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RANDOM RATES IN ANISOTROPIC REGRESSION

BY M. HOFFMANN AND O. LEPSKI

Université Paris VII and Université de Provence

In the context of minimax theory, we propose a new kind of risk,
normalized by a random variable, measurable with respect to the data.
We present a notion of optimality and a method to construct optimal
procedures accordingly. We apply this general setup to the problem of
selecting significant variables in Gaussian white noise. In particular, we show
that our method essentially improves the accuracy of estimation, in the sense
of giving explicit improved confidence sets in L2-norm. Links to adaptive
estimation are discussed.

1. Introduction. Searching for significant variables is certainly one of the
oldest and most popular problems in statistics. One of the simplest models where
the issue of selecting significant variables was first stated mathematically is linear
regression. A vast literature has been devoted to this topic since and different
approaches have been proposed over the last forty years, both for estimation and
for hypothesis testing. Among many authors, we refer to Akaike [1], Breiman and
Freedman [3], Chernoff [5], Csiszar and Korner [6], Dychakov [10], Patel [42],
Renyi [46], Freidlina [13], Meshalkin [35], Malyutov and Tsitovich [34], Schwarz
[47] and Stone [48].

In classical parametric regression, if we consider a linear model, we first have
to measure the possible gain of “searching for a limited number of significant
variables.” If the model comes from a specific field of application, then only
an adequate description together with its solution is relevant. However, from
a mathematical point of view, a theory of selecting significant variables does not
lead—at least asymptotically—to a substantial improvement of the accuracy of
estimation: in a regular parametric model, the classical

√
n rate of convergence is

not affected by the number of significant variables. (However, even in this setup, let
us emphasize that “asymptotically” has to be understood as “up to a constant” and
that the correct choice of significant variables may possibly improve this constant.)

If instead of a linear model we consider a nonparametric regression model,
the search for significant variables becomes crucial for estimating the regression
function: the rate of convergence explicitly depends on the set of significant
variables.

Let us develop this statement with the following example of multivariate
regression: suppose we observe Z(n) = (Xi, Yi, i = 1, . . . , n) in the model

Yi = f (Xi)+ εi, i = 1, . . . , n,(1)
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where f is a real-valued function defined on the unit cube [0,1]d , the Xi are inde-
pendent design points uniformly distributed in [0,1]d and the εi are uncorrelated
zero-mean noise variables. We want to recover the signal f which belongs to the
anisotropic class � =�(β,L), β = (β1, . . . , βd), L> 0, defined by

�(β,L)=
{
f : [0,1]d→R :‖f ‖2 +

d∑
i=1

∥∥∥∥ ∂βi
∂x
βi
i

f

∥∥∥∥
2

≤L2

}
,(2)

where ‖f ‖ = (
∫
[0,1]d f (x)2 dx)1/2 denotes the L2-norm on [0,1]d . See for

instance [38]; the βi > 0 measure the smoothness of f in the ith direction.
Given an estimator f̂n = f̂n(x,Z(n)), x ∈ [0,1]d , of f , we say, as usual in

minimax theory, that the procedure f̂n is asymptotically optimal w.r.t. � if

lim sup
n→∞

sup
f∈�

Enf
{
ϕ−2
n (�)‖f̂n− f ‖2}<∞,(3)

where the deterministic normalizing factor ϕn(�)→ 0 cannot be improved in
order. The notation Enf denotes expectation w.r.t. the law of the observation Z(n).
Mathematically, the message of statement (3) is clear. How do we interpret it
statistically? What is the issue of the minimax theory in this context? First, we con-
struct f̂n. Next, we have a normalizing factor ϕn(�), which can be understood as
an accuracy of estimation: the procedure f̂n provides us with a confidence set (in
the ‖ · ‖-norm) of size ϕn(�); for any level 0< γ < 1, we can guarantee from (3)
the existence of C =C(γ,�) s.t. for n large enough,

sup
f∈�

P nf
{‖f̂n − f ‖ ≥ Cϕn(�)}≤ γ.(4)

It is essential that the quantity Cϕn(�) is known to the statistician if one wants to
refer to the minimax risk as a notion of accuracy.

In the d-dimensional anisotropic regression context, we know (see, e.g., [24,
39, 40]) that, under some restrictions imposed on the noise εi , the minimax rate of
convergence over � =�(β,L), that is, the smallest factor (in order) such that (3)
is satisfied, is

ϕn(�)= n−β/(2β+1),(5)

where the effective smoothness β is defined by the formula

1

β
=

d∑
i=1

1

βi
.(6)

This rate is attained by some kernel estimator which is the best possible one in
view of (3). In particular, in the isotropic case b= β1 = · · · = βd , the optimal rate
of convergence is n−b/(2b+d). The factor d is a dimensional effect which severely
limits the minimax approach. This pessimistic result for large d is the unavoidable
payment to obtain an accuracy (4) uniformly over �.
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Given a single experiment, one may legitimately suspect the “true” function to
possess better approximation properties, that is, to lie in a smaller subset of �.
For instance, f could be smoother, which means f ∈�(λ,M), λ= (λ1, . . . , λd),
M > 0, with

1

λ
:=

d∑
i=1

1

λi
<

1

β
.

If so, f can be estimated with the rate n−λ/(2λ+1).
Another possibility is that f depends on a smaller number of variables. In

this case the dimension of the problem should be reduced in some sense. More
precisely, f may depend only on s < d significant variables in a given direction

is = (i1, . . . , is), 1≤ i1 < i2 < · · ·< is ≤ d.
This corresponds to the assumption that f ∈�(is)⊂�, where

�(is)= {
f ∈� :f (x1, . . . , xd)= F(xi1, . . . , xis )

}
,

and F is a function of s variables. In words, �(is) consists of the elements of �
that only depend on the direction is . From (5) and (6),

ϕn
(
�(is)

)= n−β(is )/(2β(is)+1),

where 1/β(is)=∑
j∈is 1/βj . Note that ϕn(�(is)) coincides with n−β/(2β+1) if we

formally set βj =∞ for j /∈ is . As we see

ϕn
(
�(is)

)
/ϕn(�)→ 0.

Note also that, in this anisotropic setting, the rate of convergence on�(is) depends
not only on the number s of significant variables but also on the particular direction
(i1, . . . , is) on which F depends. For example, d = 3, s = 2 and� =�(β,L)with
β = (1,2,3). Then β(1,3)= 3/4> β(1,2)= 2/3.

To realize these ideas, the nonparametric community has put intense effort into
adaptive estimation over the last decade. Among others, we mention the papers of
Barron, Birgé and Massart [2], Delyon and Juditski [7], Donoho and Johnstone [8],
Donoho, Johnstone, Kerkyacharian and Picard [9], Efromovich and Pinsker [12],
Efromovich [11], Goldenshluger and Nemirovski [14], Golubev [15], Härdle and
Marron [17], Hall, Kerkyacharian and Picard [20], [22], Lepski [25–28], Lepski
and Spokoiny [30], [31], Lepski, Mammen and Spokoiny [32], Neumann and von
Sachs [37] and Polyak and Tsybakov [45].

Consider a family (�j , j = 1, . . . ,N) (possibly N could depend on n; we
discard this possibility for the moment) of subsets of �, where the optimal rates
ϕn(�j ) are “better” than ϕn(�): ϕn(�j)/ϕn(�)→ 0. In the anisotropic regression
context, �j could be a set of the type �(is) or �(λ,M), with λ> β . To take this
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refinement into account, the adaptive estimation paradigm proposes the following
answer: define the adaptive rate

ψn(f )=


ϕn(�j ) if f ∈�j,
ϕn(�) if f ∈�∖(⋃

j

�j

)
.

If the �j are not disjoint and f ∈⋃
j �j , we of course take ψn(f )= inf{ϕn(�j),

j ∈ I(f )}, where I(f ) = {j :f ∈ �j }. We then look for an adaptive estimator,
that is, a procedure f adaptn that satisfies

lim sup
n→∞

sup
f∈�

Enf
{
ψ−2
n (f )‖f adaptn − f ‖2}<∞.(7)

The gain of the adaptive procedure is clear from a mathematical point of view,
but what statistical interpretation can we give in terms of accuracy of estimation
[particularly in the sense of (4)]? The improvement of the adaptive estimator
is not observable, since we never know to which �i the function f belongs.
This becomes clear by looking at the risk defined by (7): the normalizing factor
ψn = ψn(f ) depends on the unknown f . To paraphrase a common saying in the
nonparametric community “you know adaptive estimators converge very fast if
the function is very smooth (or has a prescribed complexity) but you can tell
nothing about the estimated function itself.” In other words, the issue of the
adaptive approach is only the estimator f adaptn . The impossibility of computing
its accuracy is the unavoidable payment for the adaptive property.

The goal of this paper is to replace in (7) the unknown—and ideal—sequence
ψn(f ) by a quantity ρ̂n measurable w.r.t. the observation (data driven), and thus
improve the accuracy of estimation in the sense of (4). To do so, we introduce the
concept of random normalizing factor (RNF) and define its optimality. This notion
entails the possibility to choose an optimal procedure f newn . A pair (ρ̂n, f newn )

being optimal in this sense possesses the following properties:

1. ρ̂n ≤ ϕn(�);
2. lim supn→∞ supf∈� Enf {ρ̂−2

n ‖f newn − f ‖2}<∞;
3. for all 0< α < 1, there exist deterministic zn(j), j = 1, . . . ,N , that satisfy at

least zn(j)/ϕn(�)→ 0 and such that

inf
f∈�j

P nf
{
ρ̂n ≤ zn(j)}≥ 1− α.

Let us briefly discuss these points:

(i) We do not lose the minimax properties, since the first two points above
guarantee at least an accuracy of the type (4).

(ii) If our guess of a simpler structure turns out to be true (i.e., f ∈ �j for
some j ), the third point shows that the RNF will be essentially smaller than ϕn(�),
with probability controlled by a free parameter α. This parameter represents a risk
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level chosen by the statistician. It is possible to let α = αn → 0 depend on n.
However, such a choice is a delicate issue which we will discuss below. This is so
mainly because the sequence zn(j) actually depends on α.

(iii) The optimality mentioned above is linked to the best choice of the sequence
zn(j), j = 1, . . . ,N . For instance, applying the results of Section 3 to anisotropic
regression with �j =�(is) we arrive at

zn(is)�max

{(√
ln(1/α)

n

)2β/(4β+1)

,

(
1

n

)β(is )/(2β(is)+1)}
.

This implies that the following hold: (1) The value of α affects the accuracy of
estimation: the smaller α, the worse the accuracy. We will show that the choice
α = αn = n−a , a > 0, will only reduce the accuracy by a factor of lnn. (2) For
any direction is such that β(is) < 2β and for any α = αn = n−a , a > 0, we
have zn(is) = n−β(is )/(2β(is)+1). This means that zn(is) coincides with the rate
of convergence on the set �(is). As shown in [29], this is the best possible
improvement.

(iv) We prove in Section 2.3 that, for αn converging to 0 fast enough, usually
αn = n−a for an appropriate a > 0, the estimator f newn is adaptive in the sense
of (7). To that extent, we have provided the minimax theory with a procedure
possessing a new virtue without losing any previous step of the theory.

(v) It may well happen that ρ̂n� ϕn(�), but f /∈⋃
j �j . In this case, we still

improve the accuracy of estimation. However, this suggests that f is somehow
“close” to

⋃
j �j .

The paper is organized as follows. We present in Section 2 a general
mathematical framework for improving the accuracy of estimation, based on the
notion of RNF. In particular, we discuss in detail the concepts outlined in the
Introduction. The proofs of the results stated in Section 2 are delayed until the
Appendix. In Section 3, we apply our results to multivariate regression in an
anisotropic Sobolev setup, formulating an answer to our original problem. For
transparency, we state our results in the white noise model. The proofs are given
in Section 4.

2. Random normalizing factors. In this section, we propose a new approach
for improving the accuracy of an estimating procedure (in the sense given by
(11) below). In principle, we could apply this approach to an arbitrary statistical
model. It is therefore convenient to present the concept itself in terms of an abstract
sequence of statistical experiments (see, e.g., [23]).

2.1. Formal definitions. We consider an experiment E = (Xε,Bε,P εf ,

f ∈ �)ε>0 generated by an observation Xε . The pair (Xε,Bε) is a measurable
space endowed with a family of probability measures (P εf , f ∈�). The parame-
ter space � is a bounded subset of a normed space (V,‖ · ‖) over the real field.
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In particular, supf∈� ‖f ‖ ≤Q for some constant Q > 0. Asymptotics are taken
as ε→ 0. For the regression model discussed in the Introduction, 1/

√
n plays the

role of ε and � is the smoothness class (2) of real-valued functions defined on
[0,1]d ; thus

V =
{
f : [0,1]d→R, ‖f ‖ =

(∫
[0,1]d

f (x)2 dx
)1/2

<∞
}
.

For any subset �̃ ⊆�, we define the risk of an arbitrary estimator f̃ε = f̃ε(Xε) by

Rε
(
f̃ε, �̃, ϕε(�̃)

)= sup
f∈�̃

Eεf
{
ϕ−pε (�̃)‖f̃ε − f ‖p}, p ≥ 2,(8)

where ϕε(�̃) > 0 is a deterministic normalizing factor. The factor ϕε(�̃) is called
the minimax rate of convergence (MRC) on �̃ if the following hold:

(i) lim infε→0 inf
f̃ε
Rε(f̃ε, �̃, ϕε(�̃)) > 0, where the infimum is taken over all

estimators;
(ii) lim supε→0Rε(f̂ε, �̃, ϕε(�̃)) <∞,

for some estimator f̂ε, called asymptotically optimal on �̃ in the minimax sense
(cf. [23]). Later, we will assume that the minimax rate of convergence ϕε(�) exists
and is known a priori.

Now, let us be given a family of subsets �1,�2, . . . ,�N of �, that is, �i ⊂�,
for all i = 1, . . . ,N . It is assumed to be known that for each i = 1, . . . ,N there
exists an estimator f̂ (i)ε such that the following hold:

(iii) lim supε→0Rε(f̂
(i)
ε ,�i, ϕε(�i)) <∞;

(iv) ϕε(�i)/ϕε(�)→ 0 as ε→ 0.

Suppose now that the statistician has a guess based on some a priori qualitative
analysis of the model that the parameter f may actually belong to one of the �i .
Then, from (i) and (ii), there is some hope of improving the rate ϕε(�) in the
following way:

Introduce the family *ε of observable normalizing factors (so-called random
normalizing factors) defined as the class

*ε = {
ρε ∈ (0, ϕε(�)] :ρε is a random variable measurable w.r.t. Xε

}
.

For an arbitrary ρε ∈*ε and an estimator f̃ε , introduce the risk

R(r)ε
(
f̃ε,�,ρε

)= sup
f∈�

Eεf
{
ρ−pε ‖f̃ε − f ‖p}.(9)

The superscript (r) is put here to emphasize the random character of the
normalizing factor. Suppose that there exist both a random normalizing factor
ρ̂ε ∈*ε and an estimator f ∗ε such that, for some M =M(�),

lim sup
ε→0

R(r)ε (f
∗
ε ,�, ρ̂ε)≤M <∞.(10)
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Clearly, for all 0< γ < 1, we have

P εf

{
‖f ∗ε − f ‖ ≥

(
M

γ

)1/p

ρ̂ε

}
≤ γ(11)

as ε → 0 and we can treat ρ̂ε as an accuracy of estimation provided by the
estimator f ∗ε . This yields a confidence set for f . Note that it is essential in our
approach that the quantities ρ̂ε and M =M(�) are known. Let us mention two
fundamental facts:

1. If such ρ̂ε and f ∗ε exist, then f ∗ε is asymptotically optimal on � in the minimax
sense as ρ̂ε ∈*ε by definition.

2. Since the random normalizing factor ρ̂ε depends on the observation (i.e., on
the function f itself and not only on the whole class �), we can hope to get
some extra knowledge of f , rather than simply “f ∈�.” In particular, we may
try to find a ρ̂ε which, with some positive probability, is smaller than the rate
of convergence ϕε(�). In this sense, some improvement of the accuracy of
estimation is achievable.

Finding an estimator f ∗ε and a RNF ρ̂ε ∈*ε such that

lim sup
ε→0

R(r)ε (f
∗
ε ,�, ρ̂ε) <∞

will provide an improvement of the accuracy of estimation if

∀i = 1, . . . ,N, lim inf
ε→0

inf
f∈�i

P εf
{
ρ̂ε < ϕε(�)

}
> 0;(12)

otherwise, we would not gain anything new. The issue we now address is how to
describe, in a favorable situation like (12), an optimal improvement taking into
account the fact that we believe that f ∈ �i for some i ∈ {1, . . . ,N} and how
to construct an optimal procedure accordingly. Let us mention that in [29] the
caseN = 1 was considered. However, a nontrivial extension is needed for the case
N ≥ 1. Note also that we could develop a theory by lettingN =Nε grow to infinity
as ε→ 0, but a fixedN will be sufficient for the generalization level intended here
(and the application to significant variables in particular).

Let 0 < δ < 1 be some given number and let us fix a function αε assumed to
be small, such that 0 < αε ≤ 1− δ for all ε ∈ (0,1). The function αε is arbitrary
and fixed by the statistician. We want to guarantee that if actually f ∈ �i for
some i, then we can provide some improvement with confidence 1−αε, uniformly
over �i . We thus introduce the following definition.

DEFINITION 1 (Characteristic of ρε). The characteristic of ρε ∈ *ε is the
deterministic sequence (xε(ρε, i), i = 1, . . . ,N) of functions

xε(ρε, i)= inf
{
x ∈ (0, ϕε(�)] : inf

f∈�i
P εf {ρε ≤ x} ≥ 1− αε

}
.(13)
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Note that the xε(ρε, i) depend on αε. The sequence of deterministic factors
(xε(ρε, i), i = 1, . . . ,N) measures the improvement rate that ρε provides
uniformly over each subset �i , with prescribed probability (given by αε). We
naturally derive the following criterion of comparison between RNFs.

DEFINITION 2 (Optimality of random normalizing factors). The RNF ρ∗ε ∈*ε
is α-optimal (asymptotically optimal) w.r.t. the family (�i, i = 1, . . . ,N) if the
following two conditions are fulfilled:

(i) There exists an estimator f ∗ε such that

lim sup
ε→0

R(r)ε
(
f ∗ε ,�,ρ∗ε

)
<∞.(14)

(ii) If there exist ρε ∈*ε and j ∈ {1, . . . ,N} such that

xε(ρε, j)

xε(ρ
∗
ε , j)

→ 0 as ε→ 0,

then

lim inf
ε→0

inf
f̂ε

R(r)ε
(
f̂ε,�,ρε

)=+∞,(15)

where the infimum is taken over all estimators.

DEFINITION 3. Let ρ∗ε be an α-optimal RNF w.r.t. (�i, i = 1, . . . ,N). Then
any estimator providing (14) in Definition 2 above is called α-adaptive.

