI model defined in AP (1993).
Indeed from Section 2.3(d), we know that for V = Hr�R�, ��� � = � �� �
if �e1� � � � � er� is the system of idempotents that are diagonal and therefore
N�� � is as defined by AP (1993). In the case where z ∼ N�0� 	�, 	 = φ�x�
with x ∈ ��� � and V = Hr�C�, Hr�H� or the Lorentz algebra, we only need
to show that for all L�M ∈ � , zL and zM are conditionally independent
given zL∩M. This is also immediate if we take a representation φ which maps
diagonal idempotents to diagonal idempotents such as the representations
given above, for V =Hr�D�. Indeed, by Theorem 1(ii), x ∈ ��� � if and only if
x−1
L∩M+x−1

L∪M = x−1
L +x−1

M , which is equivalent then, to 	−1
L∩M+	−1

L∪M = 	−1
L +	−1

M .
It follows immediately that zL ⊥⊥ zM�zL∩M since we are then brought back to
the real case.
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Our second remark concerns the model N�� � with V = R×W, the Lorentz
algebra. The rank of V = R ×W, the Lorentz algebra, is r = 2, and the only
possible lattices in I = �1�2� are �0 = ��� �1�2��, �1 = ��� �1�� �1�2�� and
�2 = ��� �1�� �2�� �1�2��. Since �0 and �1 are chains, conditions in Theo-
rem 1(ii) do not give any independence for N�� �. In �2, the only interesting
relation is x−1

�1�2� = x−1
�1� + x−1

�2� since �1� and �2� are disjoint. This means of
course that z�1� and z�2� are independent. We see that the N�� � models for
r = 2 present no new statistical interest. The only models that we are going
to consider from now on are those N�� � models with V =Hr�D�, r ≥ 3, with
representation in F = R

rd as given above, and where d = 1�2�4 is the Peirce
constant of Hr�D�, D = R�C and H, respectively.

3.2. The estimate of the concentration matrix. In this section, we give our
main statistical result: the maximum likelihood estimate of the covariance ma-
trix in an N�� � model. Let �z̃1� � � � � z̃n� be a sample from a normal N�0� 	�
distribution on F, with 	 = φ�x/d�, x ∈ �. This sample corresponds to a sam-
ple �z1� � � � � zn� from the real, complex or quaternionic Gaussian distribution
with covariance x in Hr�D�, respectively. Let z be the matrix with columns
�z1� � � � � zn�, let z∗ be its conjugate transpose and let y = zz∗ be the unnormed
sample covariance matrix. For the saturated model, that is, when ��� � = �,
it is well known [see Goodman (1963) and Andersson (1975)] that the mle
of x is

s = y

n
�(3.4)

Then S = φ�s/d� is the maximum likelihood estimate of 	 corresponding to
the sample �z̃1� � � � � z̃n� from the N�0� 	� distribution on F.

Our aim in this section is to give an explicit closed form expression of the
mle of x, when we have a sample �z1� � � � � zn� from the N�0� x� distribution
on D and x ∈ ��� �. Equivalently, we can say that we obtain the expression
of the mle 	̂ of 	, given a sample �z̃1� � � � � z̃n� from the N�0� 	� distribution,
	 = φ�x/d�, x ∈ ��� �.

In parallel to the two characterizations of ��� �, given in Theorem 1(ii) and
(vi), we give the mle of the concentration matrix δ = x−1 or 6 = 	−1 in two
forms. Theorem 3 gives 6̂ in closed form while Theorem 4 gives a recursive
relation linking 6̂ with the mle of concentration matrices in smaller models.
We consider a sample �z̃1� � � � � z̃n� from a N�0� 	� distribution on F = R

dr,
d = 1�2 or 4, with 	 = φ�x/d�, x ∈ � �� � or equivalently, �z1� � � � � zn� from
a N�0� x� distribution on D, x ∈ ��� �, and we let s be defined as in (3.4)
with S = φ�s/d� the representation of s/d on F. We denote δ = x−1 the
concentration matrix. We have the following results.