REMARK 1. As we will see later, an optimal RNF ρ∗ε can often be constructed
as a random variable taking N + 1 values xε(ρ∗ε , i), i = 0, . . . ,N , with the
notational convention xε(ρ∗ε ,0)= ϕε(�). The value xε(ρ∗ε ,0) cannot be improved
in order because it is the minimax rate of convergence over�. The values xε(ρ∗ε , i)
cannot be improved in order due to (15). Both these facts together with (14) explain
why ρ∗ε is called α-optimal.

REMARK 2. By definition, ρ∗ε ≤ ϕε(�) for all ε ∈ (0,1) and any αε . Therefore
from (14) any α-adaptive estimator is asymptotically optimal on the set� w.r.t. the
risk (8). It means that, by considering risks of the type (9), we cover the framework
of the standard minimax approach.

REMARK 3. In principle, we can use random normalizing factors for any
norm ‖ · ‖ in the risk function (9). We will see in Section 3 a successful application
in L2-norm. Analogous improvements could be obtained in Lp-norm, 1≤ p <∞,
but they lie beyond the scope of the paper. However, if we define the minimax risk
in uniform norm L∞, it is impossible to improve substantially the accuracy, in
the sense that any optimal ρ∗ε will be of order ϕε(�). This phenomenon is closely
related to the work of Low [33] on nonparametric confidence intervals and follows
from his result.
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2.2. Canonical construction of RNF. Whenever a specific model is consid-
ered, it is often the case that one can construct an optimal RNF with respect to a
single subset �1 ⊂� (see [29] for specific examples), that is, in the case N = 1.
Such optimal RNFs usually take only two values ϕε(�) and ϕε(αε), the latter
value ϕε(αε) corresponding to the improvement obtained when one believes that
f ∈ �1. We now address the following task: construct an optimal RNF w.r.t. the
family of subsets (�i, i = 1, . . . ,N) when one can solve separately the problem
of finding an optimal RNF w.r.t. a single �i , for i = 1, . . . ,N . This construction
will be exploited later, in Section 3, in the multidimensional white noise model.

We consider the following assumption: for each i ∈ {1, . . . ,N} there exist
0< ϕε,i (αε)≤ ϕε(�), random variables ρ∗ε,i ∈*ε with values in {ϕε(�),ϕε,i(αε)}
and estimators f ∗ε,i possessing the following three properties:

P1(i) inff∈�i P εf
{
ρ∗ε,i = ϕε,i(αε)

}≥ 1− αε.
P2(i) lim supε→0 supf∈� Eεf

{
(ρ∗ε,i)−p‖f ∗ε,i − f ‖p

}≤M∗
i <∞.

P3(i) For all ρε ∈*ε with values in {ϕε(�), aε} satisfying
aε

ϕε,i (αε)
→ 0 as ε→ 0

and

inf
f∈�i

P εf {ρε = aε} ≥ 1− αε,
we have

lim inf
ε→0

inf
f̂ε

sup
f∈�

Eεf
{
ρ−pε ‖f̂ε − f ‖p}=+∞,

where the infimum is taken over all estimators.

We claim that if such an assumption is granted, we can find a recipe to construct
an α-optimal RNF and an α-adaptive estimator w.r.t. the family (�i, i = 1, . . . ,N)
in a canonical way. Define i∗ by the formula

ρ∗ε,i∗ = inf
i=1,...,N

ρ∗ε,i

and put

ρ∗ε = ρ∗ε,i∗ , f ∗ε = f ∗ε,i∗ .(16)

PROPOSITION 1. Suppose that ρ∗ε and f ∗ε are defined by (16). Then ρ∗ε is
α-optimal w.r.t. (�i, i = 1, . . . ,N) and f ∗ε is α-adaptive.

The following result gives a bound on the constant M∗ of the risk of f ∗ε
depending on N . It shows that, under mild conditions, M∗ behaves no worse than
the “worst” of the M∗

i . Define, for i = 1, . . . ,N ,

ξε,i(f )= (ρ∗ε,i)−1‖f ∗ε,i − f ‖.
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COROLLARY 1. Assume that ρ∗ε and f ∗ε are defined by (16) and that, for
i = 1, . . . ,N , there exist 0<Mi <∞ such that

lim
ε→0

sup
f∈�

Eεf
{[ξε,i (f )]p1ξε,i(f )≥Mi

}= 0.(17)

Then

lim sup
ε→0

sup
f∈�

Eεf
{
(ρ∗ε )−p‖f ∗ε − f ‖p

}≤ (
sup

i=1,...,N
Mi

)p
.

Finally, we state the following obvious result, namely that a pair of an α-optimal
RNF and an α-adaptive estimator w.r.t. (�i, i = 1, . . . ,N) automatically pro-
vides N α-optimal RNFs and N α-adaptive estimators w.r.t. each set �i , for
i = 1, . . . ,N .

PROPOSITION 2. Let ρ∗ε and f ∗ε be α-optimal RNF and α-adaptive estimators
w.r.t. the family (�i, i = 1, . . . ,N). Put, for i = 1, . . . ,N ,

ρ̂ε,i =
{
xε(ρ

∗
ε , i), if ρ∗ε ≤ xε(ρ∗ε , i),

ϕε(�), if ρ∗ε > xε(ρ∗ε , i),
and

f̂ε,i = f ∗ε .
Then for i = 1, . . . ,N , the pair (ρ̂ε,i , f̂ε,i) possesses the properties P1(i), P2(i)

and P3(i).

In fact, Propositions 1 and 2 show that conditions P1(i), P2(i) and P3(i),
i = 1, . . . ,N , are necessary and sufficient for ρ∗ε defined in (16) to be α-optimal.

2.3. Links to adaptive estimation. We keep the framework of Section 2.1 and
consider a family of subsets (�i, i = 1, . . . ,N) of � satisfying (iii) and (iv) of
Section 2.1. An adaptive estimator f (a)ε (if it exists) satisfies

∀i = 1, . . . ,N, lim sup
ε→0

sup
f∈�i

Eεf
{
ϕ−pε (�i)‖f̂ (a)ε − f ‖p}<∞,(18)

that is, achieves the optimal rate simultaneously over all the �i , without the
knowledge of �i . Putting I(f )= {i: f ∈�i} and

ψε(f )=
{

inf
{
ϕε(�i), i ∈ I(f )

}
, if I(f ) �=∅,

ϕε(�), if I(f )=∅,

we obtain an equivalent characterization of f̂ (a)ε :

lim sup
ε→0

sup
f∈�

Eεf
{
ψε(f )

−p‖f̂ (a)ε − f ‖p}<∞.(19)
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Thus, the normalizing factor ψε(f ) is essentially better than the minimax rate of
convergence ϕε(�) if f belongs to some �i . In this sense, the procedure f̂ (a)ε is
better than an estimator asymptotically optimal on �. However, we cannot take
ψε(·) as an accuracy of estimation in the sense of (11), since ψε(·) = ψε(f )
depends on the unknown f . In that specific sense, the adaptive estimator f̂ (a)ε does
not improve the minimal accuracy of estimation ϕε(�). However, under further
restrictions, we have that an α-adaptive estimator can be adaptive in the usual
sense given by (18) or (19):

PROPOSITION 3. Let f ∗ε be an α-adaptive estimator and let ρ∗ε be an
α-optimal RNF w.r.t. the family (�i, i = 1, . . . ,N). Supppose that the estimator

f̂ε,i := f ∗ε 1{ρ∗ε≤xε(ρ∗ε ,i)}
is asymptotically optimal w.r.t. �i for all i = 1, . . . ,N . If, moreover, αε =
O(infi≤N ϕε(�i)

p) as ε→ 0, then f ∗ε is adaptive w.r.t. (�i, i = 1, . . . ,N) in
the usual sense and satisfies in particular (18).

The proof of Proposition 3 is delayed until the Appendix.

REMARK 4. We will see in the next section that we can construct an α-adap-
tive estimator of this kind in the problem of significant variables in Gaussian white
noise.

REMARK 5. Thus, under some restrictions, α-adaptive estimators provide
us with adaptive estimators. We thus retrieve the classical results of adaptive
estimation. The converse, that is, whether adaptive estimators can be α-adaptive
(in connection with an appropriate α-optimal RNF) in general, remains an open
question.

2.4. Links to nonparametric confidence sets. Clearly, the concept of RNF
is related to confidence sets: by (10) and (11), any suitable RNF ρ̂ε yields a
confidence set in the ‖ · ‖-norm as the ball with center f ∗ε and radius (M/γ )1/pρ̂ε.
For all γ ∈]0,1[, this confidence set has coverage probability over the class �
of at least 1− γ as ε→ 0. The random radius of the confidence set is at least of
order ϕε(�), but, with prescribed probability 1− αε , this radius can be essentially
better than ϕε(�) if we take for ‖ · ‖ the L2-norm. This is developed in detail in
the example of multivariate regression in Section 3 below, in a setting where one
suspects the unknown signal to depend on fewer significant variables than those
prescribed in the original model.

The severe limitation of adaptation for nonparametric confidence intervals (i.e.,
if one tries to construct a confidence interval for f at a particular point x0) has
been studied by Low [33]. Our approach is not in conflict with the lower bound
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of Low if we consider, instead of pointwise, global error measurement such as the
L2-norm. See also Remark 3 in Section 2.1 above.

There exists another quite different approach for constructing nonparametric
confidence intervals and bands: one starts by proving the asymptotic normality
of a pivotal quantity, usually relying on a preliminary nonparametric estimator
of the unknown function, and then uses bias correction. Several methods have
been investigated in the literature: we refer to [18, 19, 36], based on kernel
estimation, and more recently [44], based on nonlinear methods connected to
wavelet thresholding. The accuracy of this latter approach can be measured in
terms of the length of the interval and also the coverage error: for constructing
a confidence interval In for a point x0 based on n observations, one can seek an
expansion of the quantity P nf (f (x0) ∈ In) as n→∞, a result we do not have here.

It is noteworthy that this latter approach significantly differs from the minimax
setting, since a uniform result of the type (10) is lost. Moreover, it is developed
for confidence intervals at a fixed point x0 whereas we consider global loss
measurement in ‖ · ‖-norm instead.

3. Anisotropic multidimensional white noise model. In this section, we
apply the general results developed in the previous sections to the problem of
estimating a nonparametric real-valued function on [0,1]d , when we believe that
the function may only depend on s < d variables. The statistical model we consider
is multidimensional white Gaussian noise (WGN). The motivation for choosing
WGN is at least twofold:

1. It clarifies the mathematical transparency of the problem at hand and allows us
to avoid technicalities and routine computations.

2. It is known that univariate regression (see [4]) and density estimation (see [16])
are asymptotically equivalent to white noise (for smooth enough parameter
classes). We believe that the same type of equivalence is true for multivariate
regression with random normalizing factors.

Consider the statistical experiment generated by the observation

Xε = (
Xε(x), x= (x1, . . . , xd) ∈ [0,1]d),

where

Xε(dx)= f (x) dx+ εW(dx).(20)

The random process W is a standard d-dimensional Brownian sheet, ε is a noise
level, and f ∈ L2([0,1]d) is the unknown parameter of interest. In other words,
for any g ∈L2([0,1]d), we are given∫

[0,1]d
g(x)Xε(dx)=

∫
[0,1]d

f (x)g(x) dx+ εξ(g),
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where ξ(g) ∼N (0,
∫
[0,1]d g(x)2 dx). In the framework of Section 2, we consider

(V,‖ · ‖) = L2([0,1]d) and the experiment E = (Xε,Bε,P εf , f ∈ �)ε>0 gener-
ated by Xε, where � = �(β,L), β = (β1, . . . , βd), βi > 0, i = 1, . . . , d , is the
anisotropic Sobolev body defined as follows.

Let (φk, k ∈N) be an orthonormal basis of L2([0,1]). We require that∫
[0,1]

φk(x) dx = δ0k,(21)

where δ is the Kronecker symbol. For instance, we may consider the Fourier basis
φ0 = 1, and for k �= 0,

φ2k(x)=
√

2 cos(2πkx), φ2k−1(x)=
√

2 sin(2kπx)

but other choices are obviously possible. For a multiindex k= (k1, . . . , kd) ∈ Nd ,
define

φk(x)= φk(x1, . . . , xd)= φk1(x1) · · ·φkd (xd).
The sequence (φk, k ∈ Nd) provides an orthonormal basis of L2([0,1]d). For a
given f ∈ L2([0,1]d), the following expansion holds in L2:

f = ∑
k∈Nd

θkφk,

where

θk =
∫
[0,1]d

f (x)φk(x) dx.(22)

In particular (Parseval identity), ‖f ‖ = ‖θ‖l2 , where ‖θ‖2
l2
= ∑

k∈Nd θ
2
k . For

simplicity, we will omit any further reference to the subscript l2. Set

�(β,L) :=
{
θ :

∑
k∈Nd

θ2
k

(
1+

d∑
i=1

k
2βi
i

)
≤ L2

}
.(23)

REMARK 6. This definition of �(β,L) corresponds to the class (2) consid-
ered in the Introduction if we identify f and its expansion θ = (θk)k∈Nd in the
basis (φk)k∈Nd and assume that f is periodic. However, as we will see in (25) be-
low, only a sequence space model is considered. Any further reference to �(β,L)
will refer to the definition (23).

For a given s < d and a direction is = (i1, . . . , is), where i1 < · · ·< is , define

I (is)= {
(k1, . . . , kd) ∈Nd :kj = 0, ∀j /∈ {i1, . . . , is}}

and

�(is)=
{
θ :

∑
k∈I (is )

θ2
k

(
1+

d∑
i=1

k
2βi
i

)
≤ L2, and θk = 0, k /∈ I (is)

}
.
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Note that, using property (21), if

f (x1, . . . , xd)= F(xi1, . . . , xis ),
then

θk = 0 for all k ∈Nd \ I (is).(24)

Thus, the functions which only depend on the direction is are contained in �(is).
Next, consider the observation Xε given by (20). For k ∈Nd , set

Yk =
∫
[0,1]d

φk(x)Xε(dx).

The following decomposition holds:

Yk = θk + εξk, k ∈Nd,(25)

where θk is defined by (22) and

ξk =
∫
[0,1]d

φk(x)W(dx)

is a standard Gaussian random variable with zero mean and unit variance.
Moreover, from the orthogonality of the φk, the ξk are independent. Thus, the
white noise model given by (20) can be reformulated in terms of the sequence
model (25). Because of the equivalence of (20) and (25), we can identify f and
its expansion θ = (θk)k∈Nd in the basis (φk)k∈Nd . We also write P εθ , Eεθ for P εf ,

Eεf , respectively. Likewise, we identify any estimator f̃ε of f by its expansion

θ̃ε = (θ̃k)k∈Nd in the basis (φk)k∈Nd . We can then define, for any ρε ∈*ε ,
R(r)ε

(
θ̃ε,�,ρε

)= sup
θ∈�

Eεθ
{
ρ−pε ‖θ̃ε − θ‖p}.

We first consider the problem of constructing a random normalizing factor and
an α-adaptive estimator w.r.t. �(is), for a given direction is . We then treat the
general case (i.e., considering all the directions is simultaneously) by means of the
construction given in (16).

3.1. The case of a given direction is .
3.1.1. Construction of a random normalizing factor and α-adaptive estimator.

We begin with some notation. If is = (i1, . . . , is), we abuse notation slightly by
writing “i ∈ is” for an index i ∈N when we should actually write “i ∈ {i1, . . . , is}.”



RANDOM RATES IN REGRESSION 339

Define β and β(is) by

1

β
=

d∑
i=1

1

βi
,

1

β(is)
=∑
i∈is

1

βi

and

C =
d∏
i=1

β
1/2βi
i , C(is)=

∏
i∈is

β
1/2βi
i ,

Z1 = L1/2β+1Cβ/2β+1

√
2β + 1

2β
21/4β+2.

Z1(is) is defined analogously, replacing β and C by β(is) and C(is ), respectively;

Z2 = L1/4β+1Cβ/4β+1

√
4β + 1

4β
21/4β+1.

Many of the quantities involved hereafter depend on is . We will sometimes omit
the reference in is , for notational simplicity. Set Kε = (K1(ε), . . . ,Ks(ε)), where,
for any j = 1, . . . , s and ij ∈ is , we set

Kj(ε)= β
1/2βij
ij

(
ε2C(is)

2L2

)−(1/βij )/[β(is )/(2β(is)+1)]
.

Set Nε = (N1(ε), . . . ,Nd(ε)), where, for i = 1, . . . , d ,

Ni(ε)= β1/2βi
i

(
ε2√C ln(1/αε)

4L2

)−(1/βi)/[2β/(4β+1)]
.

SetMε = (M1(ε), . . . ,Md(ε)), where, for i = 1, . . . , d ,

Mi(ε)= β1/2βi
i

(
ε2C

2L2

)−(1/βi)/[β/(2β+1)]
.

We need to introduce the following five multiindex sets:

I = {
(k1, . . . , kd) ∈Nd :kj = 0, ∀j /∈ is

};
Iε = {

(k1, . . . , kd) ∈ I :kij ≤Kj(ε), j = 1, . . . , s
};

J = Nd \ I ;
Jε = {

(k1, . . . , kd) ∈ J :ki ≤Ni(ε), i = 1, . . . , d
};

Qε = {
(k1, . . . , kd) ∈Nd :ki ≤Mi(ε), i = 1, . . . , d

}
.

Note that Iε = Iε(is) and Jε = Jε(is) and that the sets Iε, Jε andQε are finite.
We consider the following estimators: θ̂ε = (θ̂ε,k)k∈Nd with

θ̂ε,k =
{
Yk, k ∈Qε,
0, k ∈Nd \Qε,
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and θ̂ (0)ε (is)= (θ̂ (0)ε,k(is))k∈Nd , with

θ̂
(0)
ε,k(is)=

{
Yk, k ∈ Iε,
0, k ∈Nd \ Iε.

Note that θ̂ε = θ̂ε(Mε) and that θ̂ (0)ε (is) = θ̂ (0)ε (is ,Kε). Note also that θ̂ε and θ̂ (0)ε
are the usual projection estimators corresponding to � and �(is) respectively.

We also introduce the random variable Tε(is)= Tε(is ,Nε), which will be used
to construct a decision rule:

Tε(is)=
∑
k∈Jε

(Y 2
k − ε2).

Let

ϕε(�)= ε2β/(2β+1)

and

ϕε(αε, is)= sup

{(
ε4 ln

1

αε

)β/(4β+1)

, ε2β(is )/(2β(is)+1)

}
.

We are now ready to define a RNF ρ∗ε (is) and a corresponding estimator θ∗ε (is).
Set

λ=√2Cβ/(4β+1)(2L)1/(4β+1)

and

Aε(is)= {
Tε(is)≤ λ2ϕε(αε, is)2

}
.

Finally, our estimator θ∗ε (is) and random normalizing factor ρ∗ε (is) are defined as
follows:

ρ∗ε (is)=
{
ϕε(αε, is), on Aε(is),
ϕε(�), on Ac

ε(is),

θ∗ε (is)=
{
θ̂
(0)
ε (is), on Aε(is),
θ̂ε, on Ac

ε(is).

3.1.2. Main result for a given direction.

THEOREM 1. Let p ≥ 2, 1/20 ≥ αε ≥ εa for ε ∈ (0,1) and some a > 0.
Then ρ∗ε (is) is an α-optimal random normalizing factor w.r.t. �(is) and θ∗ε (is)
is α-adaptive. In particular

lim sup
ε→0

R(r)ε
(
θ∗ε (is),�,ρ∗ε (is)

)≤M∗(is)(26)
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with

M∗(is)=


Z
p
1 + sup

x≥1

(
λ2x +Z2

1(is)+Z2
2
)p/2

e−(x−1)2 ln(1/α), α ∈ (0,1),
Z
p
1 , α = 0,

where α := lim infε→0 αε.

3.2. The general case. We now come to the construction of an optimal RNF
ρ∗ε and an α-adaptive estimator θ∗ε w.r.t. the whole family of sets �(is) for all is
and 1≤ s ≤ d − 1. Introduce

Td = {
i, i= (i1, . . . , is),1≤ i1 < · · ·< is ≤ d, 1≤ s ≤ d − 1

}
.

Consider the family of pairs {(ρ∗ε (i), θ∗ε (i)), i ∈ Td}. According to Section 2, we
construct a new pair (ρ∗ε , θ∗ε ) as follows. Let i∗ ∈ Td be defined by

ρ∗ε (i∗)= inf
i∈Td

ρ∗ε (i).

Put

ρ∗ε = ρ∗ε (i∗)
and

θ∗ε = θ∗ε (i∗).
THEOREM 2. Let p ≥ 2, 1/20 ≥ αε ≥ εa for ε ∈ (0,1) and some a > 0.

Then ρ∗ε is an α-optimal random normalizing factor w.r.t. the family {�(i), i ∈ Td}
and θ∗ε is α-adaptive. In particular

lim sup
ε→0

R(r)ε (θ
∗
ε ,�,ρ

∗
ε )=M∗,(27)

where

M∗ ≤ ∑
i∈Td

M∗(i).(28)

If in addition α := lim infε→0 αε = 0, then

M∗ ≤ sup
i∈Td

M∗(i).(29)

REMARK 7. As we see, the improvement given by the optimal random
normalizing factor ρ∗ε does exist: all its values are essentially better (by some
polynomial order) than the minimax rate of convergence over � (except of course
the one corresponding to the MRC over�). In some cases, they even coincide with
the MRC over some hypothesis sets �(i).

REMARK 8. In general, the constant M∗ grows in d approximately as 2d ,
except for the case α = 0. However, if α > 0, it is possible to prove that M∗
grows no faster than d . The proof is obtained similarly to the case α = 0, and
only involves more technicalities so we omit it.
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3.3. Adaptive estimation. Proposition 3 in Section 2.3 gives us a sufficient
condition for an α-adaptive estimator to be adaptive w.r.t. the family {�(i), i ∈ Td}
in the classical sense (18). We thus have the following corollary.

COROLLARY 2. Let αε =O({ε2β∗/2β∗+d}p) as ε→ 0, where

β∗ = sup
1≤i≤d

βi.

Then θ∗ε is adaptive w.r.t. the family of sets {�(i), i ∈ Td}, that is, ∀i ∈ Td ,

lim sup
ε→0

sup
θ∈�(i)

Eεθ
{(
ϕε(�(i))−1‖θ∗ε − θ‖

)p}
<∞,

where ϕε(�(i))= ε2β(i)/(2β(i)+1).

4. Proofs.

4.1. Proof of Theorem 1. Let us begin with some technical lemmas

LEMMA 1. For p ≥ 2, the following upper bound holds:

lim sup
ε→0

sup
θ∈�

Eεθ
{
ϕ−pε (�)‖θ̂ε − θ‖p}≤ Zp1 .

LEMMA 2. Let (ξi,1≤ i ≤N) be a sequence of i.i.d. random variables, with
ξ1 ∼N (0,1). Put

SN =
N∑
i=1

(ξ2
i − 1).

Then, for all N ≥ 1, CN ∈ (0,∞) and x ∈ [0,NCN ],

P {SN ≥ x} ≤ exp
{
− x2

4N(1+CN)
}
,

P {SN ≤−x} ≤ exp
{
− x2

4N(1+CN)
}
.

If moreover CN = o(N−1/3) as N→∞ the statement remains true if we replace
the right-hand side of the inequality by

exp
{
− x

2

4N

}(
1+ o(1))

as N→∞, uniformly in x ∈ [0,NCN ].
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Lemma 1 is known (see for instance [40]). The proof of Lemma 2 is based on
some results of [43] and can be found in [29].

We divide the proof of Theorem 1 into two steps. We prove the upper
bound (26). Next, we prove a lower bound, namely that ρ∗ε cannot be improved
in the sense of Definition 1. Since is is fixed in this sequel, we will omit
explicit reference to is when no confusion is possible. Likewise, we will omit the
superscript ε in the definition of P εθ and Eεθ .

4.1.1. Upper bound. Let us prove inequality (26). Put, for θ ∈=,

R(1)ε (θ)= Eθ
{
(ρ∗ε )−p‖θ∗ε − θ‖p1Aε

}
= Eθ{ϕ−pε (αε)‖θ̂ (0)ε − θ‖p1Aε

}
and

R(2)ε (θ)= Eθ
{
(ρ∗ε )−p‖θ∗ε − θ‖p1Ac

ε

}
= Eθ{ϕ−pε (�)‖θ̂ε − θ‖p1Ac

ε

}
.

Obviously

R(r)ε (θ
∗
ε ,�,ρ

∗
ε )≤ sup

θ∈�
R(1)ε (θ)+ sup

θ∈�
R(2)ε (θ).

Therefore, it is sufficient to obtain bounds for R(1)ε (θ) and R(2)ε (θ), respectively.
Let us first study R(2)ε (θ). Clearly

R(2)ε = sup
θ∈�

R(2)ε (θ)≤ sup
θ∈�

Eθ
{
ϕ−pε (�)‖θ̂ε − θ‖p}.

From Lemma 1,

Eθ
{
ϕ−pε (�)‖θ̂ε − θ‖p}≤ Zp1 (1+ o(1))

as ε→ 0, uniformly in θ ∈�. Finally

lim sup
ε→0

R(2)ε ≤Zp1 .(30)

Let us turn to R(1)ε (θ). The following notation will prove to be useful: for any
multiindex set A⊂Nd ,

S̃(A)=∑
k∈A
(ξ2

k − 1).

From the definition of θ̂ (0)ε , it is easily seen that

R(1)ε (θ)= ϕ−pε (αε)Eθ

{( ∑
k∈Nd\Iε

θ2
k + ε2S̃(Iε)+ ε2|Iε|

)p/2
1Aε

}
.(31)
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Note that |Iε| =∏s
j=1Kij (ε). From the decomposition

Nd \ Iε = Jε ∪ (I \ Iε)∪ (J \ Jε),
where the unions are disjoint, we obtain∑

k∈Nd\Iε
θ2

k =Hε(θ)+ S(1)ε (θ)+ S(2)ε (θ),

where

Hε(θ)=
∑
k∈Jε

θ2
k ,

S(1)ε (θ)=
∑

k∈I\Iε
θ2

k ,

S(2)ε (θ)=
∑

k∈J\Jε
θ2

k .

Now, from the definition (23) of the ellipsoid �,

S(1)ε (θ)≤ L2
s∑
j=1

K
−2βij
ij

(ε)
(
1+ o(1))(32)

and

S(2)ε (θ)≤ L2
d∑
i=1

N
−2βi
i (ε)

(
1+ o(1))(33)

as ε→ 0, uniformly in θ ∈�. Note that the sum ε2S̃(Iε) satisfies the assumptions
of Lemma 2; hence

sup
θ∈�

Pθ
{
ε2S̃(Iε) > ε

µ1
}≤ exp{−ε−µ2}(1+ o(1))(34)

as ε→ 0 for some positive µ1 and µ2 which only depend on L and B . Set

Vε = L2

(
s∑
j=1

K
−2βij
ij

(ε)+
d∑
i=1

N
−2βi
i (ε)

)
+ ε2

s∏
j=1

Kij (ε)

and define

R̄(1)ε (θ)= ϕε(αε)−p
(
Hε(θ)+Vε

)p/2
Pθ

{
Tε ≤ λ2ϕε(αε)

2}.
In view of (32), (33) and (34) we can state that

lim sup
ε→0

sup
θ∈�

R(1)ε ≤ lim sup
ε→0

sup
θ∈�

R̄(1)ε .
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Therefore, only an upper bound on R̄(1)ε is needed. Fix some δ > 0, assumed to be
small, and define

=δ,ε =
{
θ ∈� :Hε(θ)≤ 1+ δ

1− δλ
2ϕε(αε)

2
}
.

Set

R̄(1,1)ε = sup
θ∈=δ,ε

R̄(1)ε (θ),

R̄(1,2)ε = sup
θ∈�\=δ,ε

R̄(1)ε (θ).

Obviously

R̄(1,1)ε ≤
(

1+ δ
1− δ λ

2 + ϕε(αε)−2
ε Vε

)p/2
.

Letting ε→ 0 and using the definitions of ϕε(αε) and Vε , we obtain, for all δ > 0,

lim sup
ε→0

R̄(1,1)ε ≤
(

1+ δ
1− δ λ

2+Z2
1(is)+Z2

2

)p/2

and, letting δ→ 0, we finally obtain

lim sup
ε→0

R̄(1,1)ε ≤ (
λ2+Z2

1(is)+Z2
2
)p/2

.(35)

Let us now turn to R̄(1,2)ε . We plan to use the following decomposition:

Tε =Hε(θ)+ ε2S̃(Jε)+ ηε(θ),
where

ηε(θ)= 2ε
∑
k∈Jε

θkξk.

We first show that the term ηε(θ) can be neglected. We have

ηε(θ)∼N
(
0,4ε2Hε(θ)

)
.

It follows that

Pθ
{|ηε(θ)| ≥ δHε(θ)}≤ 2 exp

{
−1

2

δ2

ε2
Hε(θ)

}
,(36)

where we have used the classical boundP (|ζ | ≥ t)≤ 2 exp(−t2/2) if ζ ∼N (0,1).
Moreover, for θ ∈ � \=δ,ε we have Hε(θ) >

1+δ
1−δ λ

2ϕε(αε)
2. This, together with

(36) yields

Pθ
{|ηε(θ)| ≥ δHε(θ)}≤ 2 exp

{−ε−µ3
}(

1+ o(1))
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as ε→ 0, uniformly in θ ∈� \=δ,ε, for some positive µ3. Thus, for θ ∈� \=δ,ε,
Pθ

{
Tε ≤ λ2ϕε(αε)

2}≤ Pθ{Hε(θ)(1− δ)+ ε2S̃(Jε)≤ λ2ϕ2
ε (αε)

}
+ exp

{−ε−µ3
}(

1+ o(1)).
Hence

R̄(1,2)ε ≤ Fε(θ)(1+ o(1)),
where

Fε(θ)= (
ϕε(αε)

−2Hε(θ)+Z1(is)2 +Z2
2
)p/2

× Pθ (Hε(θ)(1− δ)+ ε2S̃(Jε)≤ λ2ϕε(αε)
2).

Let b > 0 be some constant to be specified below. Let us introduce the set

=b =
{
θ ∈� :Hε(θ)≥

(√
b ln

1

ε
+ 1

)2

λϕε(αε)
2

}
.

Then, in view of Lemma 2,

Pθ
{
Hε(θ)(1δ)+ ε2S̃ε(Jε)≤ λ2ϕε(αε)

2}
≤ Pθ

{
S̃ε(Jε)≤−λ

2√ln(1/ε)ϕε(αε)

ε2

}
(37)

≤ exp
{
−b ln(1/ε)ϕε(αε)4λ4

ε4|Jε|
}
≤ exp

{
−b ln

1

ε
ln

1

αε

}
≤ εb

as ε→ 0. Now, take b such that

ϕε(αε)
−pεb→ 0(38)

as ε→ 0, a choice which is obviously possible since ϕε(αε)−p ≤ ε−2βp/(1+2β).
Recall also that we consider parameters θ ∈� satisfying∑

(i1,...,id )∈Nd
θ2
i1···id ≤L2;

therefore Hε(θ) ≤ L2. Keeping this in mind, we obtain the following from (37)
and (38):

sup
θ∈=b

Fε(θ)≤ (
L2 +Z2

1(is)+Z2
2
)p/2

ϕε(αε)
−pεb→ 0(39)

as ε→ 0. For each x such that 1+ δ ≤ x ≤
√
b ln 1

ε
+ 1, let us introduce the set

=(x) as

=(x)=
{
θ ∈� :

Hε(θ)(1− δ)
λ2ϕε(αε)

2 = x
}
.



RANDOM RATES IN REGRESSION 347

Then

=δ,ε \=b =
⋃

x∈[1+δ,√b ln(1/ε)+1]
=(x).(40)

Put Rε(x) := supθ∈=(x) Fε(θ). Successively

Rε(x)≤
(
λ2

1− δ x +Z
2
1(is)+Z2

2

)p/2
Pθ

{
S̃(Jε)≤−λ

2ϕε(αε)
2(x − 1)2

ε2

}

≤
(
λ2

1− δ x +Z
2
1(is)+Z2

2

)p/2
exp

{
−λ

4ϕε(αε)
4(x − 1)2

4ε4|Jε|
}

(41)

≤
(
λ2

1− δ x +Z
2
1(is)+Z2

2

)p/2
exp

{
−(x − 1)2 ln

1

αε

}
.

From (39), (40) and (41), we derive

sup
θ∈=δ,ε

Fε(θ)≤ sup
x∈[1+δ,√b ln(1/ε)+1]

{(
λ2

1− δ x +Z
2
1(is)+Z2

2

)p/2

× exp
(
−(x − 1)2 ln

1

αε

)}
.

(42)

Therefore, from (35) and (42), we derive

lim sup
ε→0

sup
θ∈�

Fε(θ)

≤ sup
x≥1

(
λ2x +Z2

1(is)+Z2
2
)p/2

exp
{
−(x − 1)2 ln

1

α

}
,

(43)

where α = lim infε→0 αε ≥ 0. Finally putting together (43) and (30), we obtain the
statement of Theorem 1.

4.1.2. Lower bound. First, let us note that for the directions is such that
ϕε(αε, is) = ε2β(is)/(2β(is)+1), in other words the improvement coincides with
the minimax rate of convergence on �(is), the required lower bound follows
from Proposition 1 in [29]. Therefore only the case of the directions such that
ϕε(αε, is) > ε2β(is)/(2β(is)+1) needs to be studied.

Let ρε be an arbitrary RNF in *ε for which

x(ρε)

x(ρ̂ε)
→ 0 as ε→ 0.(44)

We need to prove that

lim inf
ε→0

inf
θ̃ε

Rε
(
θ̃ε,�,ρε

)=+∞,(45)

where the infimum is taken over all estimators. Define

J̃ε = {
(k1, . . . , kd) ∈Nd :ki ≤Ni(ε), i = 1, . . . , d

}
.
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Put V = {−1,+1}|J̃ε|. Thus, every v ∈ V can be written as

v = (vk)k∈J̃ε , vk =±1.

Let

ψε =L
(
d∑
i=1

Ni(ε)
2βi

)−1/2( d∏
i=1

Ni(ε)

)−1/2

and note that

ψ2
ε �

(
ε4 ln

1

αε

)(2β+1)/(4β+1)

.

We consider the family U
J̃ε

of size 2|J̃ε| of sequences θ(v), v ∈ V , indexed by Nd

and defined as follows:

θ(v)k =
{
ψεvk, if k ∈ J̃ε,
0, otherwise.

We claim that

U
J̃ε
⊂�.(46)

To show (46), it is enough to check, for any θ = θ(v) ∈ U
J̃ε

, the following
inequality:

A(θ)=
d∑
j=1

∑
(i1,...,id )∈Nd

θ2
(i1,...,id )

i
2βj
j ≤ L2.

Let θ ∈U
J̃ε

. Then

A(θ)= ψ2
ε

d∑
j=1

∑
(i1,...,id )∈J̃ε

i
2βj
j

= ψ2
ε

d∑
j=1

d∏
i=1,i �=j

Ni(ε)Nj(ε)
2βj+1

= ψ2
ε

(
d∑
i=1

Ni(ε)
2βi

)(
d∏
i=1

Ni(ε)

)
≤ L2.

In the following, we will denote by P0 the probability law of the observationXε
if the true parameter is θ = 0. If θ = θ(v) ∈U

J̃ε
, we will use the abbreviation Pv

for Pθ(v).
Define

V
(1)
k = {v ∈ V :vk =+1}, V

(−1)
k = {v ∈ V :vk =−1},

V
(0)
k = {

v = (vl), l ∈ J̃ε :vl =±1 if l �= k and vk = 0
}
.
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Let

Bε = {
ρε = xε(ρε)}.

We will prove that there exists some absolute constant p0 > 0 such that, for all
k ∈ J̃ε ,

1

2|J̃ε|−1

∑
v∈V (0)k

Pv
{
Bε

}≥ p0.(47)

Let us first show that (45) follows from (47). Let θ̃ε be an arbitrary estimator. From
the definition of Bε,

Rε(θ̃ε,�,ρε)≥ sup
θ∈�

Eθ
{
ρ−pε ‖θ̃ε − θ‖p1Bε

}

≥ sup
θ(v), v∈V

Eθ

{(
xε(ρε)

−1‖θ̃ε − θ‖)p1Bε

}

≥
(

1

2|J̃ε|
∑
v∈V

Ev
{
xε(ρε)

−1‖θ̃ε − θ‖21Bε

})p/2 =: (Rε(θ̃ε))p/2.
Here we used Jensen’s inequality: E{|Z|q} ≥ (E{|Z|})q if q ≥ 1. Note that from
the definition of J̃ε , θk = 0 if k ∈Nd \ J̃ε for any θ ∈U

J̃ε
. Using that

‖θ̃ε − θ‖2 ≥ ∑
k∈J̃ε

(
θ̃ε,k − θk

)2

we have

Rε(θ̃ε) ≥ xε(ρε)
−2

2|J̃ε|
∑
v∈V

∑
k∈J̃ε

Ev

{(
θ̃k − θk(v)

)2
1Bε

}

= xε(ρε)
−2

2|Jε|
∑
k∈J̃ε

( ∑
v∈V (+1)

k

Ev

{(
θ̃ε,k −ψε)2

1Bε

}

+ ∑
v∈V (−1)

k

Ev

{(
θ̃ε,k +ψε)2

1Bε

})
.

For v ∈ V , let v̌k = (v̌k)l be defined, for l ∈Nd , by

v̌k =
{
vl, if l �= k,
0, otherwise.
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We need to introduce the following likelihood ratios:

Z
(1)
k = dPv

dPv̌k
(Y ) for v ∈ V (1)k ,

Z
(−1)
k = dPv

dPv̌k
(Y ) for v ∈ V (−1)

k ,

where Y = (Yk) is the observation process. Note that, under Pv̌k ,

Z
(1)
k = exp

{
ψε

ε
ξkθk − ψ2

ε

2ε2 θ
2
k

}
,

Z
(−1)
k = exp

{
−ψε
ε
ξkθk − ψ2

ε

2ε2 θ
2
k

}

and that the distribution of Z(1)k and Z(1)k does not depend on vl, l �= k, and ε.
Moreover ε−1ψε→ 0 as ε→ 0. Hence, for all v̌k and small enough ε and δ > 0,
the following inequality holds:

Pv̌k
{(
Z
(1)
k < 1− δ)∪ (

Z
(−1)
k < 1− δ)}≤ δ.(48)

Define

Dk = {
Z
(1)
k ≥ 1− δ}∩ {

Z
(−1)
k ≥ 1− δ}.