Theorem 3. Let �z1� � � � � zn� be a sample as given above. Then the mle x̂
of x is unique and exists for a.e. �z1� � � � � zn� if and only if n ≥ max��K�	 K ∈
J�� ��. When it exists, we have for all L ∈� ,

δ̂L = 	
(
s−1
K − s−1

�K��K ∈ J��L�
)

(3.5)
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and

detL x̂L =
∏(

detK sK
det�K�s�K�

�K ∈ J��L�
)

=∏(
det�K� s�K�•�K ∈ J��L�

)
�

(3.6)

In particular, for L = I, we have

δ̂ = 	�s−1
K − s−1

�K��K ∈ J�K�� and

det x̂ =∏(
det�K� s�K�•�K ∈ J�� �

)
�

(3.7)

Equivalently,

�3�5�′ 6̂L = 	
(
S−1
K −S−1

�K��K ∈ J�KL�
)
�

�3�6�′
detL 	̂L =

∏(
detK SK

det�K�S�K�
�K ∈ J��L�

)

=∏�det�K�S�K�•�K ∈ J��L���

�3�7�′ 6̂ = 	(S−1
K −S−1

�K��K ∈ J�� �
)

and

det 	̂ =∏(
det�K�S�K�•�K ∈ J�� �

)
�(3.8)

Theorem 4. Let �z1� � � � � zn� be a sample as given above. When it exists,

the mle δ̂ of δ is such that for all L �∈ J�� �, L �= � and for K1� � � � �Kl a
never-decreasing listing of the elements of J��L�,

δ̂L = δ̂Kl
+ ̂δ⋃l−1

i=1 Ki
− δ̂�Kl�(3.9)

or equivalently

6̂L = 6̂Kl
+ ̂6⋃l−1

i=1 Ki
− 6̂�Kl��(3.10)

The proof of these two theorems is given in the following section.
We first illustrate Theorem 4, and consequently also Theorem 1(vi), with

an example. We use the lattice given in Figure 1, where the empty dots mark
elements of J�� �, and the full dots mark elements of � which are not in
J�� �.

Here J�� �c = �L ∪M�L′� I�. Equation (3.9) becomes

δ̂L∪M = δ̂L + δ̂M − δ̂L∩M�
δ̂L′ = δ̂L′′ + δ̂L∪M − δ̂L
δ̂ = δ̂M′ + δ̂L′ − δ̂L∪M�
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Fig. 1.

Using the first equality, we can rewrite the second and third one as

δ̂L′ = δ̂L′′ + δ̂M − δ̂L∩M = δ̂M′ + δ̂L′′ − δ̂L�

which shows that each one of the δ̂ can be expressed in terms of δ̂K for K ∈
J�� �.

Proof. The proof of Theorem 3 is in three steps. The first step is to choose
a regular decomposition for L, that is, L�M ∈ � and K ∈ � �� � such that
L = M∪̇�K� and to write the likelihood function for xL in function of the
Frobenius coordinates of xL given by the complete orthogonal system �c1 =
c�K�� c2 = cM\�K�� c3 = c�K��. This uses the trace formula and the Frobenius
parametrization and leads to the existence a.e. and uniqueness of the mle of
the Frobenius coordinates given below in (3.11). The second step shows that
for δ = x−1 the difference δ̂L − δ̂M is equal to the difference s−1

K − s−1
�K� of

the sample covariance submatrix sK. It is this step that allows us to give a
closed-form formula for δ̂ rather than an algorithm. The third step is a simple
induction on the previous step, that allows us to find our main result (3.5) and
(3.6).

First step: the maximum likelihood estimate of the Frobenius coordinates.
Consider the triplet L�M�K in � such that K ∈ � �� � and L = M∪̇�K�.
By (2.3), K ⊆ L and therefore �K� ⊆ M. Now consider the complete orthog-
onal system �c1 = c�K�� c2 = cM\�K�� c3 = c�K��. Since z�K� ⊥⊥ zM\�K��z�K�, by
Proposition 2(b)(vi),

xL = τ�K�
(
2x−1
�K�x�K�

)�xM + x�K�•��(3.11)

which implies immediately, since the determinant of a Frobenius transforma-
tion is 1, that

detL xL = detM xM det�K� x�K�•�(3.12)

The independence condition (3.11), combined with the trace formula (2.29)
gives the following:

tr x−1
L sL = tr x−1

M sM + tr x−1
�K�•

(
4P�x−1

�K�x�K��s�K�
− 4�x−1

�K�x�K��s�K� + s�K�
)
�

(3.13)
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In matrix notation, (3.11), (3.12) and (3.13), for x = 	 and s = S, read as