It follows that

Rε(θ̃ε)≥ xε(ρε)
−2

2|J̃ε|
∑
k∈J̃ε

∑
v∈V (0)k

Ev̌k
{(
Z
(1)
k (θ̃ε,k −ψε)2 +Z(−1)

k (θ̃ε,k +ψε)2)1Bε

}

≥ (1− δ)xε(ρε)
−2

2|J̃ε|
∑
v∈V (0)k

ψ2
ε Pv̌k{Bε ∩Dk}

where we used that

(θ̃ε,k −ψε)2+ (θ̃ε,k +ψε)2 ≥ 2ψ2
ε .

Applying inequality (48) yields, for small enough ε and δ,

Pv̌k{Bε ∩Dk} ≥ Pv̌k{Bε} − δ.
Hence, choosing δ < p0/2 we finally obtain

Rε(θ̃ε)≥ (1− δ)x−2
ε (ρε)p0ψ

2
ε |Jε|.

From the choice of ψε and |J̃ε| we conclude that

inf
θ̃ε

Rε(θ̃ε)≥ (1− δ)p0

(
xε(ρε)

ϕε(αε)

)−2

.
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It remains to show that

xε(ρε)/ϕε(αε)→ 0 as ε→ 0.(49)

This will follow from (44) and

xε(ρ̂ε)≤ ϕε(αε),(50)

where

xε(ρ̂ε)= inf
{
x ∈ (0, ϕε(�)] : inf

θ∈�(is)
Pθ {ρ̂ε ≤ x} ≥ 1− αε

}
.

We will show that

lim sup
ε→0

α−1
ε sup

θ∈�(is)
Pθ

{
ρ̂ε = ϕε(αε)}≤ 1.

From the definition of ρ̂ε, it is enough to prove that

sup
θ∈�(is)

Pθ
{
Tε > λ

2ϕε(αε)
2}≤ αε.(51)

Under Pθ , θ ∈�(is), we have

Tε = ε2
∑
k∈Jε

(ξ2
k − 1).

On the other side, from the definition of λ, Nε and ϕε(αε), we readily check that

ε−2λ2ϕε(αε)
2 ≥ 2

(
ln

1

αε

)1/2 d∏
i=1

N
1/2
i (ε)=: zε.

It follows that

Pθ
{
Tε > λ

2ϕε(αε)
2}≤ Pθ

{∑
k∈Jε

(ξ2
k − 1) > zε

}
(52)

uniformly in θ ∈�(is). Moreover

zε ≤ 2
(
a ln

1

ε

)1/2 d∏
i=1

N
1/2
i (ε)

from the assumption αε ≥ εa . Note that

|Jε| =
d∏
i=1

Ni(ε)
(
1+ o(1))

as ε→ 0. Therefore, we can choose Cε such that Cε = o(|Jε|−1/3) as ε→ 0 and
0< zε ≤ Cε∏d

i=1Ni(ε). Applying Lemma 2 together with (52) yields

Pθ
{
Tε > λ

2ϕε(αε)
2}≤ αε(1+ o(1))

as ε→ 0, uniformly in θ ∈�(is). This proves (50).
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We complete the proof by proving (47). Since ρε ∈*ε and 0 ∈�(is), for all is ,
s = 1, . . . , d − 1, we have, for all δ > 0 and ε sufficiently small,

α−1
ε P0

{
Bc
ε

}≤ 1+ δ.(53)

Define

Zε = 1

2|J̃ε|−1

∑
v∈V (0)k

dPv

dP0
(Y )

and

Pε = 1

2|J̃ε|−1

∑
v∈V (0)k

Pv{Bε}.

From (53)

Pε =E0{Zε1Bε} ≥E0
{
Zε1Bε + cα−1

ε 1Bc
ε

}− c(1+ δ),
where c > 0 is a constant to be specified below. It is clear that

inf
Fε
(Zε1Fε + cα−1

ε 1F c
ε
)=Zε1Zε<cα−1

ε
+ cα−1

ε 1
Zε≥cα−1

ε
.

It follows that

Pε ≥ E0{Zε1Zε<cα−1} − c(1+ δ)

= 1

2|J̃ε|−1

∑
v∈V (0)k

Pv
{
Zε < cα

−1}− c(1+ δ)

= 1− c(1+ δ)− 1

2|Jε|−1

∑
v∈V (0)k

Pv
{
Zε ≥ cα−1}.

Applying Chebyshev’s inequality yields

Pε ≥ 1− c(1+ δ)− αε

c2|J̃ε|−1

∑
v∈V (0)k

Ev{Zε}

= 1− c(1+ δ)− αεc−1E0
{
Z2
ε

}
.

We claim that

E0
{
Z2
ε

}= α−1/2
ε

(
1+ o(1))(54)

as ε→ 0. This shows that for sufficiently small ε and δ, and since αε ≤ 1/20, we
have

Pε ≥
(

1− c− 1

2
√

5c

)(
1+ o(1))= 1− 2√

2
√

5

(
1+ o(1))> 0
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for the choice c= 1/
√

2
√

5, which proves (47). It remains to show (54). From

Zε =
∏

k∈J̃ε

(1
2Z

(1)
k + 1

2Z
(−1)
k

)

and since the random variables ξk are independent, elementary computation shows
that

E0
{
Z2
ε

}= (
E0

{
1

2
exp

(
ψε

ε
ξk − 1

2

ψ2
ε

ε2

)
+ 1

2
exp

(
−ψε
ε
ξk − 1

2

ψ2
ε

ε2

)})|J̃ε|−1

=
(

1

2
expψ2

ε +
1

2
exp−ψ2

ε

)|J̃ε|−1

=
(
1+ψ4

ε +O
(
ψ6
ε

))|J̃ε |−1

= exp
{
|J̃ε|ψ

4
ε

ε4

}(
1+ o(1))

since ψ6
ε |J̃ε|→ 0 as ε→ 0. From ψ4

ε |J̃ε| = −1
2 lnαε , the conclusion follows. This

ends the proof of Theorem 1.

4.2. Proof of Theorem 2. Since the pair (ρ∗ε , θ∗ε ) is obtained through the
canonical construction (16), Proposition 1 shows the existence of an upper bound
M∗ described by (28) for the minimax risk and the optimality of ρ∗ε . Consequently,
only (29) needs to be proved. For this, we use Corollary 1. Therefore, it is enough
to show that

lim
ε→0

∑
i∈Td

sup
θ∈�

Eθ
{
ζpε (i)1ζε(i)>M∗(i)

}= 0,(55)

where

ζε(i)= ρ̂(i)−1‖θ∗ε (i)− θ‖.
From the Cauchy–Schwarz inequality∑

i∈Td

Eθ
{
ζpε (i)1ζε(i)>M∗(i)

}≤ ∑
i∈Td

Eθ
{
ζ 2p
ε (i)

}1/2
Pθ

{
ζε(i) >M∗(i)

}1/2

≤M∗|Td | sup
i∈Td

Pθ
{
ζε(i) >M∗(i)

}1/2
,

where

M∗ =M∗
2p = sup

i∈Td

M∗(i)1/2.(56)
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HereM∗
2p(i) means that we take the constantM∗(i) associated with the power 2p,

which is finite since the choice of p is free in Theorem 1. Therefore, it is enough
to show that

lim
ε→0

sup
θ∈�(i)

Pθ
{
ζε(i) >M∗(i)

}= 0 ∀i ∈ Td .(57)

Note that

Pθ
{
ζε(i) >M∗(i)

}≤ Pθ{ϕ−1
ε (�)‖θ̂ε − θ‖ ≥ Z1

}
so that (57) follows by classical arguments using Lemma 2.

The same arguments show that

sup
θ∈=δ,ε

Pθ
{
ζε(i) >M∗(i),Aε

}≤ sup
θ∈=δ,ε

Pθ
{
ϕ−1
ε (αε)‖θ̂ (0) − θ‖ ≥M∗(i)

}→ 0

as ε→ 0. From the assumption lim infαε = 0 and in view of (43), we obtain

lim
ε→0

sup
=\=δ,ε

Pθ
{
ϕε(αε)

−1‖θ̂ (0) − θ‖ ≥M∗(i)
}= 0,

which completes the proof of Theorem 2.

APPENDIX

A.1. Proof of Proposition 1. For i = 1, . . . ,N , we set x∗ε (i)= xε(ρ∗ε , i). Let
us first show that, for i = 1, . . . ,N ,

x∗ε (i)≤ ϕε,i (αε).(58)

Indeed

inf
f∈�i

P εf
{
ρ∗ε ≤ ϕε,i(αε)

}= inf
f∈�i

P εf

{
inf

j=1,...,N
ρ∗ε,j ≤ ϕε,i (αε)

}

≥ inf
f∈�i

P εf
{
ρ∗ε,i ≤ ϕε,i (αε)

}
= inf
f∈�i

P εf
{
ρ∗ε,i = ϕε,i(αε)

}≥ 1− αε,

where we used property P1(i). From the definition of x∗ε (i), we derive (58). Note
that, for f ∈�,

Eεf
{
(ρ∗ε )−p‖f ∗ε − f ‖p

}= N∑
i=1

Eεf
{
(ρ∗ε,i)−p‖f ∗ε,i − f ‖p1{i∗=i}

}

≤
N∑
i=1

Eεf
{
(ρ∗ε,i)−p‖f ∗ε,i − f ‖p

}
.
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Therefore

lim sup
ε→0

sup
f∈�

Eεf
{
(ρ∗ε )−p‖f ∗ε − f ‖p

}≤ N∑
i=1

(M∗
i )
p <∞,(59)

where we used property P2(i). Hence the bound (10) of Definition 1 is satisfied.
We now prove (13). Assume on the contrary that ρ∗ε is not optimal. Then, there

exist ρ̄ε ∈*ε, j̄ ∈ {1, . . . ,N} and a constant 0< M̄ <∞ such that

xε(ρ̄ε, j̄ )

x∗ε (j̄ )
→ 0 as ε→ 0(60)

and

lim sup
ε→0

sup
f∈�

Eεf
{
(ρ̄ε)

−p‖f̄ε − f ‖p}≤ M̄(61)

for some estimator f̄ε . Set

ρ̄ε,j̄ =
{
xε(ρ̄ε, j̄ ), if ρ̄ε ≤ xε(ρ̄ε, j̄ ),
ϕε(�), if ρ̄ε > xε(ρ̄ε, j̄ ).

First, note that ρ̄ε,j̄ ≥ ρ̄ε and therefore we have from (61)

lim sup
ε→0

sup
f∈�

Eεf
{
(ρ̄ε,j̄ )

−p‖f̄ε − f ‖p}≤ M̄.(62)

Moreover

inf
f∈�j̄

P εf
{
ρ̄ε,j̄ = xε(ρ̄ε, j̄ )

}= inf
f∈�j̄

P εf
{
ρ̄ε ≤ xε(ρ̄ε, j̄ )}≥ 1− αε.(63)

From (58) and (60)

xε(ρ̄ε, j̄ )

ϕε,j̄ (αε)
≤ xε(ρ̄ε, j̄ )

x∗ε (j̄ )
→ 0 as ε→ 0.

This, together with (62) and (63), contradicts P3(j̄ ) and shows the optimality
of ρ∗ε . From this point, it remains to note that (59) shows that f ∗ε is α-adaptive,
which completes the proof of Proposition 1.

A.2. Proof of Corollary 1. We have, for f ∈�,

Eεf
{
(ρ∗ε )−p‖f ∗ε − f ‖p

}

=
N∑
i=1

Eεf
{[ξε,i (f )]p1i∗=i

}

≤
N∑
i=1

M
p
i P

ε
f {i∗ = i} +

N∑
i=1

Eεf
{[ξε,i(f )]p1{ξε,i (f )>Mi,i∗=i}

}
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≤
(

sup
i=1,...,N

Mi

)p
+

N∑
i=1

sup
f∈�

Eεf
{[ξε,i(f )]p1{ξε,i (f )>Mi}

}
.

Applying (17) completes the proof of Corollary 1.

A.3. Proof of Proposition 3. By definition, � is bounded by Q. We may
thus assume without loss of generality that ‖f ∗ε ‖ ≤ 3Q. Let i ∈ {1, . . . ,N}.
Proposition 3 is equivalent to

lim sup
ε→0

Rε
(
f ∗ε ,�i, ϕε(�i)

)
<∞.(64)

We have

Rε
(
f ∗ε ,�i, ϕε(�i)

)≤ sup
f∈�i

Eεf
{
ϕ−pε (�i)‖f ∗ε − f ‖p1{ρ∗ε≤xε(ρ∗ε ,i)}

}

+ sup
f∈�i

Eεf
{
ϕ−pε (�i)‖f ∗ε − f ‖p 1{ρ∗ε>xε(ρ∗ε ,i)}

}
.

Hence from the definition of f̂ε,i , we have

Rε
(
f ∗ε ,�i, ϕε(�i)

) ≤Rε(f̂ε,i ,�i, ϕε(�i))
+ (4Q)p

(
inf

j=1,...,N
ϕ−pε (�j)

)
sup
f∈�i

P εf
{
ρ∗ε > xε(ρε, i)

}
.

Since f̂ε,i is asymptotically optimal on �i , the first term on the right-hand side of
the last inequality is bounded. Moreover, since ρ∗ε is α-optimal, we have

lim sup
ε→0

α−1
ε sup

f∈�i
P εf

{
ρ∗ε > xε(ρε, i)

}≤ 1.

Finally, we have that αεϕ
−p
ε (�i) is bounded for all i by assumption. The

conclusion (64) follows.
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1. Introduction: Lepski’s initial paper. In the last 10 years, an enormous
amount of work has been produced in order to build so-called adaptive estimators
and, in particular, one of the authors of this paper designed a special method,
now known as Lepski’s method, to build such estimators. Adaptive estimators
have the advantage that they estimate the parameter better when it is easier to
estimate. In some sense, the estimator does the best that is possible in view of the
properties (smoothness or complexity) of the underlying function to be estimated.
For instance it will choose the right bin width for a histogram estimator or the right
bandwidth for a kernel estimator. This is quite satisfactory but, even if you know
that this is the case, the estimator does not tell you how well it does, because its
performance depends on the unknown properties of the parameter. In particular,
you have no idea about the order of magnitude of the distance between your
estimator and the truth and cannot build nontrivial confidence sets from it.

This has been the main justification for the introduction of the random
normalizing factors (RNFs) and αε-adaptive estimators in Lepski [3]. In this
fundamental paper he dealt with the simplest situation where one assumes that
either f belongs to some (typically large) set � or that it is easier to estimate
because it belongs to some much smaller set �0 ⊂ �. In this case, an adaptive
estimator estimates f better (and indeed in an optimal way with respect to �0) if
f actually belongs to �0 but one will not know it because the estimator does not
indicate that f ∈�0. Something is missing here, namely a test procedure that tells
you whether f belongs to �0 or not. Lepski’s construction essentially involves
two estimators f̂ and f̂0, especially designed to be optimal when f belongs to �
and�0 respectively, and a test procedure that f belongs to �0. Of course this is an
oversimplified presentation and not all such triplets would do. For the construction
to work, special combinations of those three elements have to be chosen in a quite
sophisticated way. The close connection between RNFs, αε-adaptive estimators
and testing whether �0 is true or not is made quite explicit in Proposition 3 of
Lepski (1999).

In Section 5 of Lepski [3], the author gives two concrete applications of his
ideas after having listed in Section 4 a number of potentially interesting problems
to be solved, concluding that “the treatment of minimax risk with RNFs for
multidimensional models is the subject of a series of forthcoming papers.” The
paper by Marc Hoffmann and Oleg Lepski (hereafter H&L) to be discussed is
one of these and, in view of the numerous connections between both papers, my
discussion will deal with the two of them simultaneously.
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2. The new extended framework. In view of handling a problem of variable
selection in multidimensional regression, it is necessary to consider the case
where there is more than one alternative to �. Here the authors deal with N
subsets �i , 1 ≤ i ≤ N , of �, which, as they say, requires a nontrivial extension
of the results of Lepski [3]. From the conceptual point of view (definition and
general properties of RNFs and αε-adaptive estimators), this extension is quite
natural and hopefully does not involve serious additional technicalities. The
extension essentially preserves the properties of RNFs and αε-adaptive estimators
as described in Sections 2 and 3 of Lepski [3]. Moreover, and this can be viewed
as the main result concerning the new framework, the solution for the case
N > 1 is essentially equivalent to the solution of the N problems � versus �i
separately. Proposition 1 actually provides a complete solution for the construction
of optimal RNFs and αε-adaptive estimators for the general situation starting from
optimal RNFs and αε-adaptive estimators for each of the N corresponding binary
problems, and Proposition 2 offers a reciprocal. This also clearly emphasizes the
importance of the initial construction of Lepski [3].

This general fact being established once and for all, it follows that, in view of
this equivalence, the hard work now lies in finding optimal RNFs and αε-adaptive
estimators when N = 1. An inspection of the proofs of Theorems 1 and 2 in
Lepski [3] or Theorem 1 in H&L immediately confirms the impression that it is not
easy. In each case, the authors actually provide a specific construction tailored for
the problem at hand. This leads to a very natural question: can one find some more
or less generic method to solve the case N = 1, at least for some classes of sets
� and �0? It may be difficult, but certainly quite exciting, to design some general
basic methods to solve the problem, even if they have to be tuned in particular
situations.

3. The problem of adaptive confidence sets. As mentioned before, adaptive
estimators do not tell us anything about their real performance and it is a merit
of RNFs to provide the statistician with a rough idea of the distance between
the estimator being used and the true underlying parameter. Why should one
need to have an evaluation of this distance, if not for approximately locating the
true parameter? And approximately locating the true parameter essentially means
building confidence sets. The problem of building adaptive confidence sets has not
often been considered in the literature up to now, with a few exceptions mentioned
in Section 2.4 of H&L, although it is an important and delicate problem which
is far from being solved. From my point of view the main merit of the theory of
RNFs and αε-adaptive estimators developed by H&L is to give a general method
for constructing adaptive confidence sets. I only regret that the authors put the main
emphasis on normalized versions of the risk and then derive their confidence sets
from them through the very rough Markov inequality, rather than directly looking
at adaptive confidence sets. In many situations, risks are computed by integrating
deviation inequalities and it would be more natural to start from such deviation
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inequalities to derive adaptive confidence sets. I am not sure that there is a need
for a single object, namely an αε-adaptive estimator, for solving both problems
of adaptation and problems of adaptive confidence intervals. Since the problem of
adaptation has been widely investigated, my point of view would be to concentrate
directly on the construction of adaptive confidence sets, not necessarily based on
previous risk evaluations.