	L =




I�K� 0�K��M\�K� 0�K�
0M\�K�� �K� IM\�K� 0M\�K�� �K�
	�K�	

−1
�K� 0�K��M\�K� I�K�




 xM

0
0

0�K� 0�K��M\�K� s�K�•




×




I�K� 0�K��M\�K� 	−1
�K�	�K�

0M\�K�� �K� IM\�K� 0M\�K���K�
0�K� 0�K��M\�K� I�K�


�

detL 	L = detM 	M det�K� 	�K�•

and

tr	−1
L SL = tr	−1

MSM + tr	−1
�K�•

(
S�K� − 2	�K�	

−1
�K�S�K�

+ 	�K�	−1
�K�S�K�	

−1
�K�	�K�

)
�

respectively. The reader will note that xM, in the second matrix of the expres-
sion of 	L above belongs to V�c1 + c2�1�.

From (3.12) and (3.13), we obtain the following factorization of the likelihood
function L�xL�:

L�xL� = C �detM xM�−1/2 exp
[− 1

2 tr x−1
M sM

(
det�K� x�K�•

)−1/2]
× exp

[− 1
2 tr x−1

�K�•
(
4P

(
x−1
�K�x�K�

)
s�K� − 4

(
x−1
�K�x�K�

)
s�K� + s�K�

)]
= L1�xM�L2

(
x−1
�K�x�K�� x�K�•

)
�

(3.14)

where C is a constant of proportionality. [This factorization is the paral-
lel, for Frobenius coordinates, of Theorem 3.1 in AP (1993)]. Assuming that
x̂M is known, we need only find the estimates of �x−1

�K�x�K�� x�K�•�. Differ-
entiating log L2 with respect to its two arguments leads to the classical̂x−1
�K�x�K� = s−1

�K�s�K� and x̂�K�• = s�K� −P�s�K��s−1
�K� = s�K�•. By Proposition 3(a),

there exists a unique x̂L ∈ ���L� with �x̂L�M = x̂M and Frobenius coordinates
�x̂M� s−1

�K�s�K��0� s�K�•� and therefore, when it exists, the mle of xL is equal to

x̂L = τ�K��2s−1
�K�s�K���x̂M + s�K�•��(3.15)

Assuming x̂M exists, clearly x̂L exists if and only if �s�K�� s−1
�K�s�K�� s�K�•�, the

Frobenius coordinates of the mle of 	K in a saturated K-marginal model,
exist. It is well known that this estimate exists, for almost all z, if and only
if n ≥ �K�. By the induction assumption given below in the third step, it
follows immediately that the mle of x exists for a.e. �z1� � � � � zn� if and only if
n ≥ max��K��K ∈ � �� ��.
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Second step: the estimate of δL − δM as a function of the sample co-
variance matrix. We note that the z23-coordinate of xL is 0 and therefore
τ�K��2x−1

�K�x�K���x̂M + s�K�•� = τM��2x−1
�K�x�K��0��x̂M + s�K�•�. Thus, we write

x̂L = τM�2s−1
�K�s�K���x̂M + s�K�•�(3.16)

(see the section above for the corresponding matrix notation). Inverting both
sides of (3.16) gives

δ̂L = τM�−2s−1
�K�s�K��∗�δ̂M + s−1

�K�•�(3.17)

From (2.26), we know that τM�−2s−1
�K�s�K��∗ leaves the V�c�K�+cM\�K��1� com-

ponent δ̂M fixed and therefore, δ̂L−δ̂M depends only on s−1
�K�s�K�. But using the

Frobenius coordinates of sK, we know that sK = τ�K��2s−1
�K�s�K���s�K�+s�K�•� or

s−1
K = τ�K��−2s−1

�K�s�K��∗�s−1
�K�+s−1

�K�•�. Again, since τ�K��−2s−1
�K�s�K��∗ leaves s−1

�K�
fixed, we have that s−1

K − s−1
�K� depends on s−1

�K�s�K� and s−1
�K�• only and therefore

δ̂L − δ̂M = s−1
K − s−1

�K�.
Third step: induction on �� �� ��. If �� �� �� = 1, then clearly the single

element K1 of � �� � is such that �K1� = �. Otherwise, there would exist
K′ �∈� such that K′ ⊂K1. Since K1 is join-irreducible, this would imply the
same for K′ but this contradicts the fact that K1 is the only element of a non-
decreasing listing of � �� �. Since �K1� = � and since the independence con-
ditions in N�� � are z�Kk� ⊥⊥ zK1∪···∪Kk−1\�Kk��z�Kk�, there is no independence

condition in N��K1
�. The model is saturated and δ̂K1

= s−1
K1
= s−1

K1
− s−1

�K1�,
where we adopt the convention s−1

� = 0. We also have detK1
x̂K1
= detK1

sK1
=

�detK1
sK1

/det�K1� s�K1�� with the convention that det� x = 1. So (3.5) and
(3.6) are verified for �K1

. Let us assume that (3.5) and (3.6) are true for
M such that �� ��M�� = k − 1. Let L ∈ � such that �� ��L�� = k. We
choose a regular decomposition of L such that L = M∪̇�K� for K ∈ � ��L�.
Then we have �� ��M�� = k − 1. By the previous step, we have δ̂L − δ̂M =
s−1
K − s−1

�K� and by the induction assumption δ̂M = 	�s−1
K − s−1

�K��K ∈ � ��M��.
Since � ��L� = � ��M� ∪ �K�, this yields (3.5). Now, from (3.15), we have
detL x̂L = detM x̂M det�K� s�K�•. By the induction assumption and the fact that
det�K� s�K�• = �detK sK/det�K� s�K��, we immediately obtain (3.5).

Identities (3.5′), (3.6′) and (3.7′) follow immediately from (3.5), (3.6) and
(3.7) using the representation φ.

Proof of Theorem 4. The proof of Theorem 4 is immediate. If L ∈
� \ � �� � and �K1� � � � �Kl� is a never-decreasing listing of the elements of
� ��L�, then for M = K1 ∪ · · · ∪Kl−1 and K = Kl, L =M∪̇�K� is a regular
decomposition of L = ⋃l

i=1 Ki with L �=Kl. By (3.5),

δ̂L =
l∑

i=1

s−1
Ki
− s−1

�Ki� =
l−1∑
i=1

s−1
Ki
− s−1

�Ki� + s−1
Kl
− s−1

K�Kl�
(3.18)
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Since L �= Kl� �K1� � � � �Kl−1� is a never-decreasing listing of � ��M� and by
(3.5) applied to M and Kl, respectively, we have δ̂L = δ̂M + δ̂Kl

− δ̂�K�, which
completes the proof. ✷

3.3. Connection with various other results.
3.3.1. Our results for N�0� 	� models, Markov with respect to an acyclic

digraph. As mentioned in Section 1.4, Andersson, Perlman, Madigan and
Triggs (1997) proved that the class of LCI models is identical to the class
of transitive ADG models. It follows immediately that our results translate
into corresponding results for transitive ADG models. In fact, we can be more
general than this.

Our results (3.5) and (3.5′) for the estimate of the covariance matrix in
an LCI model can be extended to the estimate of the covariance matrix of
a N�0� 	� model Markov with respect to an acyclic digraph, not necessarily
transitive. The proof follows the proof of Theorem 3 with the following corre-
spondences. If v�1�� � � � � v�T� denote the vertices of an acyclic digraph, pa�v�i��
the set of parents of v�i� and vi = v�1�∪ · · · ∪v�i�, then L�M�K� �K� and �K�
in Sections 3.2 and 3.3 are replaced by vT� vT−1� v�T� ∪ pa�v�T��� pa�v�T��
and v�T�, respectively. The estimate of the precision matrix is

δ̂vT = τpa�v�T���−2s−1
pa�v�T��sv�T�� pa�v�T���∗

(
δ̂vT−1

+ s−1
v�T�•

)
and we obtain that

δ̂vT − δ̂vT−1
= s−1

v�T�∪pa�v�T�� − s−1
pa�v�T���

An immediate induction argument yields

δ̂ =
T∑
t=1

(
s−1
v�t�∪pa�v�t�� − s−1

pa�v�t��
)
�(3.19)

Formula (3.19) has already been proved in Proposition 12 of Lauritzen (1989)
for the real case. Our proof holds for a real, complex or quaternionic centered
Gaussian model, Markov with respect to an acyclic digraph. Moreover the
methods of proof are very different. Ours are purely algebraic.