There is another reason for separating the two problems of estimation and get-
ting confidence sets. In the estimation case, we know how to build adaptive estima-
tors over all Hölder classes simultaneously without any restriction on the parame-
ters. The construction of RNFs requires the assumption that the true unknown f
belongs to some known set � of functions. This may be technically and theoret-
ically unavoidable but obviously leads to some difficulties in order to apply the
theory. How should we choose this space � which appears to be an essential tool
in the construction? In some sense, this is opposite to the philosophy of adap-
tation and many adaptive methods do not require such knowledge. One can of
course make the conservative choice of a very large set � but this will be at the
price of a very slow rate when the assumption that f belongs to

⋃
1≤i≤N �i is

rejected.

4. Asymptotics versus nonasymptotics. My main concern about RNFs
and related concepts is about their fundamentally asymptotic nature. They are
primarily based on rates and comparison of rates. I do not believe in the concept
of rates for any practical purpose and, even from a theoretical point of view, I find
it terribly misleading. Here is an elementary illustration. If we denote by H(β,L)
the space of Hölder densities on [0,1] with smoothness β and constant L, that is,
assuming that 0< β ≤ 1, the set of densities that satisfy

|f (x)− f (y)| ≤ L|x − y|β for all x, y ∈ [0,1],
the rate of convergence of good estimators based on n i.i.d. observations is known
to be bounded by C(Ln−β)1/(2β+1) and this is optimal from a minimax point of
view, apart from the constant C. As a consequence, if f belongs to H(1,L1) it can
be estimated at a better rate, namely n−1/3, than if f belongs to H(1/2,L2), the
rate being only n−1/4. Nevertheless, for all reasonable sample sizes, one can get a
more accurate estimator for the second case if L1 = 125 and L2 = 1.

Another illustration of the difficulties connected with the purely asymptotic
point of view considered by H&L is as follows. Assume that we have at hand n
i.i.d. observations from some unknown density f on [0,1] belonging to H(1,L)
for some unknown value of L. This is actually a simple but quite realistic situation
because most usual densities are indeed Lipschitz for a large enough value of L.
Here n may be large (a few thousands) but is definitely finite. This is a situation
where we know how to estimate f adaptively using a histogram based on a regular
partition of [0,1] with D̂ pieces, where D̂ is determined by the data only. Both
theoretical (Castellan [2]) and practical (Birgé and Rozenholc [1]) nonasymptotic
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results are available for this situation and they do not require an a priori upper
bound on L although, for practical purposes, L ≤ 106 would probably do. It is
also easily seen from simulations that the cases L = 1 and L = 50 lead to quite
different results. Since the relevant estimators are adaptive in a nonasymptotic
sense they lead to good estimation procedures in both cases but do not provide
confidence sets for f , which is a serious drawback. On the other hand, the theory
of RNFs, as presented in Lepski [3] or H&L, provides no solution at all to this
problem because it is based on comparison of convergence rates and the rate is
the same, namely n−1/3, whatever the value of L. I do not mean here that the
idea of RNFs is uninteresting or that the estimators which are constructed in
Lepski [3] and H&L are bad, but rather that the theory should be modified to
take this fact into account and that the quality of the resulting estimators, or rather
of the resulting confidence sets, should be evaluated using some nonasymptotic
criteria.

To go on with this apology of the nonasymptotic approach, let us consider the
effect of N . Of course, as shown by Proposition 1, the effect of N is negligible
from an asymptotic point of view. But let us look at the proof carefully. The fact
that one can reduce the general problem to the simpler case N = 1 is based on the
finiteness of R =∑N

i=1(M
∗
i )
p . Nevertheless, for large values of N this quantity

R can be quite large and its presence can completely hide the effect of the rates
(generally of order εδ for some small value of δ). For all realistic values of ε,
the only visible effect will be connected with the size of R. Moreover, interesting
applications typically involve a large number of possible alternatives to the larger
space �. It is even more true that � has to be known and therefore it will be
natural, for safety reasons, to take it quite large. In the variable selection problem
with d variables considered in H&L, the number of possible subsets of significant
variables is 2d . Thinking of d = 10 gives an idea of the size of N and of the
asymptotic nature of the results. Looking at the residual term in the risk bound
for Corollary 1, which is considered negligible in the proof, also casts some doubt
about the relevance of such a result when N is large.

To conclude, I would say that the theory of RNFs is a quite interesting attempt
to provide some general solution to the delicate problem of finding adaptive
confidence intervals for nonparametric problems. Nevertheless, I believe that
this theory, in its present form, suffers from its purely asymptotic nature and
should be modified in a suitable way. In particular the concept should be more
directly oriented toward confidence sets and should have more relevance from a
nonasymptotic point of view.
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1. Introduction. We congratulate the authors for a stimulating paper (referred
to as HL in the following). As the authors correctly stated, the number of variables
does not affect the optimal rate of convergence in a regular parametric model,
but it does affect the optimal rate of convergence in nonparametric models. To
be more precise, the optimal rate of convergence in a nonparametric function
estimation problem depends on the “effective” nonparametric dimension of the
model. For example, the “effective” dimension of a nonparametric additive model
is 1, no matter how many variables are in the model. Therefore, variable selection
in the additive model does not affect the optimal rate of convergence of the
model. In light of this, we would like to consider the problem of adaptive
estimation in the nonparametric functional ANOVA setup. It is readily seen that
the variable selection problem considered in HL is a special case of the problem
we consider. Following the example of HL, we will concentrate on the white noise
model setting. This can be motivated by the results in Brown and Low [1] and
Nussbaum [3].

2. Rates of convergence. Before turning to our main topic we would like
to point out a feature of the result in HL that we found surprising. We hope
that they will be able to comment on this, and perhaps provide some additional
background and a heuristic explanation. The feature that concerns us first appears
in the formula for zn(is) near the end of Section 1, and is repeated in various forms
later on, including in Theorem 1. To focus on this feature, let us consider the case
of one direction, is , as in Theorem 1 and, for simplicity, we consider only isotropic
regression. Thus, assume a fixed smoothness, say m, throughout the model. Let
the full dimension of the model be d , and let the dimension of the “direction” is of
interest be s, say. Then β =m/d and β(is)=m/s.
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As HL note, if s > d/2 one may choose α = αn = n−a for suitable a > 0 and
then zn(is) coincides with the rate of convergence on the set �(is). This situation
seems entirely satisfactory; we are concerned with the opposite situation where
s ≤ d/2. In that case, for any αn converging to 0,

zn(is)=
(√

ln(1/αn)

n

)2β/(4β+1)

>

(
1

n

)β(is )/(2β(is)+1)

= rate of convergence on �(is).

Hence, no fully adaptive estimation is possible in the RNF sense of HL. What
about the usual sense of adaptive estimation? Is fully adaptive estimation possible
here in the usual sense? Or, is the rate zn(is) the best possible ordinary rate of
convergence over�(is) for an estimator in this situation if the optimal convergence
rate is also desired over the full space?

The ordinary sense of adaptation does not involve a choice of α. So if zn(is) is
the best possible ordinary rate of convergence over �(is), then it is important in
constructing an ordinary adaptive estimator to choose αn in an optimal way. For
ordinary adaptive estimation, what is the optimal choice of αn, and what is the
corresponding optimal adaptive rate result?

In this connection we note for the construction in Section 3.1 it appears that any
choice αn→ 0 will yield an estimator that converges at the rate with respect to
asymptotic risk, defined as

lim
B→∞ lim sup

n→∞
sup

f∈�(is )
Enf

{
ϕn(αn, is)−2(min(‖f̂n − f ‖,B))2

}
≤∞.

On the other hand it appears one must choose αn = n−a for suitable a > 0 in
order to attain the appropriately normed limiting rate, as defined via (3) of HL. If
this is so, it is of additional technical interest as an instance where the asymptotic
and the limiting risks can differ, and also where no optimal asymptotic risk is
attained.

3. Functional ANOVA formulations. A general d-dimensional nonparamet-
ric function estimation problem has an optimal rate of convergence that depends
on the magnitude of d . For even moderately large d , the rate of convergence is
very slow compared to that of one-dimensional problems. This is one aspect of the
so-called curse of dimensionality. To circumvent the curse of dimensionality, we
often consider the functional ANOVA decomposition. Consider a d-dimensional
nonparametric function with the following decomposition:

f (x1, x2, . . . , xd)= constant+
d∑
i=1

fi(xi)+
∑
i<j

fij (xi, xj )+ · · · ,(1)

where the components satisfy side conditions which generalize the usual side
conditions for parametric ANOVA to function spaces, and the series may be
truncated in some manner.
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There are two different types of functional ANOVA models commonly
considered. They differ in the function spaces considered. Let Hm([0,1]d) be
the mth-order Sobolev Hilbert space of functions on [0,1]d . Stone [4] assumes
smoothness conditions like fi ∈ Hm([0,1]), fij ∈ Hm([0,1]2) and so on (Stone
actually assumed Hölder spaces, which are similar to the Sobolev Hilbert spaces)
and showed that the optimal rate of the model is n−2m/(2m+s), the same as
that of s-dimensional full function problems, where s is the highest order of
interactions considered. Therefore the effective dimension of such functional
ANOVA models is s. In the following we will refer to such models as partial
derivative ANOVA (PD-ANOVA) models. The smoothing spline ANOVA models
introduced in Wahba [5] and discussed in detail in Wahba et al. [6] make a
different type of assumption on the component functions in the functional ANOVA
decomposition. That is, after determining the function space of each main effect,
the function space in which an interaction lies is assumed to be the tensor product
space of the function spaces of the interacting main effects. Therefore, in the tensor
product space ANOVA model, if we assume the main effects are in Hm([0,1]), the
kth-order interactions lie in

⊗k Hm([0,1]). We will refer to them as tensor product
space ANOVA (TPS-ANOVA) models.

For a Hilbert space E1 of functions of x1 and a Hilbert space E2 of functions
of x2, the tensor product space of E1 and E2 is defined as the completion of the
class of functions {∑k

i=1 fi(x1)gi(x2), fi ∈ E1, gi ∈ E2} under a norm induced
by the norms in E1 and E2. It is known (Lin [2]) that the tensor product space
of d Sobolev spaces Hm([0,1]) is equivalent to

*m =
{
f :
∂ |i|f (x)
∂xi ∈ L2([0,1]d), ∀i= {i1, i2, . . . , id} ∈Rd

such that max
j
ij ≤m

}
,

where x= {x1, x2, . . . , xd}, |i| =∑
j ij . The norm for any f ∈*m is

‖f ‖2
*m
= ∑
{i: maxj ij≤m}

∫ [
∂ |i|f (x)
∂xi

]2

dx.

Since any function in
⊗k Hm([0,1]) has one derivative of order km (order m

in each direction), and some other derivatives of orders higher than m, we can see
that TPS-ANOVA models put higher order smoothness conditions on interactions
than on main effects, and the order of the smoothness condition imposed on an
interaction increases with the order of the interaction. This reveals an intuitively
appealing aspect of the tensor product ANOVA model: starting from an additive
model, when we make the model more and more complex by throwing in higher
and higher order interaction terms, we assume stronger and stronger smoothness
conditions on the new terms thrown in to keep the model manageable. This is
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consistent with the philosophy of the ANOVA modeling strategy of throwing away
higher order interaction terms.

Lin [2] showed that the optimal rate of convergence for the tensor product
space ANOVA model is [n(logn)1−s]−2m/(2m+1), where s is the highest order of
interactions considered. Notice this implies that the optimal rate of the saturated
tensor product space model is [n(logn)1−d ]−2m/(2m+1). This is only a log factor
away from the optimal rate of the one-dimensional nonparametric problems.
Therefore the optimal rate of convergence of TPS-ANOVA models depends on
the number of variables only through a log term.

HL consider a particular family of submodels related to the problem of variable
selection, but their formulation can be applied to other subfamilies. For example,
we can apply the framework to the model selection problem in the functional
ANOVA framework. In principle we can take the function space � of HL
to be the space corresponding to any functional ANOVA model and consider
adaptive estimation with respect to smaller ANOVA submodels. For simplicity,
we assume � to be a function space corresponding to the saturated ANOVA
model, and we consider adaptive estimation with respect to the functional ANOVA
submodels.

3.1. PD-ANOVA model. The saturated function space considered in
PD-ANOVA is the same as the one considered in HL with β1 = β2 = · · · =
βd =m. Here � is the Sobolev space Hm([0,1]d). It is anticipated that the same
results on rate of convergence in HL should also be valid PD-ANOVA. This can
actually be proved by the same line of proof in HL. We only provide a brief de-
scription of how HL’s proofs can be modified to give results in PD-ANOVA setting.
First consider a given functional ANOVA submodel M1 of the form (1), with the
highest order of interaction to be s. Let S be the set of index sets corresponding to
the generators of M1. For example, for the model

f (x1, x2, x3)= f0+ f1 + f2+ f3 + f12+ f13+ f23,

we have S = {{1,2}, {1,3}, {2,3}}. The index set I in HL corresponds to the set
of k such that θk [defined in (22) in HL] are not zero for the functions in the
submodel. In the ANOVA setting, the index set I can be defined correspondingly
as

I = ⋃
il∈S

{
(k1, k2, . . . , kd) ∈Nd :kj = 0, ∀j �∈ il

}
.(2)

To avoid technicalities, we concentrate on the rate of convergence and ignore
the constants that do not depend on ε. We now show that, ignoring the constants,
Theorem 1 of HL applies to PD-ANOVA. The β in HL should now be m/d , and
β(is) should now be replaced by m/s. All the other quantities in HL can then
be defined similarly ignoring the constants. The proof of the upper bound part
of Theorem 1 follows the same line of argument as that of the proof of upper
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bound in HL. The lower bound for the PD-ANOVA model is a corollary of the
lower bound part of Theorem 1 of HL, since the function space in the PD-ANOVA
model contains the function space in the variable selection model. Once Theorem 1
is established, the generalization to adaptation to multiple subspaces follows the
development in HL.

3.2. Tensor product space model. Tensor product space framework is relevant
to both variable selection and TPS-ANOVA model choice. In such a framework
the saturated space � is

⊗d Hm([0,1]), which is different from the function
space Hm([0,1]d) considered in HL. However, the framework in HL can still
apply. For simplicity in this discussion we will consider only the TPS variable
selection model. That is equivalent to a TPS-ANOVA model with only one term
with dimension s. It should be clear that the rates we obtain are valid for the general
TPS-ANOVA model.

We basically follow the notation of HL. For notational simplicity, we concen-
trate on the case p = 2. We concentrate on the rate of convergence and ignore all
the constants that do not affect rates. These include C’s, Z’s and λ in HL. Also,
we do not need β and β(is) in our tensor product space case. We also assume αε
to be a small fixed number independent of ε, though we keep αε in the notation
just so that it is easy to see to which term in HL it corresponds. The full space �
corresponds to

�(m,L)=
{
θ :

∑
k∈Nd

(
θ2

k

d∏
i=1

(1+ ki)2m
)
≤ L2

}
.(3)

I and J are defined the same way as in HL. That is,

I = {
(k1, k2, . . . , kd) ∈Nd :kj = 0, ∀j /∈ is

}
,

J =Nd\I.
We define

�(is)=
{
θ :

∑
k∈I

(
θ2

k

d∏
i=1

(1+ ki)2m
)
≤ L2

}
.

We further define

Iε =
{
(k1, k2, . . . , kd) ∈ I :

s∏
j=1

(1+ kij )2m ≤K(ε)
}
,

Jε =
{
(k1, k2, . . . , kd) ∈ J :

d∏
i=1

(1+ ki)2m ≤N(ε)
}
,

Qε =
{
(k1, k2, . . . , kd) ∈Nd :

d∏
i=1

(1+ ki)2m ≤M(ε)
}
,
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with

K(ε)=
[
ε2
(

log
1

ε

)s−1]−2m/(2m+1)

,

M(ε)=
[
ε2
(

log
1

ε

)d−1]−2m/(2m+1)

,

N(ε)=
[
ε4
(

log
1

ε

)d−1]−2m/(4m+1)

.

Note that the way the above six quantities are defined is different from that in
HL. Notice also for our definition it is always true that N(ε) > K(ε). This is a
consequence of the fact that the rates of convergence in TPS models differ by only
a log term.

Notations θ̂ε , θ̂
(0)
ε (is) and Tε(is) have the same definitions as those in HL, but

with our new Iε, Jε , Qε. We define

ϕε(�)=
[
ε2
(

log
1

ε

)d−1]m/(2m+1)

,

ϕε

(
αε, is

)
=

[
ε2
(

log
1

ε

)s−1]m/(2m+1)

.

Notations Aε(is), ρ∗ε (is) and θ∗ε (is) have the same definitions as those in HL,
but with our new Tε(is), ϕε(αε, is), ϕε(�), θ̂ε and θ̂ (0)ε (is). We will show that
Theorem 1 in HL holds in our case with our definitions (ignoring the constants).
To do that, we first prove Lemma 1. This is a different lemma since all the
quantities involved are defined differently now. Therefore we provide a detailed
proof:

Eθ‖θ̂ε − θ‖2 =∑
Qε

ε2+∑
Qcε

θ2
k = ε2|Qε| +

∑
Qcε

θ2
k .

We have the following approximation:

|Qε| ∼
∫
∏d
i=1(1+xi)2m≤M(ε)

1dx1 dx2 · · · dxd

=
∫
∏d
i=1(1+xi)≤M1/2m(ε)

1dx1 dx2 · · · dxd.

Changing the variable in the integral, zi =∏
j≤i (1+xj ), i = 1,2, . . . , d , the above

quantity becomes
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∫ M1/2m(ε)

1

[∫ zd

1
· · ·

∫ z2

1
z−1

1 · · · z−1
d−1 dz1 · · · dzd−1

]
dzd

=
∫ M1/2m(ε)

1

[
(log zd)

d−1]dzd
= zd(log zd)

d−1∣∣M1/2m(ε)

1 −(d − 1)
∫ M1/2m(ε)

1

[
(log zd)

d−2]dzd
∼M1/2m(ε)(logM)d−1.

On the other hand, by the definition of Qε and �, we have

∑
Qcε

θ2
kM(ε)≤

∑
Qcε

θ2
k

d∏
i=1

(1+ ki)2m ≤ L2.

So we have

Eθ‖θ̂ε − θ‖2 ∼ ε2M1/2m(ε)(logM)d−1 +M−1(ε)L2 ∼ ϕ2
ε (�).

Hence Lemma 1 is proved. Lemma 2 stays the same since it does not depend on
our notation.

Similar to the derivation of |Qε|, we have

|Iε| ∼K1/2m(ε)(logK)s−1.

With these in mind, the proof of the upper bound in HL goes through
with our definition of the notation. In particular, the rate ϕε(αε, is) is
[ε2(log(1

ε
))s−1]m/(2m+1). The proof of the lower bound is not needed. It follows

directly from the fact that ϕε(αε, is)= [ε2(log(1
ε
))s−1]m/(2m+1) coincides with the

minimax rate of convergence on �(is).
It is interesting to note that since the rate of convergence ϕε(αε, is) in the tensor

product space framework is [ε2(log 1
ε
)s−1]m/(2m+1), the same as the minimax rate

of convergence on �(is), the estimation is fully adaptive in the RNF sense of HL.
The generalization to adaptation to multiple subspaces can be made following the
development in HL. We do not pursue that here.
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DISCUSSION

SAM EFROMOVICH

University of New Mexico

This is a nice and very stimulating article. The article suggests estimating an
underlying function together with its normalization factor. An estimate of the
normalization factor is referred to as a random rate.

The article is also thought-provoking. Actually after reading this article
I realized that I had many unanswered questions so I decided to use this discussion
primarily for clarification of some of the issues. In what follows I denote by HL a
procedure or a notion introduced in the article.

1. Can an HL estimator be data-driven? As I understand it, the HL setting
is defined as follows. There are given an underlying (principal) function space �
and its N subspaces �1, . . . ,�N . A statistician (and thus an estimator) knows
everything about these spaces. The space � is the one traditionally studied in
the nonparametric minimax literature, and the subspaces describe a belief that
an estimated signal may have a simpler structure and thus can be estimated more
accurately. Then, according to the HL paradigm, an HL estimator must be minimax
over the largest space � but it is allowed to be not minimax over the subspaces
where, instead of being necessarily minimax, an HL random rate (a new notion
introduced by the authors) should satisfy some restrictions.

As a result, there are N + 1 candidates (the underlying space and its N
subspaces) to choose from and this is the reason the authors refer to an HL
procedure of estimation as an adaptive one. However, let us stress that all the HL
procedures suggested require complete information about these N + 1 candidates.

Can this requirement about knowing the candidates be dropped? In other words,
can an HL procedure be data-driven? (To avoid possible confusion with notions of
adaptive estimates used in the article, I use the notion of a data-driven estimation
to stress that an estimator does not a priori depend on the spaces, in particular on
the underlying �.)

At first glance the answer is “yes” because a similar setting was considered
in the original articles by Lepski [3, 4] where a Lepski (L) adaptive procedure
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was suggested that later was successfully developed into a data-driven estimator.
In those articles a univariate problem was considered and it was assumed that an
unknown underlying space is an element of a given net�∗1 , . . . ,�∗m of spaces. The
goal was to find an adaptive estimator that was minimax over an underlying space.

The HL setting looks very similar to the L setting but the differences, in my
opinion, are dramatic. For instance, in the L setting all spaces in the net are treated
equally, whereas in the HL setting there is an underlying set � for which and only
for which the minimaxity of an HL estimator is required. As a result, while for the
L approach a data-driven estimator is developed by considering a fine net of spaces
that “approximates” an underlying space, it is not clear that such a possibility exists
in the HL setting. Indeed, if a data-driven estimator makes a mistake and considers
a larger space �′ ⊃ � in place of the underlying �, then this estimator is no
longer necessarily minimax over the underlying � and thus it does not satisfy the
HL paradigm. The outcome is similar when �′ ⊂�.

Thus, how do we construct a data-driven estimator that preserves the HL
paradigm?

2. Adaptation versus HL estimation. I found this line of the article very
interesting and (naturally) biased toward HL estimation. The authors are very
categorical in their conjecture that it is impossible to compute the accuracy
(meaning the random rate) of an adaptive estimator; see the paragraph below (7)
and note that this assertion is softened a bit in Remark 5 of Section 2.3.

To shed light on this conjecture, let us consider an example in which finding
HL random rates is trivial, but the construction of an adaptive estimator is a
serious problem. I use a classical example of estimation of analytic functions; see
Efromovich [2, Chapter 7]. In this example the minimax rate is proportional to
(ln(n)n−1)1/2 and, because it does not depend on an underlying analytic space,
this is the HL random rate as well. Thus, finding a random rate (normalization
factor) is trivial. On the other hand, adaptive (data-driven) minimax estimation is
not an elementary problem but an Efromovich–Pinsker estimator f̂EP will do it
(see Efromovich [2]). As a result, in the HL terminology, {(ln(n)n−1)1/2, f̂EP} is
a 0-adaptive HL estimator. Note that this is also an example of an HL estimator
that is adaptive in the HL sense but has a different structure than the hypothetical
adaptive estimator discussed in Proposition 3.

To be fair to the HL approach, I would like to present an example in which
adaptive estimation is trivial but finding random rates is not. I use a familiar
linear inverse problem where the available signal is

∫
h(t − x)f (x) dx; it is

observed in additive noise and the kernel h is supersmooth (see Efromovich [2],
pages 299–301). Here the minimax rate crucially depends on the smoothness of f
[it is proportional to ln(n)−β/ν , where ν describes the kernel] and thus finding
HL random rates is a problem. On the other hand, an elementary (not adaptive)
estimator is simultaneously minimax over a wide set of function spaces; see again
Efromovich [2].
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I like the latter example because, in my opinion, it sheds new light on the HL
approach and this light is not shaded by complicated estimates of f .

3. Does an HL estimator improve accuracy of estimation? This is another
interesting line in the article where using the notion “accuracy” confuses me.
I accept the HL position that knowing an underlying rate gives extra information
to a statistician, but does this knowledge improve the accuracy of estimation of an
underlying function f ?

To discuss this issue, I would like to present an example of a minimax estimator
that always outperforms the HL estimator in terms of mean integrated squared
error (MISE) convergence.

The example is very simple. I again consider an Efromovich–Pinsker estimator
and compare it with the canonical HL estimator suggested for the filtering model.
Let us begin with the HL estimator. For each f ∈ �∗, where �∗ is one of N + 1
possible spaces, the fastest rate of its MISE convergence is the minimax rate for
�∗ (I explain this in more detail in the next section). On the other hand, the
Efromovich–Pinsker estimator is superefficient over �∗ (using the terminology
of Brown, Low and Zhao [1]) and thus

E‖f̂EP − f ‖2
L2
/E‖f̂HL − f ‖2

L2
= o(1).(1)

This assertion does not contradict the optimal minimax results about the
canonical HL estimator because here a pointwise approach is used. Also, the
Efromovich–Pinsker estimator does not estimate rates. However, the result pre-
sented raises the following questions. If there exists an estimator A whose MISE
for every underlying function decreases faster than the MISE of an estimator B,
then why should a statistician be interested in the random rate (normalization fac-
tor) of estimator B? Also, if a statistician knows the normalization factor of the
estimator B but does not know the normalization factor of estimator A, then is it
right to call estimator B more accurate?

4. Minimax and estimation. The minimax approach considered in the article
is called global and it assumes that an underlying function can be any point in
an underlying space �. For instance, if � = �(β,L) is a univariate Sobolev
body (23), then the minimax rate is n−β/(2β+1) and it is attained by a projection

estimator f̂HL(x) =∑n1/(2β+1)

k=0 θ̂kφk(x) used in the article. This estimate is very
simple; it is globally minimax and it is also very convenient for both L and
HL estimation procedures. However, it also has a statistical drawback—for each
f ∈ �(β,L) its MISE is equal to O(1)n−2β/(2β+1) regardless of smoothness of
the function f .

Also note that the global minimax approach allows us to consider different
underlying functions for different n. This is clearly not the case in applications,
and thus other types of minimax approaches have been developed.



RANDOM RATES IN REGRESSION 373

Probably the most studied one is a minimax approach where, for a given
function f0, it is assumed that the difference f − f0 belongs to � and that
f approximates f0, for instance, ‖f − f0‖L∞ → 0. For known examples this
minimax approach does not change rates but it has been instrumental in finding
sharp constants. It also implies more sophisticated adaptive procedures; see the
discussion in Chapter 7 of my book.

The reason this minimax approach does not change rates is clear—functions
studied are not sufficiently fixed and the considered local space is too large. The
situation changes if we consider the following local space:

�(β,K,f0)=
{
f : f (x)=

K∑
k=0

θ0kφk(x)+
∑
k>K

θkφk(x),

∑
k>K

(θ2
k − θ2

0k)(1+ k2β)≤ 0, θ0k =
∫
f0(x)φk(x) dx

}
.

The new element here is that the low frequency part of an estimated f is fixed
and only the high frequency part is flexible. (Actually, a variety of projections can
be used but this simple example clarifies the approach.) Note that all considered
functions belong to the boundary of the space�(β,L0), L0 =∑

k≥0 θ
2
0,k(1+k2β);

nevertheless under mild assumptions the minimax MISE converges faster than the
global minimax n−2β/(2β+1), that is,

inf
f̃

sup
f∈�(β,K,f0)

E‖f̃ − f ‖2
L2
= o(1)n−2β/(2β+1).

This rate is attained by the Efromovich–Pinsker estimator, and sharp constants are
also known for this setting.

This local minimax approach sheds new light on (1) in Section 3 above. Namely,
the HL canonical estimator is not locally minimax and this explains why other
estimators can dominate it at each point. On the other hand, I conjecture that the
HL global minimax setting can be extended to the local minimax setting.

5. Random rates in anisotropic regression? This was the most confusing
question that I dealt with. Title, key words and Introduction promise the reader
that a regression model is considered and some results for the regression model are
presented. I may be wrong and missing something, but is there a single regression
result?

I also would like to say that I am truly impressed by the regression model
suggested for the study and the minimal assumptions made. To be specific, in
HL’s (1) and (2) the model Yi = f (Xi)+ εi , i = 1,2, . . . , n, is considered, where
f belongs to the anisotropic class (2) with positive βi’s and the errors εi are
uncorrelated zero-mean noise variables. Nothing more is assumed.

I am very interested in looking at proofs for this model. First, I would like to see
how errors with infinite moments will be dealt with. The case of dependent errors
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is very interesting. Also, typically even for a univariate setting some restrictions
on β are required to obtain optimal adaptive results, and some restrictions are
necessary for the equivalence between a regression and filtering models. How are
they bypassed?

Thus, I conclude my discussion with the following question to the authors.
Can you formulate a mathematical HL result for the model (1)–(2) and explain
its proofs for the above-highlighted cases?
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In their paper, the authors make a new interesting step toward “ideal” estimation
in the nonparametric framework: they face at the same time the estimation problem
and the control of accuracy.

Going back in history, one of the major steps has probably been to set up the
problem in the minimax framework. Let us put it in the form mentioned by the
authors. The question is to find f̂n such that

lim sup
n→+∞

sup
f∈�

EfMn(�)‖f̂n− f ‖<∞,(1)

where � is a class of functions and Mn(�) is a rate of convergence that cannot be
improved.

The following step in this path toward “ideal” estimation is the notion of
adaptation: for N denoting a collection of classes of functions,

On(f )= inf
{
Mn(�),f ∈�,� ∈N}
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replacesMn(�) in (1). It has been proved by various authors that some methods of
estimation share this property of being adaptive: among them, penalized model
selection methods, Lepski’s method for selecting the bandwidth and wavelet
thresholding.

However, in this context of adaptation, although we know that the method
produces an estimator achieving the ideal accuracy On(f ), this quantity is
unknown and remains hidden. But in practice, this quantity is very important
because it somehow tells us the confidence we can put in the estimation. Some
methods like resampling methods allow us to estimate the expected error but they
do not have minimax properties. One of the purposes of this paper is to give
information about the quantityOn(f ) in the minimax context. The authors are able
to produce a procedure providing, in addition to an optimal adaptive estimator, a
“kind”of estimation of the accuracy On(f ) called the random normalizing factor
(RNF). The procedure seems to perform very well whenN is not too wide a class.

We comment on two aspects which seem to us especially interesting: the first
concerns the link between the RNF and the adaptive confidence intervals; the
second, the link between the RNF and the maxisets.

1. RNF and adaptive confidence intervals. Of course, another standard
situation in statistical estimation where a normalizing factor plays an important
role is the construction of confidence intervals, since it is obvious that, in such a
context, the length of the confidence interval appears as a quantity relatively close
to the notion of RNF.

There exists a very developed theory for confidence intervals based on kernel
estimators with nonrandom bandwidth, showing their consistency and calculating
the rates for the coverage probabilities (see, for instance, Hall [2, 3]). Recently,
more sophisticated constructions have been able to provide confidence intervals
using kernel estimators with data-driven selected bandwidth (Neumann [6]; see
also Faraway [1]). However, at this stage, the length of the confidence intervals
is not data driven. So they remain hidden except by assuming a priori that the
function belongs to a prescribed class.

In Picard and Tribouley [10], using methods from wavelet thresholding,
confidence intervals were provided adapting to functions with a very different
kind of regularity (eventually having singularities or highly oscillating in small
intervals) and without incorporating any knowledge of the regularity in the
construction. In this case, the length of the interval is also data driven. Briefly,
to fix the ideas, let us summarize roughly a procedure of Picard and Tribouley [10]
for finding an adaptive confidence interval in an equispaced regression framework
(which is very close to the white noise model investigated here).

Let φ and ψ be a pair of father and mother wavelets. First, let us construct the
following crucial indicator:

ĵ (x0)= sup
{
j ≥ 0, ψjk(x0) �= 0, |β̂jk| ≥Mtn}, tn =

√
logn

n
,
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the maximum scale size where coefficients are significant in a neighborhood of x0.
Here β̂jk is an estimate of the wavelet coefficient constructed in the standard way.
Then we choose, for the center of the interval,

f̂ (x0)=
∑
k

α̂j0kφj0k(x0)+
ĵ (x0)∑
j=j0

∑
k

β̂jkψjk(x0).

This central part is generally quite close to the standard thresholding estimator. It
can be proved that the interval centered on f̂ (x0) with length 2u1−α/2v(n), where
u1−α/2 is a Gaussian quantile and where the leading term is given by

v(n)2 = 1

n

(∑
k

φ2
j0k
(x0)+

ĵ (x0)∑
j=j0

∑
k

ψ2
jk(x0)

)
,

has (up to a logarithm term) an optimal coverage up to the first order. Roughly, if
we want to improve the order of accuracy, we have to reduce the bias by replacing
ĵ (x0) with ĵη(x0), which is a quantity increasing with the order of accuracy η, and
to correct for the higher order moments occurring in the Edgeworth expansions.
We note here that v(n) obviously plays the role of the RNF.

We have several comments:

1. An important difference of the work provided here is the fact that our central
issue is to focus on the unknown quantity f (x0) at a fixed point, instead of
a band around a norm. We think that, for applications, it is important to have
a result with a visual significance. Hence, as for a band constructed on the
L2-norm, it is difficult to be satisfied from this point of view. However, a band
constructed using the L∞-norm would be mostly satisfactory. In the authors’
opinion, what can be done in this direction?

2. A central issue for providing confidence intervals (or confidence bands) is the
problem of the bias. There are two commonly used methods to deal with the
bias, undersmoothing and explicit bias correction. In every case, the bias part
does contribute. This is completely different from the minimax situation where
in general there is a trade-off between the stochastic term and the bias. Even for
adaptive situations, the bias may be the leading term.

3. In the confidence interval problem, not only the size of the interval is important
but also the coverage accuracy. A considerable effort has been made by the
statistical community to improve the accuracy of confidence intervals and
the construction in Picard and Tribouley [10] benefits from much previous
work (see Hall [2, 3], Neumann [6]). Do the authors think that the inequality
governing the order of confidence of the RNF can give more precise results
about the coverage?

4. Nevertheless, the confidence interval presented above does not overcome the
obstruction mentioned in Low [5]. It does require some assumptions (in
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addition to the usual regularity conditions) which can be interpreted in the
following way. We do not need to know the regularity of f , but the precision
of the estimation is linked with the local regularity in x0 and, somehow, this
local regularity has to be estimated. This problem has no solution without
extraneous assumptions except for tremendous rates of convergence. Hence,
our assumptions have to be understood as the fact that the observations contain
enough information relative to the complexity of the function around x0.

5. In the context presented by the authors, they are able to chose a normalizing
factor among a finite set of possible alternatives. What would be the price to
pay to be able to choose among a much wider class of regularity, as is the case
for the previous adaptive confidence intervals? This is obviously connected to
the possibility of increasing the number N with n.

2. RNF and maxisets. Let us consider a remark of the authors:

It may well happen that ρ̂n is smaller than ϕn(�), without having f ∈⋃
j �j . However,

this suggests that f is somehow close to
⋃
j �j .

In fact, such a phenomenon can be analyzed in a slightly different way if we think
in terms of “maxisets” instead of thinking in terms of functional classes.

It is common in nonparametric statistics to index a set of functions by smoothing
parameters. However, when looking for minimax procedures over fixed functional
sets, or adaptive procedures with respect to a range of sets indexed by a smoothing
parameter (like Hölder spaces indexed by the smoothness parameter α), we are in
fact influenced by functions in this set which are the most difficult to estimate with
a general procedure. Actually, this set of “bad functions” strongly depends on the
definition of smoothness. Most unfavorable a priori measures or sets of functions
in Assouad’s cube or Fano’s pyramid do not look the same at all if we refer to
Hölder classes or to Sobolev spaces, for instance. Moreover they usually do not
reflect well what we expect to find in practical situations. This explains why many
people find it a bit arbitrary to look for special properties over a specific class
of regularity which does not necessarily have any connection with the practical
situation.

In Kerkyacharian and Picard [4] the focus is on the concept of “maxiset,” that is,
the maximal set where a procedure has some given rate of convergence. The setting
is not extremely different from the minimax context but it has the main advantage
of providing a functional set which is genuinely connected to the procedure and
the model.

If we come back to the present situation, both the procedure of estimation and
the RNF may be chosen arbitrarily, but in practice they are generally constructed
from a particular estimation procedure. If this is the case, it can be a serious
advantage to start with a set of�j ’s associated with the maxisets of the procedure.
More precisely, in Kerkyacharian and Picard [4], the problems of finding maxisets
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and oracle inequalities are connected. A typical situation is the following. Let us
define

F(f )(j) := sup
j ′≥j

2−j ′/2‖Ej ′f − f ‖,(2)

where Ejf is the mean of f̂j , a sequence of estimators of the function f

indexed by the tuning parameter j (e.g., a bandwidth). We consider the following
quantities:

jFλ (f ) := inf{j ∈N,F (f )(j)≤ λ}, λn = 1√
n
, jFn = jFλn(f ).

Then, we say that the estimator f̂ satisfies an oracle inequality on V, associated
with a sequence of estimators f̂j and the functional F at the rate cn = 1+ logn if
the following two inequalities are true for all n≥ 1:

En‖f̂ − f ‖pp ≤ Ccn(2j
F
n /2λn)

p ∀f ∈V,

‖EjFλ (f )f − f ‖
p
p ≤ C′(2j

F
λ (f )/2λ)p ∀f ∈V, ∀λ > 0.

It seems to us that if we take as starting point an estimate satisfying an oracle
inequality of the above type, N= {�k, k = 1, . . . ,N} with

�k = {
f,F (f )(j)≤ 2−αkj , ∀j ≥ 0

}
,

we can reasonably guess that a RNF can be produced. Do the authors agree with
this guess? We also think that if N were large enough, then the RNF also would
be a fairly good indicator of the class �k.
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The main and important contribution of this paper is in developing the concept
of optimal random normalizing factors (RNFs). A special case (RNF taking two
values) had been introduced earlier by Lepski [8]. The theory of optimal RNF
can be viewed as an attempt to consider estimation, testing and confidence regions
within a unique scheme. Although it can be applied to parametric problems as well,
the paper focuses on nonparametrics, arguing in the rate optimality terms natural
for nonparametric function estimation.