3.3.2. Relation to recent research. Our paper has connections with Ander-
sson and Madsen (1998) and AP (1998). Andersson and Madsen study the
extension of normal LCI models to models combining group symmetry and
conditional independence. AP (1998) discusses the structure and statistical
properties of a real multivariate normal model with covariance structure de-
termined by an acyclic digraph with the additional feature that compatible
regression structures are also treated.

Our approach, however, is radically different from the group theoretic ap-
proach used in AP (1993) and the other two papers just mentioned. Our results
lie in the framework of symmetric cones. Our paper is in the tradition of Mas-
sam (1994), Massam and Neher (1997), Casalis and Letac (1996) and Letac
and Massam (1998).
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Our paper is also connected, of course, to Lauritzen (1989) and Lauritzen
(1996), Lemma 5.5, where we can find the fundamental result, in the real
case, that zL ⊥⊥ zM�zL∩M, if and only if x−1

L∪M + x−1
L∩M = x−1

L + x−1
M . This is, of

course, the characterization of ��� � where � = ���L∩M�L�M�L∪M = I�.
This equivalence has been proved in the complex case by Anderson, Højbjerre,
Sørensen and Eriksen (1995). Our results in Section 3 extend it to any LCI
model on a symmetric cone.

4. Testing lattice conditional independence models. In this section,
we consider the following testing problem. Given a sample �z1� � � � � zn� from
the N�0� x� distribution with x ∈Hr�D�, D = R, C or H, test

H� 	 x ∈ ��� � vs. H� 	 x ∈ ��� ��(4.1)

where � is a proper sublattice of � . This problem has been treated in the
case D = R by AP (1995a, b).

Following the same development as in AP (1995b), one can prove the equiv-
alent of their Theorem 4.1 for x ∈ Hr�D�. This is done in Theorem 5 below,
which gives the expression of the likelihood ratio statistic λ for testing (4.1),
and its distribution. Before we state Theorem 5, we need to recall some con-
cepts introduced in AP (1995b). We will then state Theorem 5 without proof
since its proof follows the same development as the proof of Theorem 4.1 in
AP (1995b) except for two points. The first is that we work in simple Eu-
clidean Jordan algebras rather than just Hr�R� and therefore we will need
to prove the equivalent of their Lemma 2.1(iii) in the Jordan algebra frame-
work. This will be Proposition 4 below. If w belongs to � and has the Wishart
Wr�p�x� distribution as defined below in (4.3), and if w = w1 +w12 +w0 and
x = x1 + x12 + x0 are the Peirce decompositions of w and x with respect to an
idempotent c with tr�c� = k, then Proposition 4 gives the well-known distri-
butional and independence properties of w1, w0 −P�w12�w−1

1 and w12. It also
states that if x12 = 0, then P�w12�w−1

1 is also Wishart and w0 − P�w12�w−1
1 ,

P�w12�w−1
1 and w1 are mutually independent. The second point of difference

is that we view the different components ωmk of λ, as given in (4.2) below,
as determinants of Beta variables and use the generalized Beta distribution
rather than use Wilks U-distribution.

4.1. The likelihood ratio, its distribution. To be able to compare the inde-
pendence conditions given by the lattices � and � , AP (1995b) introduced
the following surjective poset homomorphism ;	 J�� � → J�� � defined by
;�K� 	= ∩�M ∈ � �M ⊇ K�. Let M1� � � � �Ms be a never decreasing listing
of the elements of J�� � and for each Mm, let Km1� � � � �Kmqm

be a never de-
creasing listing of the elements of �K ∈ J�� ��;�K� = Mm�. Then the set
�Kmj� 1 ≤ m ≤ s� 1 ≤ j ≤ qm� form a never decreasing listing of J�� �.
For ease of notation, we write �m� and �m� for K�m� and K�m� when those are
used as indices. The sample covariance matrix can be divided into blocks sKmj

.
We will write s�mk�• = s�mk�•�mk� = s�mk� −P�s�mk��s−1

�mk� and and in general, for
any L, M, subsets of I, sM·L = sM −P�sM�L�s−1

L (see Section 2).
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Theorem 5. The likelihood ratio statistic λ for problem (4.1) can be fac-
tored as follows:

λ2/n =∏�ωmk�m = 1� � � � � s� k = 1� � � � � qm��(4.2)

where

ωmk =
det s�mk�•��m�∪̇�m1�∪̇···∪̇�m�k−1��

det s�mk�•�mk�
�

The factors ωmk are mutually independent and each ωmk is distributed as the
determinant of a Beta �n/2 − ��m�∪̇�m1�∪̇ · · · ∪̇�m�k − 1����d/2�, ��rmk��d/2�
variable where d is the Peirce constant of D, that is, d = 1�2, or 4 when
D = R, C or H, respectively, and �rmk� = �m�∪̇�m1�∪̇ · · · ∪̇�m�k − 1��\�mk�.
The likelihood ratio statistic λ and the mle of x are mutually independent
under H� .