A simple motivation for the optimal RNF theory comes from the well-known
practice of pretesting. One often does testing to choose a simple model and to es-
timate in this model afterwards. In such a procedure the statistician typically eval-
uates the errors of testing and estimation separately and does not try to specify the
error of the compound procedure. Using RNF, Marc Hoffmann and Oleg Lepski
suggest a hybrid test–estimation measure of the error of such a compound proce-
dure, when a finite number of models are to be tested (RNF takes a finite number
of values equal to the number of tested hypotheses). They also define the concept
of optimality with respect to this new hybrid error measure. Two main applications
of the optimal RNF approach suggested in the paper are (i) adaptive nonparametric
confidence sets and (ii) adaptive estimators on nonstandard (nonnested) functional
classes appearing in anisotropic regression (ANR).

1. Adaptive confidence sets. Most of the previous work was devoted to
nonparametric confidence intervals at a fixed point. The methods either were
based on undersmoothed estimators (and thus handled only the variance term,
the bias being negligible) or used empirical estimates of the bias, assuming
higher smoothness of the function f than the one for which the bias expression
was obtained. In both cases valid confidence intervals were obtained, but they
were applicable to suboptimal (undersmoothed) estimators. A limitation of this
type turns out to be unavoidable for confidence intervals at a fixed point. As
shown by Low [11], it is impossible to construct adaptive confidence intervals for
nonparametric estimators at a fixed point conserving optimal rates of convergence.
This means, in particular, that if one admits that f might perhaps have only β
derivatives, the expected length of the pointwise confidence interval must be of
the order n−β/(2β+1), even if f is infinitely differentiable. Marc Hoffmann and
Oleg Lepski show that for confidence intervals in the L2-norm the situation is
more optimistic. In particular, an adaptive confidence set can be constructed as
the L2-ball around a rate optimal (and adaptive) estimator, and the data-dependent
radius of this ball, expressed in terms of RNF, becomes of smaller order as the
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smoothness of f increases [see (11)]. Thus, unlike the pointwise case, in the L2-
case we have a possibility to construct confidence sets that are “honestly” adaptive
to the smoothness of f . However, this important result is not developed enough to
get implementable recipes. Several points are left open:

1. The bound in (11) depends on M and ρ̂ε. How do we compute these values? If
we turn to Theorem 2 for the concrete example of ANR, the value ρ̂ε = ρ∗ε is
explicitly defined but it depends on L and β, which are unknown in practice,
while forM we have only an asymptotic expression M̃∗ depending on the same
unknown parameters.

2. The derivation of (11) from (10) is based on Markov’s inequality: this is a rough
method; the bounds are certainly poor. Some exponential inequalities should be
used instead, at least for the Gaussian case.

3. The values of the RNF ρ̂ε in (11) are discretized: ρ̂ε takes N + 1 values, where
N is the number of candidate classes�j . The result also depends on the choice
of the envelope class �. If the discretization is very rough, one gets poor
confidence sets. How do we discretize and how do we choose the envelope
set �? In the ANR example, the discretization is done w.r.t. the unknown
directions is , but not w.r.t. the unknown smoothness, which is certainly not
fair in the confidence sets context. Ideally, one would like � to be as large as
possible, for example, the entire L2, while one would like the �j ’s as small as
posssible, up to �j = {f0}, where f0 is an individual function. This means that
the discretization given by �j should be very fine. It is mentioned after (12)
that N =Nε can grow as ε→ 0. What are the limitations?

A related idea is “honest confidence sets” in L2 suggested by Li [10].
He constructs confidence sets based on Stein’s unbiased risk estimator. The
construction of Li is “honest” in the sense that his confidence bounds are valid for
all functions f in L2; there is no adaptation to the smoothness. A price for such
a generality is that the intervals are wide; the L2-radius of the ball is ∼ n−1/4. Li
studied only the rates and did not provide the expressions for coverage probabilities
in a ready-to-use form. Nevertheless, in his framework this might be possible with
some work, since the constants appearing there are absolute. It is interesting to
compare the size of confidence sets in [10] with those obtained by Marc Hoffmann
and Oleg Lepski. Intuitively, one would think that the results should match when
the envelope set � approaches L2 (i.e., β→ 0). But this is not the case. Let, for
example, d = 1,N = 1, and let �1 be a class with smoothness β ′ & β . Then the
RNF of Hoffmann and Lepski giving the size of the confidence set is of the order

zn =max

{(√
ln (1/α)

n

)2β/(4β+1)

, n−β ′/(2β ′+1)

}

in the “best” case where �1 is accepted. In the worst case the confidence sets
are even wider. Since β ′ & β , we have zn ∼ n−2β/(4β+1) (up to a log-factor), and
thus zn& n−1/4 whenever β < 1/4. This suggests that the confidence sets of [10]
become preferable, as the envelope set � becomes large (at least, β < 1/4).
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2. Adaptive estimation on general scales of classes. It is well known that
the usual adaptation schemes (Mallows Cp , cross-validation, wavelet thresholding,
Lepski’s scheme etc.) achieve minimax adaptivity on various functional classes,
such as one-dimensional or isotropic multidimensional Hölder, Sobolev or Besov
classes. In this usual context, adaptation to the unknown smoothness is realized,
and the functional classes are nested or ordered in a certain sense by the values
of their smoothness parameters. For the ANR setting, Marc Hoffmann and Oleg
Lepski do not consider adaptation to unknown smoothness (the smoothness
parameters for all the directions are fixed and known), but rather adaptation to
unknown direction is . However, their general theory of Section 2 does not exclude
a possibility of adaptation to both smoothness and direction. Another crucial point
is that Hoffmann and Lepski do not aim to recover the “true” direction is , but a
direction having the same complexity 1

βi1
+ · · · + 1

βis
as the true one, and hence

yielding the same convergence rate. So, more precisely, one should speak about
adaptation to the rate of the unknown true direction is and not to the direction
itself.

For each class �(is) there is a rate optimal projection estimator θ̂ (0)ε (is). The
Hoffmann–Lepski adaptation procedure selects a data-driven i∗ and prescribes
using the estimator θ̂ (0)ε (i∗). The definition of i∗ can be written in the form

i∗ = arg min
is∈N

ϕε(αε, is)(1)

if the set N = {is :Tε(is)≤ λ2ϕ2
ε (αε, is)} is not empty. If N is empty, the procedure

prescribes using θ̂ε, a rate optimal projection estimator on the envelope set �.
Writing i∗ in the form (1) allows us to see that the Hoffmann–Lepski procedure

is a member of the family of adaptation rules that can be called pretesting
aggregation. These rules are defined as follows. Assume that our aim is to select
an element i from a given set T of general nature. For each i associate a test Ti
and say that i is accepted if the test statistic is smaller than a certain threshold.
Introduce a partial ordering ' on the set T , and define the aggregated value

i∗ =min'{accepted i},
where min' denotes the minimum w.r.t. the ordering '. A general recipe is that:
(i) the relation ' should order in the sense of increasing variance terms or, more
precisely, guaranteed upper bounds for stochastic error terms; (ii) the test Ti should
reject if the appropriately chosen test statistic is larger than the corresponding
guaranteed bound.

For example, the Hoffmann–Lepski procedure (if we discard the envelope
class � which is certainly ballast in the adaptation context) is a special case of
pretesting aggregation where “is is accepted” means is ∈ N , and is ' i′s means
ϕε(αε, is)≤ ϕε(αε, i′s). Another special case of pretesting aggregation is the Lepski
adaptation scheme [7] where i is a smoothness parameter, the tests Ti check
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whether pairwise distances between estimators exceed a threshold and the ordering
is defined by usual inequalities between smoothness parameters. Examples of pre-
testing aggregation with nonstandard ordering, related to multivariate anisotropic
settings, appear in [6], [9], [12]. These inherit the test structure close to the
original Lepski scheme [7]: pairwise comparisons between estimators (or between
estimators and pseudoestimators) are used to define the tests Ti . Note that for the
Hoffmann–Lepski procedure the tests Ti are not of this type. The situation becomes
even less standard in the statistical learning context where no explicit separation
of risk into the bias and variance terms is available. Pretesting aggregation works
here as well [14], however, with a quite different definition of tests: they should
check nonemptiness of certain “insensitivity sets” of the empirical risk functional.

I guess the choice of the ANR model in the paper is mainly motivated by
pedagogical reasons, as an example where the concretization of the optimal
RNF theory can be done with minimal technicalities. From this point of view,
the choice is perfect. However, the model is so nice and so particular that the
adaptive estimators can be obtained in a better fashion without resorting to the
RNF machinery. In fact, consider the blockwise Stein method. Define the values

T1 = 5, ρε = 1/ log(1/ε), Nmax = (ε−2),
Tm = (T1(1+ ρε)m−1), m= 2, . . . , J − 1, TJ =Nmax−∑J−1

j=1 Tj ,

J =min

{
m : T1+

m∑
j=2

(T1(1+ ρε)j−1) ≥Nmax

}

and introduce the weakly geometrically increasing sets of integers

A1 = {k ∈N :k ≤ T1}, Am =
{
k ∈N :

m−1∑
j=1

Tj < k ≤
m∑
j=1

Tj

}
, m= 2, . . . , J.

For m= (m1, . . . ,md) ∈Nd such that 1≤mj ≤ J define the blocks

Bm = {k ∈Nd : kj ∈Amj , j = 1, . . . , d}.
Consider the sequence model (25) of Hoffmann and Lepski. The blockwise Stein
estimator of θ = (θk, k ∈Nd) is defined as θ̃ε = (θ̃ε,k, k ∈Nd), where

θ̃ε,k = λkYk, λk =
(

1− ε2|Bm|∑
k∈Bm Y

2
k

)
+
, k ∈Bm, m ∈ {1, . . . , J }d,(2)

and λk = 0 if k does not belong to any of the Bm’s. Let

�(is)=
{
θ : ∑

k∈I (is)
θ2

k

(
1+

d∑
k=1

k
2βi
i

)
≤ L2, θk = 0, k /∈ I (is)

}
,

and denote ‖θ‖2 =∑
k∈Nd θ

2
k , ϕε(�(is))= ε2β(is)/(2β(is)+1). The following result

holds.
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PROPOSITION. The estimator θ̃ε defined by (2) satisfies

lim sup
ε→0

sup
θ∈�(is )

Eεθ
[(
ϕ−1
ε

(
�(is)

)‖θ̃ε − θ‖)2
]
<∞,

for every 1≤ s ≤ d , every β = (β1, . . . , βd) with βi > 0 and every L> 0.

PROOF. Using the well-known inequality for blockwise linear oracles (see,
e.g., [3], [5], [13]), we get

Eεθ‖θ̃ε − θ‖2 ≤ S + 4ε2J d +∑
k∈B

θ2
k ,(3)

where B =Nd \⋃mBm and

S =∑
m

ε2|Bm|‖θ‖2
(m)

ε2|Bm| + ‖θ‖2
(m)
.

If θ ∈�(is), the last sum on the RHS of (3) is of a smaller order than ϕ2
ε (�(is)),

in view of the definition of Nmax and �(is). The sum S contains only the terms
for which ‖θ‖(m) �= 0, that is, such that Bm ∩ I (is) �=∅. These correspond to the
vectors m= (m1, . . . ,md) with components mj = 1 for j /∈ I (is) [note that there
are d− s components j /∈ I (is)]. For such m we have |Bm| = T d−s1

∏
j∈I (is) Tmj =

5d−s |Bs,m|, where Bs,m denotes the trace of the block Bm on the space of
indices I (is). Now, cut a hyperrectangle in the space of indices I (is) with sides
Kj = ε−2β(is )/[βkj (2β(is)+1)]

, j ∈ I (is), and denote MV = {m :mj = 1, j /∈ I (is),
and

∑mj
l=1 Tl ≤ Kj,∀j ∈ I (is)}, MB = {m :mj = 1, j /∈ I (is), and ∃j ∈ I (is) :∑mj

l=1 Tl > Kj }. For θ ∈�(is) we get, for ε small enough,

S ≤ ε25d−s
∑

m∈MV
|Bs,m| +

∑
m∈MB

‖θ‖2
(m)

≤ ε25d−s
∏

j∈I (is)
Kj +

∑
k∈I (is): ∃kj≥Kj/2

θ2
k ,

where for the last sum we used that Tmj ≤ (1/2)
∑mj
l=1 Tl if ε is small enough.

This is the usual bias–variance decomposition for the projection estimator with
correct parameters for the class �(is). Using the definition of �(is) and of Kj we
find

sup
θ∈�(is )

S =O(
ε4β(is)/[2β(is )+1]), ε→ 0.

To complete the proof, it remains to substitute this into (3) and to use that
J ≤ C log2 1/ε for some C > 0 (see [13], Chapter 3). �
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An advantage of this result, as compared to Corollary 2 of Hoffmann and Lep-
ski, is that β, s and L need not be known (the estimator θ̃ε does not depend on
these values); and that the adaptation is achieved simultaneously to the dimen-
sion s, to the direction is and to the smoothness β. I believe that an even stronger
result holds: not only the rate but also the exact minimax constant on every �(is)
is attained with the above blockwise method (and/or with some other adaptation
schemes); the techniques of [1–4] can be helpful to prove this. Note also that
a special role of the envelope class � of “full dimension” is not needed here:
it is just an example of �(is) with s = d , and the result holds for this class as
well.

Of course, such luck is due to the fact that the problem is very particular.
For instance, if we replace the Sobolev ellipsoids �(is) by the Hölder classes in
the space of functions, the above construction is no longer valid, while the RNF
approach is still applicable. Also, the RNF approach suggests (in principle) some
confidence intervals, while for the blockwise estimators they are not known. It
would be interesting to see other applications of the concept of optimal RNF, which
is certainly a challenging issue.
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1. What is an optimal rate? One of the most important issues in statistics
is to go beyond point estimation, by estimating in addition the quality (error) of
an estimator. This paper discusses this issue in the context of nonparametric curve
estimation.

Rates of convergence of estimators in nonparametric models commonly depend
not just on the model, but also on the quantity to be estimated. Therefore, the
question arises how to define optimality of rates, as well as whether rates can be
estimated.

The optimal rate of convergence in the minimax sense is defined as the best
possible rate in the worst possible case. Thus, minimax rates are pessimistic and do
not reward adaptive procedures. The challenge this paper takes up is to introduce
a concept of optimality of random rates which extends the minimax approach, but
does notice the possibility of faster rates at certain points (and lets this be known
to the statistician).

Let us introduce some notation, adapted to the example we will consider later
on, and for that reason slightly different from the notation used in the paper.
Consider an observation Xε from a probability distribution Pθ , where the unknown
parameter θ is in a given parameter space =. Let θ̂ε be an estimator of θ . To settle
things, let us suppose that (=,‖ · ‖) is a normed vector space and that we are
interested in the squared error ‖θ̂ε − θ‖2. The minimax mean squared error is

R2
ε = inf

θ̂ε

sup
θ∈=

Eθ‖θ̂ε − θ‖2.

The minimax rate of convergence ρε is defined by

0< lim inf
ε→0

Rε

ρε
≤ lim sup

ε→0

Rε

ρε
<∞.
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Clearly, the minimax rate depends on the model: ρε = ρε(=). Suppose now
that we allow the rates to depend on the particular θ , say ρθ,ε. It does not make
sense to define optimal parameter dependent rates without referring to a particular
model =. The reason is of course that the estimator θ̂ε ≡ θ0 is optimal when
θ happens to be equal to θ0 (with rate ρθ0,ε = 0), but is useless for any other
value of θ . In other words, one needs to have good behavior of an estimator for
all possible values of θ , or even uniformly in θ . The authors have chosen the
minimax approach: attention is restricted to estimators θ̂ε that attain the minimax
rate ρε, uniformly in θ ∈ =. There is, however, one drawback of this approach:
the requirement of uniformity means that = has to be relatively small, because
otherwise, the estimated rates will still be large.

Let {θ̂ε} be an estimator that attains the minimax rate uniformly on =. Suppose
that, for some subset=1 ⊂=, the rate is actually faster:

lim
ε→0

sup
θ∈=1

Eθ‖θ̂ε − θ‖2

ρ2
ε

= 0.

For example, =1 could be a single point {θ} (or even all singletons {θ}). More
interesting perhaps is the case where =1 is an infinite subset. In that case, the best
one can hope for is that θ̂ε converges with the minimax rate ρε(=1) uniformly
on =1. Two questions arise:

1. Does such an adaptive estimator exist? If not, how do we define the optimal rate
on =1?

2. Are lucky rates observable?

In the paper, both questions are addressed by considering so-called optimal
random (in fact, estimated) normalizing factors (RNFs) ρ̂ε, which depend on Xε
and hence on θ via the distribution of Xε . A RNF ρ̂ε is defined as optimal if it does
not exceed the minimax rate and (roughly speaking) is as small as possible with
large probability on=1. Adaptivity occurs if the RNF does not exceed the minimax
rate ρε(=1) with large probability. The paper extends the definition of optimal
RNFs to the case where one has several (possibly nonnested) subsets=1, . . . ,=N .
It provides optimal RNFs for general N by a canonical construction using optimal
RNFs for each=i .

The definition as given in the paper, of the optimal RNF, requires that

lim sup
ε→0

sup
θ∈=

Eθ

(‖θ̂ε − θ‖2

ρ̂2
ε

)
<∞.

Thus, the optimal RNF can be used to produce a confidence interval for θ .
However, there is a conceptual problem here. The confidence interval consists of
all θ for which ‖θ̂ε − θ‖ ≤ Cρ̂ε , with C some constant, so this is a ball B(R)
in =, with radius R = Cρ̂ε . Clearly, the smaller R, the happier one is. On the
other hand, = can be quite large, in which case B(R) is also large, even if R is
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small. This indicates that optimal RNFs are really different from optimal adaptive
confidence sets, in the sense that smallR can still mean largeB(R). In other words,
the confidence set deduced from the optimal RNF seems to be conservative in
testing H : θ ∈ =1. (See also Sections 2 and 3 below, where the relation with
testing is discussed further.) In curve estimation, constructing pointwise (adaptive)
confidence intervals or (adaptive) confidence intervals in sup-norm is unfortunately
very difficult. In any case, it appears that the confidence intervals considered in this
paper have little in common with, for example, those in Picard and Tribouley [4]
or Dümbgen and Spokoiny [2].

2. Anisotropic regression and other examples. The paper considers aniso-
tropic regression as an example. Let me translate this problem in its most simple
form. Suppose one has observations Xε = {Xk,l,ε} with

Xk,l,ε = θk,l + εξk,l, k, l ∈ {1,2, . . .},
where the ξk,l are i.i.d. N (0,1), and where

{θk,l} ∈==
{ ∞∑
k=1

∞∑
l=1

θ2
k,l(k

2β1 + l2β2)≤L2

}

and

=1 = {θ ∈= : θk,l = 0 for all l > 1}.
Let ‖ · ‖ be the Euclidean norm. The minimax rate for this model is ρε(=) =
(ε2)β/(2β+1) on =, where β is defined by 1/β = 1/β1 + 1/β2, and rate ρε(=1)=
(ε2)β1/(2β1+1) on =1. The authors show that adaptation occurs if β1 < 2β (i.e.,
β1 < β2). Otherwise, the optimal RNF is (apart from logarithmic factors) of order
(ε2)2β/(4β+1) on=1. Thus, if= is large, optimal RNFs are also large. This seems to
be the price to pay for requiring uniformity in=, that is, for the minimax approach.

Before briefly sketching the methodology used by the authors to arrive at this
result, let me recall that most adaptive estimation methods, for example, the
very general method with dimension penalties as considered in Barron, Birgé
and Massart [1], tend to underestimate the complexity of a model. Thus, such
estimation methods cannot be used to estimate the rate. It appears that one has to
take a second order correction into account.

Consider the hypothesisH : θ ∈=1. Take as test statistic

Tε =
N1∑
k=1

N2∑
l=2

(X2
k,l,ε − ε2),

where N1 and N2 are properly chosen. Let Ñ = N1N2, and let φ2
ε be the critical

value for the test. Roughly speaking, and modulo logarithmic factors, Tε behaves
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like ε2
√
Ñ under H , as a consequence of the central limit theorem. Therefore, we

should also take φ2
ε of this order. Now, an optimal RNF will be

ρ̂ε =
{
φε ∨ ρε(=1), if H is accepted,

ρε(=), if H is rejected.

To have that this RNF is of the right order when H is not true but nevertheless
accepted, one has to take care of the bias, that is, take Ñ large enough. Thus, the
trade-off is now between ε2

√
Ñ and squared bias, leading to choosing Ñ of order

(ε2)2/(4β+1) (again modulo logarithmic factors).
This procedure is as in Lepski [3]. Let me briefly describe it using a sequence

space formulation. Consider the model

Xk,ε = θk + εξk, k ∈ {1,2, . . .},
with θ ∈=. Consider projection estimators

θ̂N
k =

{
Xk,ε, if k ∈N ,

0, else.

The variance–bias decomposition is now

Eθ‖θ̂N − θ‖2 = ε2|N | + ∑
k /∈N

θ2
k .(1)

Now, let us assume without loss of generality that choosing N as the first Nε
indexes k gives the optimal mean square error (for linear projection estimators)
on =. Denote the estimator by θ̂Nε , where for general N , θ̂N = θ̂ {1,...,N}.

Let =1 ⊂ =, and suppose that on =1 one can in fact do with the first Kε
indexes k, whereKε ≤Nε; that is, θ̂Kε gives the smallest mean square error on=1.
Take the following as test statistic for H : θ ∈=1:

Tε = ‖θ̂Ñε − θ̂Kε‖2 − ε2(Ñε −Kε),

with critical value φ2
ε (modulo logarithmic factors) of order ε2

√
Ñε. One has to

trade off ε2
√
Ñε against the squared bias [instead of the usual variance–bias trade-

off (1)]. Adaptation occurs if Kε is of larger order than
√
Ñε.

For example, suppose

==
{ ∞∑
k=1

θ2
k k

2β ≤ L2

}

and

=1 =
{ ∞∑
k=1

θ2
k k

2β1 ≤ L2

}
,
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with β1 > β . Then Nε is of order (ε2)1/(2β+1) and Kε is of order (ε2)1/(2β1+1),

whereas
√
Ñε is of order (ε2)1/(4β+1) (modulo logarithmic factors).

3. How about applications? Constructing confidence intervals using the
RNFs is as yet not practically feasible. One of the reasons is of course that
the appropriate constants are not known (yet). But also, the temptation to use
such a confidence interval to test the hypothesis θ ∈ =1 (say) probably should
be suppressed. It will be more natural to apply the test that was used to
construct the confidence interval. In fact, the problem as stated in the paper,
that “you know adaptive estimators converge very fast if the function is very
smooth (or has prescribed complexity), but you can tell nothing about the
estimated function itself” (Section 1) is not solved by using RNFs, because very
unsmooth functions may still have very small RNFs. In fact, one wants to test the
hypothesis

H : f is not smooth,

a notoriously hard problem.
A limitation of the approach used is that it assumes only a finite number of

possibilities =1, . . . ,=N . From Corollary 1 in the paper, one may deduce that
this can be generalized to the case where N grows as ε→ 0. However, I have no
insight into the case when condition (17) of this corollary is met. The example also
requires knowledge of the constant L, the radius of the Sobolev ball. This clearly
also prohibits actual applications.

Thus, RNFs provide a new and natural generalization of the minimax approach,
and they generate and recall many puzzling and persistent questions as well!
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REJOINDER

M. HOFFMANN AND O. LEPSKI

Université Paris VII and Université de Provence

We are grateful to all the participants for their stimulating comments and
insightful questions. Reading the notes of the contributers, we progressively
came to a better understanding of the imperfections of our approach. It also
has given an orientation for further efforts: trying to answer their questions,
we found several interesting problems for future work. We also believe
and hope that this discussion will be relevant for potential readers since it
somehow represents the state of modern asymptotic theory in nonparametric
statistics. In our rejoinder we mainly focus on the criticism that was raised
throughout the discussion. We will develop hereafter some complementary
results that can presumably be obtained in the same line as the proofs of the
paper.

What do we mean by “improvement of accuracy”? The main concern
which appeared in almost all the contributions—Birgé, Efromovich, Tsybakov,
van de Geer—is that the initial space � [or �(β,L) for anisotropic regression] is
known a priori, and this knowledge is used for all constructions presented in the
paper. Before addressing this objection, let us separate our results into two groups:

1. Construction of RNFs and of α-adaptive estimators—We really need to
know �. We understand the improvement of the accuracy as a random nor-
malizing factor (RNF) which is “better” than the minimax rate of convergence
on �. We can interpret our results as follows: the optimal RNF and α-adaptive
estimators are relevant if � is not “too large.” For particular models, we show
that if � is rather large, the possible improvement may exist, but is negligible
for realistic sample sizes.

2. Lower bounds—We can even be more precise with the last statement. Usually,
one can prove that the characteristic xε(ρ̂ε, i) of a RNF ρ̂ε providing finiteness
of the maximal risk over � does not exceed either the minimax rate of
convergence on �i or the minimax testing rate, say rε, corresponding to the
following hypothesis testing problem. One needs to test the hypothesis f ∈�i
against the alternative f ∈ � such that infg∈�i‖f − g‖ ≥ rε. Typically, this
rate rε does not depend on �i , but crucially depends on �: the larger �, the
worse rε. This explains in particular why an adaptive version of our procedure
(“w.r.t. � in all generality”) is meaningless. For example, let us consider the
white noise model with ‖ · ‖ = L2-norm, N = 1, and let � =�(β,1), β > 0,
be a family of Sobolev balls in L2([0,1]) (we take unit balls for simplicity) and
�1 = “space of constants.” It is known (see [2]) that rε = ε4β/(4β+1). Suppose
now that β is unknown. If one looks for ρ̂ε and f̂ε such that

lim sup
ε→0

sup
f∈�(β,1)

Eεf
{
(ρ̂ε)

−2‖f̂ε − f ‖2
2
}
<∞ ∀β > 0,
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then, necessarily,

lim inf
ε→0

xε(ρ̂ε)

ε4β/(4β+1)
> 0 ∀β > 0.

This implies that

“improved rate”

“minimax rate of convergence”
= xε(ρ̂ε)

ε2β/(2β+1) → constant �= 0

when β→ 0.

In conclusion, a single procedure that reasonably improves in our sense the rate of
convergence over an arbitrary � cannot exist in general! Even if we suppose that
β ≥ βmin > 0 (here βmin is supposed to be known), then the improvement does
exist but is ridiculous if βmin is small.

Thus, the knowledge of � is crucial, but even this is not sufficient to obtain
satisfactory results. As already seen,� should not be “too huge.” A nice collection
of such spaces in the context of multivariate estimation is developed by Brown and
Lin in their Discussion. They elegantly show in a few lines how to extend our
approach to the ANOVA setting.

Adaptive confidence sets. Birgé, Tsybakov, Picard and Tribouley and van
de Geer have pointed out several interesting links between RNF and adaptive
confidence sets. They also pose various thought-provoking questions. We think
we have to try to shed some light, if we can, on some of their remarks. As we
understand these remarks, the main concerns are as follows:

1. the fact that the proposed confidence sets explicitly depend on the knowledge
of β and L for the case of anisotropic regression; in the abstract model, they
depend on the initial space �;

2. the description of the confidence sets using L2-norm;
3. the use of the Markov inequality to derive confidence sets.

Although our goal was not to provide adaptive confidence sets (ACSs), we realize
that this issue is probably the most important aspect of the paper; by studying the
links between RNF and ACS, we originally pursued the following objectives:

1. to “show that for confidence intervals in the L2-norm the situation is more
optimistic [than for pointwise confidence intervals]” (Tsybakov); in particular,
to show that ACSs may exist in some cases;

2. to show that, even when the L2-norm is considered, ACSs do not exist in
a general setting;

3. to show that, if ACSs do not exist, the use of RNF may provide a smaller radius
of the confidence set than the radius suggested by the minimax approach (see
Section 1 in the discussion by Picard and Tribouley).
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To be more specific, we again take the example we considered in the first section.
Let �(β,1), 0< βmin ≤ β ≤ βmax ≤∞, be a family of Sobolev balls.

First, suppose that βmax < 2βmin. In this case, one can construct a RNF ρ∗ε and
an estimator f ∗ε such that the L2 ball with center f ∗ε and a radius of the order ρ∗ε
is a fully ACS w.r.t. {�(β,1), βmin ≤ β ≤ βmax}. It means that, for all 0< γ < 1
and some C(γ,βmin), we have

inf
f∈�(βmin,1)

P εf
{‖f ∗ε − f ‖2 ≤ C(βmin, γ )ρ

∗
ε

}≥ 1− γ,

x(ρ∗ε , β)� ε2β/(2β+1) ∀β ∈ [βmin, βmax].
To construct the pair (ρ∗ε , f ∗ε ), we need to know how to handle the number N
of hypotheses when N = Nε →∞ as ε→ 0 if we want to use our canonical
construction (this question was addressed simultaneously by Picard and Tribouley,
by Tsybakov and by van de Geer). To do this with an abstract model, it is sufficient
to replace our condition (17) in Section 2.2 by

lim
ε→0

Nε∑
i=1

sup
f∈�

Eεf
{[ξε,i (f )]p1{ξε,i(f )≥Mi}

}= 0.(∗)

Assumption (∗) is very close to the sufficient condition in [4] for the existence of
an optimal adaptive estimator. The sufficient condition in [4] is indeed verified in
various nonparametric settings. (Compare the remarks in van de Geer’s Section 3.)

In our example, the (ρ∗ε,i , f ∗ε,i) are the optimal RNF and α-adaptive estimator

w.r.t. �(βi,1), where βi = βmin + i
(ln(1/ε))2

and βi ∈ [βmin, βmax]. In this case, it

is readily seen that Nε � (ln(1/ε))2. The condition (∗) holds if one assumes that
αε→ 0 fast enough (see the assumption of Proposition 3).

Second, suppose that βmax > 2βmin. Repeating the proof of the lower bound
given in the paper, one can show that an ACS does not exist anymore. To be
more precise, if we understand an ACS as a ball B(f̂ε, ρ̂ε) in L2 with data-driven
center f̂ε and radius ρ̂ε, then for any γ > 0 small enough such that

inf
f∈�(βmin,1)

P εf
{
f ∈B(f̂ε, ρ̂ε)}≥ 1− γ

we have

sup
f∈�(β,1)

P εf
{
ρ̂ε > const. ε4βmin/(4βmin+1)}≥ κ ∀β ≥ 2βmin,

for some κ > 0. It remains to note that ε4βmin/(4βmin+1)& ε2β/(2β+1) for β > 2βmin.
Third, if βmax is arbitrary, we still obtain an optimistic result: we can construct

(ρ∗ε , f ∗ε ) such that, for all 0< γ < 1 and some C(γ,βmin), we have

inf
f∈�(βmin,1)

P εf
{‖f ∗ε − f ‖2 ≤ C(βmin, γ )ρ

∗
ε

}≥ 1− γ,
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x(ρ∗ε , β)�




(
ε

√
1

ln ε

)4βmin/(4βmin+1)

, β ∈ (2βmin, βmax]

ε2β/(2β+1), β ∈ [βmin,2βmin]



� ε2βmin/(2βmin+1).

Keeping this in mind, we can now answer the first concern of the contributors:
we really need to know βmin (and hence the initial space �) because if βmin
is too small (if βmin = 0, then � is “roughly” the L2-space), the best possible
improvement is negligible.

Let us now briefly discuss the use of the Markov inequality and the choice
of the L2-norm to construct confidence sets. First, we absolutely agree with the
remarks of Birgé and Tsybakov that it is much better to use exponential bounds for
probabilities to obtain more precise coverage of the confidence sets; see also the
remarks of Picard and Tribouley. The Markov inequality is just the simplest way to
relate probability deviations and squared expectation if only rates of convergence
are sought. However, the reason we describe a confidence set as a ball in some
normed space is a direct consequence of the application of the theory of RNFs.
The question of how to apply confidence sets of this type to real problems is a very
delicate issue. Here we present some of our conjectures where and how one can
apply such constructions. From our point of view, one of the possible problems
is a confidence interval for a value of a function at a random point. To be more
specific, let us consider the nonparametric AR(d) model

Yi = f (Yi−1, . . . , Yi−d)+ ξi, i = 0, . . . , n,

with centered i.i.d. random variables ξi (innovations) and let f ∈ �, where � is
a typical class considered in a nonparametric setting. Imagine that we are able to
extend our theory for this model; that is, we can find an optimal RNF ρ∗n and an
α-adaptive estimator such that

sup
f∈�

Enf
{
(ρ∗n)−2‖f ∗n − f ‖2

2
}≤M(∗∗)

for large enough n. A problem of interest (scrutinized in many papers) is to predict
the value Yn+1. Clearly (because the ξn+1 and Yn,Yn−1, . . . are independent and
moreover the law of ξ1 does not depend on f ) this problem is in fact equivalent to
finding an estimator of

f (Yn, . . . , Yn−d+1).

A standard approach is then to use the following predictor:

Ŷn+1 = f̂n(Yn, . . . , Yn−d+1),

where f̂n(·) is an estimator of f . We claim that using (∗∗) we can construct a data-
driven confidence interval for f (Yn, . . . , Yn−d+1) as follows. Put, for c > 0,

Rc = {
t ∈R

d : |f ∗n (t)− f (t)| ≥ cρ∗n
}
.



394 RANDOM RATES IN REGRESSION

Clearly

measure(Rc)≤ c−2(ρ∗n)−2‖f ∗n − f ‖2
2

and therefore

sup
f∈�

Enf
{
measure(Rc)

}≤ c−2M(i)

for large enough n. In view of (i) and under some additional assumptions imposed
on the law of ξ1, one can prove that

sup
f∈�

P nf
{
(Yn, . . . , Yn−d+1) /∈ Rc}≤ a(c),(ii)

for some a(c)→ 0 as c→∞. We conclude from (ii) that, for all 0< γ < 1, there
exists C(γ ) such that

inf
f∈�P

n
f

{
f (Yn, . . . , Yn−d+1) ∈ In}≥ 1− γ,

where

In = [
f ∗n (Yn, . . . , Yn−d+1)−C(γ )ρ∗n, f ∗n (Yn, . . . , Yn−d+1)+C(γ )ρ∗n

]
.

We end the Rejoinder by addressing individually some remarks, comments and
questions of the participants that are not covered above.

L. Birgé. Asymptotic versus nonasymptotic: the main concern of Birgé is
the “fundamentally asymptotic nature” of our results. Certainly, we agree that
any nonasymptotic mathematical result (if available) is much deeper than an
asymptotic one and mathematical statistics is no exception. However, whenever
one speaks about investigations in the area of mathematical statistics there are
usually two types of difficulties to overcome. First, one needs to present a statistical
procedure and to compute its characteristics (risk, power function or something
else). At this stage, the possibility of obtaining a nonasymptotic result is based on
the technical abilities of the researcher and mostly depends on the complexity of
the problem to be solved. If we look at the upper bound obtained in our Theorem 1
we will see that it is in fact a nonasymptotic result. It is just because “the model
is so nice and so particular” (Tsybakov). We also believe that, for some other
statistical models which are not so “ideal,” a nonasymptotic version of our upper
bound could be established as well. Unfortunately, the main difficulty is not here.
Whenever a statistical procedure is proposed, one usually wants to compare it with
other procedures. In other words one needs an optimality criterion. Indeed, the
criterion we propose (Definition 2) has an “asymptotic nature,” and we do not have
any idea about its nonasymptotic version. We also do not know any satisfactory
“nonasymptotic” criteria allowing comparison of statistical procedures.
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L. D. Brown and Y. Lin. Is fully adaptive estimation possible in multidimen-
sional problems? For minimax risk described by L2-losses, the estimators adap-
tive w.r.t. the scale of anisotropic Hölder spaces as well as the scale of anisotropic
Besov spaces (in other words w.r.t. β and L) were found in [1] and in [6] respec-
tively. In these papers s = d and the adaptation to unknown direction is is not
considered. The discussion by Tsybakov shows in an elegant and thorough way
how to construct an estimator which is fully adaptive to β, L, s and is using the
blockwise Stein method. Some results for the case of Lp-losses, 1≤ p ≤∞, have
been obtained recently in [5].

S. Efromovich. Efromovich contests our opinion that it is impossible to
compute the accuracy of an adaptive estimator and gives the example where the
finding of a random rate is not needed (see also the example of functional space in
the discussion by Birgé). We remind the reader that our “categorical conjecture”
was done for the problems where different (in order!) rates of convergence are
possible. This is not the case for the examples considered by Efromovich and
Birgé.

Does the HL (our) estimator improve the accuracy of estimation? In the first
section above we explained how we understand the notion of “improvement.” With
this in mind we can state that our procedure is optimal in view of Definitions 2
and 3. If so, how do we comment on the example of the estimator (say, estimator A)
given by Efromovich which “outperforms the HL estimator” (estimator B)?
Indeed, estimator A is better but in view of another criterion. To be mathematically
correct one should compare procedures using one and the same criterion! Perhaps
estimator A satisfies Definitions 2 and 3. In this case one can say that estimators A
and B are equivalent in view of this criterion. It is also possible that estimator A
is not optimal in view of Definitions 2 and 3. Clearly, it does not mean that
estimator A is less “accurate” than estimator B. In general, the following question
could be asked: for a given estimator, say f̃ , does one need to estimate its accuracy
‖f̃ −f ‖? Some results in this direction are obtained in [3] for the case ‖·‖ = ‖·‖2.

What about random rates in anisotropic regression? Indeed, we consider this
model only in the Introduction in order to clarify the problems to be solved. The
presentation of this less “theoretical” model in the Introduction of our paper was
suggested by an Associate Editor and the referees simultaneously. We believe that
our result can be extended to this model for the case of i.i.d. (or weakly dependent)
noises satisfying some moment condition.

D. Picard and K. Tribouley. What can be done for L∞-losses? In view of the
relationship with hypothesis testing as discussed in the first section above, we are
very pessimistic about the possibility of extending our results to L∞-losses.

What about RNFs and maxisets? We did not investigate this direction. The
concept of a maxiset seems indeed very natural to us in the context of RNFs.
Possibly, this could be related to a notion of random maxiset.
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