The proof of this theorem follows the same argument as the proof of The-
orem 4.1 in AP (1995b) with their Lemma 2.1(iii) replaced by Proposition 4
below.

4.2. Independence properties. Let us recall the definition of the Wishart
distribution on an irreducible symmetric cone [see Casalis (1990), Massam
(1994) and Faraut and Koranyi (1994) for more details on these distributions].
We say that the random variable w on the irreducible symmetric cone � of
rank r has the Wr�p�x� Wishart distribution if its density with respect to the
Lebesgue measure on � is

f�w� = 1
=��p�

�detx−1�p�detw�p−N/r exp−1
2

tr x−1w(4.3)

when N = dimension of �, r =rank���, d is the Peirce constant for � and
=��p� = �2π��N−r�/2=�p�=�p − d/2�=�p − 2d/2� · · ·=�p − �r − 1�d/2� is the
=-function of �.

Proposition 4. Let w ∼ Wr�p�x�. Let c be an idempotent of rankk, w =
w1 + w12 + w0, x = x1 + x12 + x0 the Peirce decomposition of w and x with
respect to c.

(i) Then w1 ∼Wk�p�x1�.
(ii) w0 − P�w12�w−1

1 ∼ Wr−k�p − kd/2� �x−1�−1
0 � = Wr−k�p − kd/2� x0 −

P�x12�x−1
1 �. Moreover w0 −P�w12�w−1

1 is independent of �w12�w1�.
(iii) If in addition x12 = 0, then w0 − P�w12�w−1

1 ∼ Wr−k�p − k�d/2�� x0�,
P�w12�w−1

1 ∼ Wr−k�k�d/2�� x0� and w0 − P�w12�w−1
1 , P�w12�w−1

1 and w1 are
mutually independent.

Proof. The proof of (i) and (ii) for irreducible symmetric cones can be
found in Massam and Neher (1997). Let us prove (iii). When x12 = 0, x0 −
P�x12�x−1

1 = x0 and therefore by (ii), w0−P�w12�w−1
1 ∼Wr−k�p−k�d/2�� x0�.



1080 H. MASSAM AND E. NEHER

Moreover by (ii), w0−P�w12�w−1
1 is independent of �w12�w1� and therefore of

P�w12�w−1
1 . By (i), we also know that w0 ∼ Wr−k�p�x0�. Let us compute its

moment generating function:

E�exp�θw0�� = det�e− x0θ�−p

= E�exp�θ�w0 −P�w12�w−1
1 � + θP�w12�w−1

1 ��
(4.4)

and since w0 −P�w12�w−1
1 and P�w12�w−1

1 are independent,

E�exp�θw0�� = E�exp�θ�w0 −P�w12�w−1
1 ���E�exp�θP�w12�w−1

1 ��
= det�e− x0θ�−�p−k�d/2��E�exp�θP�w12�w−1

1 ���
(4.5)

From (4.4) and (4.5), it follows that E�exp�θP�w12�w−1
1 �� = det�e−x0θ�−k�d/2�

which proves that P�w12�w−1
1 ∼ Wr−k�k�d/2�� x0�. It remains to show that

w0−P�w12�w−1
1 , P�w12�w−1

1 and w1 are mutually independent. We know that
w0−P�w12�w−1 and w1 are independent. Let us show that P�w12�w−1

1 and w1
are independent. Since w0 and w1 are independent and w0 −P�w12�w−1

1 and
P�w12�w−1

1 are also independent we have

E�exp�θw0�� = E�exp�θ�w0 −P�w12�w−1
1 � + θP�w12�w−1

1 ��
= E�exp�θ�w0 −P�w12�w−1

1 ���E�exp�θP�w12�w−1
1 ��

= E�exp�θw0��w1�
= E�exp�θ�w0 −P�w12�w−1

1 ���w1�E�exp�θP�w12�w−1
1 ��w1�

(since independence implies conditional independence)

= E�exp�θ�w0 −P�w12�w−1
1 ���E�exp�θP�w12�w−1

1 ��w1�
(since w0 −P�w12�w−1

1 and w1 are independent).

It follows that E�exp�θP�w12�w−1
1 ��w1� = E�exp�θP�w12�w−1

1 �� and the in-
dependence of P�w12�w−1

1 and w1 is proved. This completes the proof of (iii). ✷

4.3. The distribution of ωmk. Let us now show that each ωmk is of the
form det�U1/�U1 +U2�� where U1 and U2 are independent Wishart vari-
ates on � with the same scale parameter. Here U1/�U1 +U2� is a symbolic
notation for the variable t−1

U1+U2
�U1�, where tU1+U2

is the unique triangular
transformation [see Theorem VI.3.6 in Faraut and Koranyi (1994)] in the
group of automorphisms of � such that tU1+U2

�e� = U1 + U2 and where
t−1
U1+U2

is its inverse. This implies of course that U1/�U1 +U2� has the gen-
eralized Beta distribution on � ∩ �e − �� [see Massam (1994)]. Following the
same argument as in AP (1995b) and using Proposition 4, we can prove that
λ2/n = �∏ωmk�m = 1� � � � � s� k = 1� � � � � qm� where ωmk is as in (4.2). Recall
that K1� � � � �Kmqm

is a never-decreasing listing of the elements of J��Mm
�.

Recall that we use the notation �m�, �mk� and �m� for K�m�, K�mk� and Km,



COVARIANCE ESTIMATION IN LCI MODELS 1081

respectively, and �rmk� = �m�∪̇�m1�∪̇ · · · ∪̇�m�k − 1��\�mk� so that �m� can
be decomposed into the disjoint union �m� = �rmk�∪̇�mk�∪̇�mk�. Then let

U1 = s�mk�•�m�∪̇�m1�∪̇···∪̇�m�k−1�� = s�mk�•�mk� −P
(
s��mk�� �rmk��•�mk�

)
s−1
�rmk�•�mk�

and let

U2 = P�s��mk�� �rmk��•�mk��s−1
�rmk�•�mk�

so that

s�mk��mk� = U1 +U2�

Then clearly each factor ωmk is of the form detU1/det�U1 +U2� and it is easy
to show that det t−1

U1+U2
�U1� = detU1/detU1 +U2.

Let p = n/2. We know that ns, where s is the mle of x in the satu-
rated N�0� x� model, has the Wishart Wr�p�x� distribution. Since �m� =
�rmk�∪̇�mk�∪̇�mk�, we have, by Proposition 4(ii),

ns��rmk�∪�mk��•�mk� ∼W
(
p− ��mk��d

2
� x��rmk�∪�mk��•�mk�

)

and

nU1 = ns�mk�•��mk�∪�rmk�� ∼W
(
p− ��mk� ∪ �rmk��d

2
� x�mk�•��mk�∪�rmk��

)
�

Under H� , we have that [see AP (1995a), for z ∼N�0� x�, x ∈ ��� �,
z�mk� ⊥⊥ z�m�∪�m1�∪···∪�m�k−1���z�mk��

This implies, of course, that x��mk�� �rmk��•�mk� = 0 and by Proposition 4(iii), it
follows that

nU1 ∼Wr−��mk��−��rmk��

(
p− ��mk��d

2
− ��rmk��d

2
� x�mk�•�mk�

)
�

nU2 ∼Wr−��mk��−��rmk��

(
��rmk��d

2
� x�mk�•�mk�

)

and nU1 and nU2 are independent, with the same scale parameter x�mk�•�mk�.
By Theorem 4.2 of Massam (1994), this implies that U1/�U1 +U2� =
t−1
U1+U2

�U1� has the generalized Beta B��p1� p2� distribution with p1 =
p− ��mk���d/2� − ��rmk���d/2�, p2 = ��rmk���d/2� and so

E�ωmk� =
B��p1 + 1� p2�
B��p1� p2�

= =��p1 + 1�=��p2� =��p1 + p2�
=��p1 + p2 + 1� =��p1� =��p2�

=
∏r−1
j=0 =�p1 + 1− j�d/2��=�p1 + p2 − j�d/2��∏r−1
j=0 =�p1 − j�d/2��=�p1 + p2 + 1− j�d/2�� �
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